Cross-PlatForm Development in C

\Viastering

 'NAPPGUI
x | i

Loy o]

Franemwco Garcia CaMado

PGUI

Cross-Platform C language development
How to create high-performance applications for Windows, macOS, and Linux
systems.
Version 1.5.2.6383 !

© 2015-2025 Francisco Garcia Collado?
frang@nappgui.com
WWW.nappgui.com

3 July 2025

!This book has been edited in ¥TEXgenerated automatically by ndoc.
2All rights reserved. This book is provided for personal use only. Unauthorized use, reproduc-
tion and/or distribution strictly prohibited.

Contents

1 Users guide

1 Quick start

1.1
1.2
1.3
14
1.5
1.6
1.7

Quick start

Quick start in Windows
Quick start on macOS
Quick start on Linux
MIT License

Previous knowledge
And now what?

2 Welcome to NAppGUI

2.1
2.2
2.3
24
2.5
2.6

Welcome to NAppGUI
Original APIs

C-based

No visual editors
Dependencies

Low and high level

3 Hello World!

3.1 Hello World!
3.2 The complete program
3.3 The skeleton
3.4 The constructor
3.5 The main panel
3.6 The destructor
3.7 Launch the window
3.8 Layout format
3.9 Exiting the program
3.10 Button Events
4 Use of C
4.1 Use of C
4.2 Basic types
4.3 Structures and unions
4.4 Control

w

co =3 ot Ut G

10
10

13
13
15
16
16
18
21

23
23
24
26
27
28
28
28
29
29
30

31
31
32
34
35

Contents

4.5 Functions

4.6 Scopes

4.7 Pointers

4.8 Preprocessor

4.9 Comments

4.10 Input/Output

4.11 Mathematical algorithms

Use of C++

5.1 Use of C++

5.2 Encapsulation

5.3 Class callbacks

5.4 Combine C and C++ modules
5.4.1 Using C from C++
5.4.2 Using C++ from C

5.9 new and delete overload

5.6 Hello C++ complete

5.7 Math templates

Error management
6.1 Error management
6.2 Exhaustive tests
6.3 Static analysis
6.3.1 Standards
6.3.2 Compiler warnings
6.4 Dynamic analysis
6.4.1 Disabling Asserts
6.4.2 Debugging the program
6.4.3 Error log
6.4.4 Memory auditor

7 Build NAppGUI

7.1 Build NAppGUI

7.2 Static linking

7.3 Dynamic linking

7.4 CMake Options

7.5 Build Options

7.6 Packaging and installation

8 Create new application

8.1 Create new application
8.2 Use of find_package()

37
38
39
40
41
42
43

45
45
46
46
48
48
48
49
50
53

57
57
o7
o8
o8
60
61
63
63
63
64

65
65
65
66
67
68
69

71
71
71

8.3
8.4
8.5
8.6
8.7

9.1
9.2
9.3

9.3.1
9.3.2

NAppProject.cmake

Add files

Command line applications
Example projects

C/C++ standard

Create new library

Create new library

Static libraries

Dynamic libraries
Advantages of DLLs
Disadvantages of DLLs

9.3.3 Check links with DLLs
9.3.4 Loading DLLs at runtime

9.3.5

9.4

9.4.1
9.4.2

Location of DLLs
Symbols and visibility
Export in DLLs

Checking in DLLs

10 Resources

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11

Resources

Types of resources
Create resources
Internationalization (i18n)
Runtime translation
Edit resources
Manual management
Resource processing
Resource distribution
nrc warnings
Application icon

11 Generators, compilers and IDEs

11.1
11.2
11.3
11.4

Generators, compilers and IDEs
Portability concept

CMake Generators

Visual Studio

11.4.1 Platform toolset

11.4.2 Visual C++ Redistributable
11.4.3 WindowsXP support

11.4.4 SSE support

Contents

73
75
76
78
78

81
81
81
85
86
87
88
91
93
95
96
97

99

99
100
101
102
104
106
106
107
107
109
110

113
114
114
115
116
118
119
120
120

Contents

11.5 MinGW 121
11.5.1 MSYS2 121
11.5.2 MinGW-GCC 122
11.5.3 MinGW-Clang 123

11.6 Xcode 124
11.6.1 Base SDK and Deployment Target 126
11.6.2 xcode-select 127
11.6.3 macOS ARM 128
11.6.4 macOS 32bits 129

11.7 macOS Make 130

11.8 Linux GCC 131
11.8.1 Multiple versions of GCC 135
11.8.2 Linux 32bits 136
11.8.3 Linux ARM 136

11.9 Linux Clang 137

11.10 Linux GTK 138

11.11 Ninja 138

11.12 Configurations 140

11.13 Eclipse CDT 142

11.14 Visual Studio Code 143

2 Introduction to the API 147
12 NAppGUI SDK 149

12.1 NAppGUI API 149

12.2 Online resources 151

12.3 A little history 151

13 Sewer library 153

13.1 Sewer 154
13.1.1 The C standard library 154

13.2 Asserts 157

13.3 Pointers 158

13.4 Unicode 159
13.4.1 UTF encodings 161
13.4.2 UTF-32 161
13.4.3 UTF-16 161
13.4.4 UTF-8 162
13.4.5 Using UTF-8 163

13.5 Maths 164

13.5.1 Random numbers 164

13.6 Standard functions
13.6.1 Date conversion
13.7 Standard I/O
13.8 Memory

13.8.1 Stack Segment
13.8.2 Heap Segment

14 Osbs library
14.1 Osbs
14.2 Processes
14.2.1 Launching processes
14.2.2 Multi-processing examples
14.3 Threads
14.3.1 Throwing threads
14.3.2 Shared variables
14.3.3 Multi-thread example
14.4 Mutual exclusion
14.4.1 Locks
14.5 Loading libraries
14.5.1 Library search paths
14.5.2 Search order in Windows
14.5.3 Search order on Linux/macOS
14.6 Files and directories
14.6.1 File System
14.6.2 Files and data streams
14.6.3 Filename and pathname
14.6.4 Home and AppData
14.7 Sockets
14.7.1 Client/Server example
14.8 Time
14.9 Log

15 Core library
15.1 Core
15.2 Heap
15.2.1 Multi-thread memory
15.2.2 How Heap Works
15.3 Buffers
15.4 Strings
15.5 Arrays
15.5.1 Create arrays
15.5.2 Access to elements and iteration

Contents

165
165
166
167
167
168

171
172
173
173
174
176
177
177
178
181
181
181
182
182
183
183
183
184
184
185
185
186
189
190

191
193
195
196
197
199
199
201
202
203

Contents

15.5.3 Array copy

15.5.4 Array serialization

15.5.5 Sort and search in arrays

15.5.6 Comparators and keys

15.5.7 Insert and delete in arrays

15.5.8 Type declaration in arrays

15.5.9 Array limitations
15.6 Pointer arrays

15.6.1 Create pointer arrays

15.6.2 Copying arrays of pointers
15.7 Sets

15.7.1 Create sets

15.7.2 Insert and delete elements in sets

15.7.3 Search and tour in sets. Iterators

15.7.4 Comparison of arrays and sets
15.8 Pointer sets

15.8.1 Create pointer sets
15.9 Data binding

15.9.1 Register data types

15.9.2 Type aliases

15.9.3 Creating objects

15.9.4 Object initialization

15.9.5 Object copy

15.9.6 Editing objects

15.9.7 Basic types

15.9.8 Nested objects

15.9.9 Binary objects

15.9.10 Using arrays

15.9.11 Default values

15.9.12 Numeric ranges

15.9.13 Object compare with DBind

15.9.14 Serialization with DBind

15.9.15 Import and export to JSON

15.9.16 Synchronization with graphical interfaces
15.10 Streams

15.10.1 Stream Types

15.10.2 File stream

15.10.3 Socket stream

15.10.4 Block stream

15.10.5 Memory stream

15.10.6 Standard stream

15.10.7 Null stream

204
205
205
206
207
208
208
209
209
210
211
212
213
214
215
217
218
219
219
221
222
222
223
223
224
224
225
226
227
228
229
230
230
231
232
233
233
233
234
235
236
237

Contents

15.10.8 Binary stream 238
15.10.9 Text stream 238
15.10.10Tokens 239
15.10.11Identifiers 241
15.10.12Strings 242
15.10.13Numbers 242
15.10.14Symbols 243
15.10.15Comments 243
15.10.16Stream advantages 244
15.10.17Unify serialization 244
15.10.18More elegance 244
15.10.19Higher productivity 245
15.10.20Higher performance 246
15.10.21Byte order 246
15.10.22Stream state 247
15.11 Regular expressions 248
15.11.1 Define patterns 249
15.11.2 Regular languages and automata 250
15.12 Events 250
15.13 Keyboard buffer 252
15.14 File operations 252
15.15 Resource packs 254
15.16 Dates 255
15.17 Clocks 255
16 Geom2D library 257
16.1 Geom2D 257
16.2 2D Vectors 259
16.2.1 CW and CCW angles 260
16.2.2 Vector projection 260
16.3 2D Size 262
16.4 2D Rectangles 262
16.5 2D Transformations 263
16.5.1 Elementary transformations 263
16.5.2 Composition of transformations 264
16.5.3 Decomposition and inverse 267
16.6 2D Segments 268
16.7 2D Circles 269
16.8 2D Boxes 269
16.9 2D Oriented Boxes 269

16.10 2D Triangles 271

Contents

16.11 2D Polygons

16.11.1 Polygon center

16.11.2 Polygon decomposition
16.12 2D Collisions

17 Draw2D library
17.1 Draw2D
17.2 2D Contexts
17.2.1 Reference systems
17.2.2 Cartesian systems
17.2.3 Antialiasing
17.2.4 Retina displays
17.3 Drawing primitives
17.3.1 Line drawing
17.3.2 Figures and borders
17.3.3 Gradients
17.3.4 Gradient transformation
17.3.5 Gradients in lines
17.3.6 Gradient Limits
17.3.7 Drawing text
17.3.8 Drawing images
17.3.9 Default parameters
17.4 Geom2D Entities Drawing
17.5 Colors
17.5.1 HSV space
17.6 Palettes
17.6.1 Predefined palette
17.7 Pixel Buffer
17.7.1 Pixel formats
17.7.2 Procedural images
17.7.3 Copy and conversion
17.8 Images
17.8.1 Load and view images
17.8.2 Generate images
17.8.3 Pixel access
17.8.4 Save images: Codecs
17.9 Fonts
17.9.1 Create fonts
17.9.2 System font
17.9.3 Monospace font
17.9.4 Font style
17.9.5 Size and metrics

272
273
274
275

277
278
279
281
284
285
286
287
287
288
289
291
292
293
293
296
297
298
299
300
301
302
302
303
304
305
305
306
307
307
308
310
310
312
312
313
313

Contents

17.9.6 Size in points 314
17.9.7 Font stretch 315
17.9.8 Bitmap and Outline fonts 316
17.9.9 Unicode and glyphs 317
18 Gui library 319
18.1 Gui 322
18.1.1 Declarative composition 323
18.1.2 Anatomy of a window. 324
18.1.3 GUI Events 325
18.2 GuiControl 328
18.3 Label 329
18.3.1 Multiline label 329
18.3.2 Label in forms 330
18.3.3 Dynamic labels 330
18.4 Button 332
18.4.1 RadioGroup 333
18.4.2 Button shortcuts 334
18.4.3 Inner padding 335
18.5 PopUp 336
18.6 Edit 336
18.6.1 Validate texts 336
18.6.2 Filter texts 337
18.6.3 Text selection 339
18.6.4 Clipboard operations 340
18.7 Combo 340
18.8 ListBox 341
18.9 UpDown 341
18.10 Slider 343
18.11 Progress 343
18.12 View 344
18.12.1 Draw in views 345
18.12.2 Scrolling views 345
18.12.3 Drawing overlays 347
18.12.4 Using the mouse 348
18.12.5 Using the keyboard 349
18.13 TextView 349
18.13.1 Character format 350
18.13.2 Paragraph format 351
18.13.3 Document format 352
18.13.4 Apply format 352

18.13.5 Filter inserted text 352

Contents

18.13.6 Select text
18.13.7 Clipboard
18.13.8 Text wrapping
18.14 WebView
18.14.1 WebView dependencies
18.14.2 WebView on Windows
18.14.3 WebView on macOS
18.14.4 WebView on Linux
18.14.5 Disable WebView
18.15 ImageView
18.16 TableView
18.16.1 Data connection
18.16.2 Data cache
18.16.3 Multiple selection
18.16.4 Table navigation
18.16.5 Configure columns
18.16.6 Notifications in tables
18.16.7 Table appearance
18.17 SplitView
18.17.1 Add controls
18.17.2 Positioning the divider
18.17.3 Divider minimum size
18.18 Layout
18.18.1 Natural sizing
18.18.2 Margins and format
18.18.3 Alignment
18.18.4 Sub-layouts
18.18.5 Cell expansion
18.18.6 Dynamic interfaces
18.18.7 Replacing panels
18.18.8 Dynamic layouts
18.18.9 Tabstops
18.19 Cell
18.20 Panel
18.20.1 Multi-layout panel
18.20.2 Understanding panel sizing
18.21 Window
18.21.1 Window size
18.21.2 Closing the window
18.21.3 Modal windows
18.21.4 Overlay windows
18.21.5 Keyboard focus

353
354
354
354
354
355
356
356
356
357
358
358
361
362
362
363
364
365
365
367
367
369
369
370
372
372
374
375
375
376
377
379
380
381
382
382
387
387
388
390
391
393

18.21.6 Focus change
18.21.7 Focus protocol
18.21.8 Tablist without cycles
18.21.9 Default button
18.21.10Keyboard shortcuts
18.22 GUI Data binding
18.22.1 Basic type binding
18.22.2 Limits and ranges
18.22.3 Nested structures
18.22.4 Notifications and calculated fields
18.23 Menu
18.23.1 Menu bar
18.23.2 macOS particularities
18.23.3 PopUp menu
18.23.4 Historical perspective
18.24 Menultem
18.25 Common dialogs

19 OSApp library
19.1 OSApp
19.2 main() and osmain()
19.3 Synchronous applications
19.4 Multi-threaded tasks

20 Encode library

20.1 Encode

20.2 DBaset4

20.3 JSON
20.3.1 JSON parsing and conversion to data in C
20.3.2 Mapping between Json and C
20.3.3 Convert from C to JSON

20.4 URL

21 INet library
21.1 INet
21.2 HTTP

22 OGL3D library
22.1 OGL3D
22.2 3D Contexts
22.3 Drawing operation
22.4 GLEW

Contents

393
394
394
395
395
396
397
400
401
405
407
407
407
409
410
410
411

415
415
415
419
420

423
423
423
424
426
429
430
432

435
435
436

439
439
440
441
442

Contents

3 Sample Applications

23 Die

23.1
23.2
23.3
234
23.5
23.6
23.7
23.8

Die

Use of sublayouts

Use of Custom Views
Parametric drawing
Resizing

Use of resources

Die and Dice

The complete Die program

24 Bricks

24.1

Bricks

25 Fractals

25.1

Fractals

26 Bode

26.1

Bode

27 Products

27.1
27.2

Products
Specifications

27.3 Model-View-Controller
27.4 Model
27.4.1 JSON WebServices
27.4.2 Write/Read on disk
27.4.3 Add/Delete records
27.5 View
27.5.1 Multi-layout panel
27.5.2 Hide columns
27.5.3 Bar graphs
27.5.4 'Translations
27.5.5 Dark Mode themes
27.6 Controller
27.6.1 Multi-threaded login

27.6.2 Synchronize Model and View

27.6.3 Change the image
27.6.4 Memory management
27.7 The complete program

28 Hello GUI!

445

447
447
448
450
451
453
455
456
457

463
463

471
471

481
481

489
489
491
492
492
493
495
496
497
498
499
500
501
502
503
504
505
207
508
509

549

28.1 Hello GUI!
28.2 Hello Label!
28.3 Hello Button!

28.4 Hello PopUp and Combo!
28.5 Hello Edit and UpDown!
28.6 Hello TextSel and Clipboard!

28.7 Hello TextEditor!
28.8 Hello ListBox!

28.9 Hello Slider and Progress!

28.10 Hello TextView!
28.11 Hello TableView!
28.12 Hello SplitView!
28.13 Hello Modal Window!

28.14 Hello Overlay Window!

28.15 Hello Button Padding!
28.16 Hello Gui Binding!
28.17 Hello Struct Binding!
28.18 Hello Sublayout!
28.19 Hello Subpanel!

28.20 Hello Multi-layout!
28.21 Hello Scroll-Panel!
28.22 Hello dynamic Layout!
28.23 Hello dynamic Menu!
28.24 Hello IP-Input!

28.25 Hello Font Stretch!

29 Hello Draw2d!
29.1 Hello Draw2d!

30 Hello WebView!
30.1 Hello WebView!

31 Hello 3D Graphics!
31.1 Hello 3D Graphics!

32 Hello 2D Collisions!
32.1 Hello 2D Collisions!

33 Drawing on an image
33.1 Drawing on an image

34 DrawBig
34.1 DrawBig

Contents

550
550
953
557
560
567
975
582
585
087
590
596
599
603
609
612
617
624
628
629
631
633
648
656
657

665
665

685
685

693
693

721
721

765
765

775
775

Contents

34.2 DrawBig layout

34.3 DrawBig expansion

34.4 Drawing view in DrawBig
34.5 DrawBig overlay

34.6 DrawBig multilayout

34.7 DrawBig animations

34.8 Layout coloring in DrawBig
34.9 DrawBig overlapping windows
34.10 DrawBig source code

35 Images from URLs
35.1 Images from URLs

36 Color table
36.1 Color table

37 Read/Write Json
37.1 Read/Write Json

38 Alternative to STL
38.1 Alternative to STL

4 Library reference

39 Sewer library
39.1 Types and Constants
39.2 Functions

40 Osbs library
40.1 Types and Constants
40.2 Functions

41 Core library
41.1 Types and Constants
41.2 Functions

42 Geom?2D library
42.1 Types and Constants
42.2 Functions

43 Draw2D library
43.1 Types and Constants

775
778
779
780
781
782
783
784
785

805
805

813
813

819
819

827
827

835

837
837
842

897
897
902

935
935
946

1093
1093
1099

1165
1165

43.2 Functions

44 Gui library
44.1 Types and Constants
44.2 Functions

45 OSApp library
45.1 Functions

46 Encode library
46.1 Types and Constants
46.2 Functions

47 INet library
47.1 Types and Constants
47.2 Functions

48 OGL3D library
48.1 Types and Constants
48.2 Functions

Contents 1

1170

1227
1227
1242

1389
1389

1395
1395
1395

1405
1405
1405

1413
1413
1415

2 Contents

Part 1

Users guide

CHAPTER

Quick start

“..the number of UNIX installations has grown to 10, with more expected...”

Dennis Ritchie and Ken Thompson - June 1972

1.1 Quick start 5
1.2 Quick start in Windows 5
1.3 Quick start on macOS 7
1.4 Quick start on Linux 8
1.5 MIT License 10
1.6 Previous knowledge 10
1.7 And now what? 11

1.1. Quick start

NAppGUI is an SDK to develop software projects, that work on any desktop platform
(Windows, macOS or Linux), using the C programming language (Figure 1.1). C++ is
allowed, but not indispensable. We can write a complete program using only ANSI-C.

1.2. Quick start in Windows

Before starting you need to have these tools installed (Figure 1.2):

« Visual Studio' to compile under Windows. Microsoft offers the free Community
version.

"https://visualstudio.microsoft.com/vs/

https://visualstudio.microsoft.com/vs/

6 Chapter 1 - Quick start

C program
NAppGUI SDK
Win32 Cocoa GTK+3
GDI+ Quartz2D Cairo

O Products

Fle Novgste View Sever Longusge Help

CHPIP»P OO o

w0

[a8/80]

06625320 C
63900 2606h: 21 LGAI1S1 20721

Sk Retal

inch Hard Drive:
(5T20000X002)

Type

pice
©cPu OGPy OHOD OSCD 46.00 € | - Aogout

© Data has been downlonded comecty. |

GPu @ HoD

Type Price
€PU) GPUO HOD SCD 99,00€ | S Stogout

© Datahas been downloaded correctly.

Figure 1.1: NAppGUI allows the easy port of applications written in ANSI C.

« CMake?. Cross-platform tool to create compilation projects automatically, from
source code. Be careful to select Add CMake to the system PATH for all
users during installation (Figure 1.3).

« Git3. For download the project from GitHub.

Figure 1.2: Basic tools in Windows. ;

By default CMake does not add its directory to the system PATH.

(") Do not add CMake to the system PATH
(®) Add CMake to the system PATH for all users

(") add CMake to the system PATH for the current user
Figure 1.3: Access to CMake from the command line.

From a console on Windows:

?https://cmake.org/download/
3https://git-scm.com/

https://cmake.org/download/
https://git-scm.com/

1.8 - Quick start on macOS 7

git clone --depth 1 https://github.com/frang75/nappgui_src.git
cd nappgui src

cmake -S . -B build
cmake --build build --config Debug

Once compiled, you will be able to run the existing example applications in the \build
\Debug\bin directory (Figure 1.4).

.\build\Debug\bin\Die.exe
.\build\Debug\bin\Bricks.exe
.\build\Debug\bin\Products.exe
.\build\Debug\bin\Col2dHello.exe
.\build\Debug\bin\GuiHello.exe

O Products

File MNavigste View Server Language Help

.

Description

Arnanda Callister
amanda@nappgui.com

Intel Pentium G Series 3.50
GHz Dual-Core LGA 1151
Processor (BXB0677G4360)

Type

® CPUC GPUC HDDO SCD 71.95 € = “Slogout

Data has been downloaded correctly.

Figure 1.4: Running the Products sample program after compilation

1.3. Quick start on macOS

Before starting, make sure you have installed and configured Xcode?, an essential envi-

ronment for development under macOS. You will also need to download and install CMake
from www.cmake.org® (Figure 1.5).

“https://developer.apple.com/xcode/
Shttps://www.cmake.org

https://developer.apple.com/xcode/
https://www.cmake.org

8 Chapter 1 - Quick start

Figure 1.5: Xcode and CMake on
macOS.

By default, CMake does not configure command line access on macOS. You can create
symbolic links with sudo “/Applications/CMake.app/Contents/bin/cmake-gui”
—install.

Open a terminal in macOS:

git clone --depth 1 https://github.com/frang75/nappgui src.git
cd nappgui_src

cmake -G Xcode -S . -B build

cmake --build build --config Debug

Once compiled, you can run the existing sample applications in the /build/Debug/bin
directory (Figure 1.6).

./build/Debug/bin/Die.app/Contents/MacOS/Die
./build/Debug/bin/Bricks.app/Contents/MacOS/Bricks
./build/Debug/bin/Products.app/Contents/MacOS/Products
./build/Debug/bin/Col2dHello.app/Contents/MacOS/Col2dHello
./build/Debug/bin/GuiHello.app/Contents/Mac0OS/GuiHello

1.4. Quick start on Linux

Before starting, make sure you have the necessary compilers, tools and libraries in-
stalled:

// Development tools

sudo apt-get install build-essential
sudo apt-get install git

sudo apt-get install cmake

// Development libraries (*)

sudo apt-get install libgtk-3-dev // Mandatory Gui

— Toolkit
sudo apt-get install libcurléd-openssl-dev // For HTTP support
sudo apt-get install libwebkit2gtk-4.l-dev // For WebView support

sudo apt-get install mesa-common-dev libglul-mesa-dev libegll-mesa-dev // For
~— OpenGL support

1.4 - Quick start on Linuz 9

Use the slider!

Figure 1.6: Running the Bricks sample program after compilation.

(*) Explicitly installing these libraries is only necessary on machines that are going to
compile applications based on NAppGUI. To run the applications it is not necessary
to install anything, since the production versions of these libraries are found naturally
in most Linux distributions.

Open a terminal:

git clone --depth 1 https://github.com/frang75/nappgui src.git
cd nappguil_src

cmake -S . -B build -DCMAKE BUILD TYPE=Debug

cmake --build build -j 4

Once compiled, you will be able to launch the existing example applications in the
/build/Debug/bin directory (Figure 1.7).

./build/Debug/bin/Die
./build/Debug/bin/Bricks
./build/Debug/bin/Products
./build/Debug/bin/Col2dHello
./build/Debug/bin/GuiHello

10 Chapter 1 - Quick start

fran@fran: ~/nappgui_build
:~§ cd nappgui_bui

2dhello/Debug/Col2dHello
Starting log for o'

2D Collision Detection

New Shape

Show Segment-Point distanc

Selected Oriented Box
width:

:

Angle:

Figure 1.7: Running the Col2dHello sample program after compilation.

1.5. MIT License

NAppGUI is distributed under the MIT license, which essentially means that you have
complete freedom to use this software freely and for free, both in commercial and free
projects. The only restriction is that you must include a copy of this License®
substantial part of the software you distribute.

in every

1.6. Previous knowledge

This book is not intended for beginners. Although the NAppGUI project is aimed
at simplifying the construction of cross-platform applications, it requires certain prior
knowledge on the part of the user. You will need, at least, to be fluent in C or C++ since
at no time we will stop to explain basic programming concepts. If you come from Java
or C#, you should review pointers. You will also need some skill with Visual Studio
and Xcode development environments, and Unix tools such as gcc, make or the command
interpreter.

On the other hand, if you are an advanced user, you will find a simple system to
create very fast and small C applications that will compile without changes in all desktop

Shttps://www.nappgui.com/en/legal/license.html

https://www.nappgui.com/en/legal/license.html

1.7 - And now what? 11

environments. You will also have at your disposal a set of precompiled C libraries to create
user interfaces or command line applications, without the need to mess up your projects
with the cumbersome class templates that stl or boost provide.

1.7. And now what?

o In
o In
o In
o In

o In

“Welcome to NAppGUI” (page 13) we continue with the tutorial.

“Hello World!” (page 23) we see the minimal code of a desktop application.
“Build NAppGUI” (page 65) we see how to compile and install NAppGUI.
“Create new application” (page 71) you will start creating your own applications.

“NAppGUI API” (page 149) you have the documentation of the libraries and

functions.

o In

“Products” (page 489) you have the source code of a medium-sized application.

12 Chapter 1 - Quick start

CHAPTER

Welcome to NAppGUI

While others were content to write programs that just solved problems, early hackers were obsessed
with writing programs that solved problems well. A new program that achieved the same result as
an existing one but used fewer punch cards was considered better, even if it did the same thing.
The fundamental difference was how the program achieved its result. - elegance.

Jon Erickson - Hacking: The Art of Exploitation

2.1 Welcome to NAppGUI 13
2.2 Original APIs 15
2.3 C-based 16
2.4 No visual editors 16
2.5 Dependencies 18
2.6 Low and high level 21

2.1. Welcome to NAppGUI

NAppGUI is an SDK for creating cross-platform native applications in C. By native
software we understand that which is compiled /assembled using the specific instructions
of the CPU (it is not interpreted or used bytecode) and by cross-platform the ability
to build versions for Windows, macOS, and Linux using the same source code base (Fig-
ure 2.1). Since its first functions written in August 2010, the main objective of NAppGUI
has been to simplify as much as possible the arduous task of creating applications with
a graphical interface in C. Although different solutions already exist, we have opted for
simplicity by creating a light abstraction layer that encapsulates native technologies, uni-
fies them under the same API and adds some logic for task management and automation.

14 Chapter 2 - Welcome to NAppGUI

Being somewhat more specific, the philosophy on which the project is based and some of

“ T “ LL"L'SIp
_.@< @ -w
-k

Figure 2.1: Native cross-platform development with NAppGUI.

« Rapid prototyping, evolution and maintenance in real applications, apart from the
simple examples we find in the literature and the Internet.

o The user interface is described using ANSI-C functions, completely eliminating visual
design. This fact facilitates the creation of dynamic interfaces, guarantees portability
and enables access to the API from any programming language.

o Windows are composed and sized automatically, without the programmer having to
explicitly indicate the coordinates and size of the controls.

« It is possible to have a complete application in a single . c file, by removing the usual
resource files (*.rc, *.xvid , etc) and their associated controllers. The programmer
has complete freedom when defining his own file structure.

+ Automatic synchronization of internal data structures with the interface or with I/O
channels. “Data binding” (page 219).

o Unified management of resources which facilitates internationalization. “Resources”
(page 99).

« Translations between languages at runtime without the need to restart the applica-
tion. “Runtime translation” (page 104).

o The compiled version of NAppGUI occupies less than 1Mb, and is distributed in
several static libraries that generate very small executables. This is a great advantage
over other solutions that require the distribution of heavy .DLLs, sometimes larger
than the application itself.

o Native Appearance: The applications will be integrated into each system respecting
their original aesthetic (Figure 2.2).

2.2 - Original APIs

15

e Backends. The NAppGUI core provides structures and objects for creating highly
efficient command-line applications on Windows or Linux servers.

Check Button

Hellol, I'm 2 label.

i

<

Press [Push Button] (0)
Press [Push Bucton] (1)
Check (checked)
Slider (0.100)
Slider (0.100)

e
Push Button

Check Button
Hello!, I'm a label.

Clear

NApp HelloWorld

Bress [Push Butten] (0)

Check (checked)
Slider (0.165)
Slider (0.168)

Push Button

Check Button

Hello!, I'm a label

“SEN

Press [Push Butcton] (0)
Press [Push Button] (1)
Check (checked)
Slider (0.100)
Slider (0.100)

NApp HelloWorld

5 NApp HelloWorld
Push Button
Check Button

Hello!, I'm = label

o

EEE]

Presz [Push Button] (0)
Press [Push Button] (1)
Check (checked)
Slider (0.100)
slider (0.100)

E Check Button

Hellol, I'm a label.

—_——

Clear
800N NApp HelloWorld
Push Button Press [Push Butten] (0)

Press [Push Button] (1)
Check (checked)

Slider (0.229)

Slider (0.229)

I NApp HelloWorld

Push Button

Check Button

Hello!, I'm a label,

Press [Fush Button] (D)
Press [Fush Button] (1]
Check (checked)
Slider (0.100)
Slider (0.100)

B MApp HelloWorld
Push Button

Check Button

Helle!, I'm a label.

Clear

Press [Push Button] (0)
Press [Push Button] (1)
Check (checked)
Slider (0.100)
Slider (0.100)

E] Check Buteon
Hello!, I'm a label.
——

| Clear |

g
800 NApp Helloworld
| Push Button | Press [Push Button] (0)

Press [Push Butten] (1)
Check (checked)

Slider (0.252)

Slider (0.252)

Figure 2.2: Native appearance of the Hello, World! demo.

2.2. Original APIs

Microsoft, Apple and GNU /Linux propose different APIs to interact with their systems.
This means that the same application must be rewritten to work correctly on each platform.
NAppGUI provides a unified set of functions for creating graphical user interfaces and
allowing direct access to machine resources (memory, disk, network, etc.) (Figure 2.3).
Each implementation takes into account the particular conditions of the target platform
and uses the appropriate native commands to perform the task in the most optimal way

possible.

16 Chapter 2 - Welcome to NAppGUI

a [Ok H Cancel H Reset l
L]

CreateWindowEx () ;

m Cancel Reset

[NSButton alloc];

OK | Cancel Reset
gtk button new() ;

Figure 2.3: Calls to the native APIs, from the source code itself.

2.3. C-based

Despite the fact that today we have a large number of programming languages, the
C language is still the most powerful and portable in the world. The core of Windows,
macOS, Linux, Android, iOS, and other major programs are largely written in C. In the
world of apps, its use has waned a bit in favor of more glamour. Perhaps this is one of the
reasons why Wirth’s law! is more and more true every day.

“Software slows down faster than hardware speeds up.”

NAppGUI is written, almost entirely, in C language with small parts in C++ and
Objective-C. This language is widely supported and cross-platform compatible. In its
development we have dispensed with minority, proprietary or brand-linked languages such
as: C#, Swift, Java or Objective-C. Also interpreted (such as Python or JavaScript)
and those based on virtual machines (Java and C#) due to the performance penalty
(Figure 2.4). Finally, we have not used C++, since we do not present NAppGUI as
a hierarchy of classes but as a library of functions. Our goals have been to minimize
the impact of the SDK, simplify programming, increase readability, and produce high-
performance binaries.

2.4. No visual editors

The creation of graphical interfaces can become a tedious process, since it is difficult
to know in advance the final size of elements that contain text or images, such as buttons.
On the other hand, windows are dynamic entities subject to changes at runtime (size,
translation, changing subpanels, hidden areas, etc.). When using a visual editor, we have

'https://en.wikipedia. org/wiki/Wirth%27s law

https://en.wikipedia.org/wiki/Wirth%27s_law

2.4 - No visual editors 17

Figure 2.4: Interpreter, virtual ma-
chine, and binary code. The closer

we get to machine language, the more
performance we will get from the soft-

ware.

to place elements at the exact position and size (Figure 2.5). This is a mouse-intensive
task, which slows down the connection between GUI objects and event handlers. In the
development cycle, if the texts or other elements change (and of course they will), we
will have to relocate the components by hand again. This problem grows in multilingual
solutions. Keeping developers moving pixels and filling property forms is expensive for
companies and very boring for them. This is not to mention that all of these visual designs
will not be cross-platform compatible (.rc Windows, .xib macOS, .glade GTK/Gnome,
etc.).

De=dioena
Scroll Wiew

=]
® @ Window oo o =N O
Soroller Knots Defauht Style B
Bution B i ¥ Fird Bar Position Above Content |5
e fauilt
Tabie View Cell kground 1 | Oa B
Buttan Check Draw Background
Chack ontad Automatic Elasticity B
+ & ticel Automatic Elasticaty B
] Chuack Predominsnt Axis Scrolling
1w 19
fam 1 E Hariantal Vartical
Iteen 1 ke 102 102
naam ¥ B & Herirantal Vertiesl

Betwvior @) Copy On Scroil
Show Horlzontal Scroller
Show Vertical Scroller
Automaticalty Hide Scrofler

Figure 2.5: Resource editors are not good friends for creating complex dynamic
interfaces.

Many programmers prefer not to move their hands from the keyboard, since they
consider it much more productive.

NAppGUI uses a declarative strategy, where it is only necessary to indicate the cell
where the element will be located within a rectangular grid (Layout). The final size and
position will be calculated at runtime, performing a recursive composition of the layouts
and sublayouts based on their content (Listing 2.1) (Figure 2.6).

18 Chapter 2 - Welcome to NAppGUI

Listing 2.1: Creating a window.

Panel *panel = panel create();

Layout *layout = layout create(l, 3);
Label *label = label create();

Button *button = button push();

TextView *view = textview create();
Window *window = window create (ekWINDOW STD) ;
label text(label, "Hello!, I'm a label");
button text (button, "Click Me!");

layout label (layout, label, 0, 0);

layout button(layout, button, 0, 1);
layout textview(layout, view, 0, 2);
layout hsize (layout, 0, 250);

layout vsize(layout, 2, 100);

layout margin(layout, 5);

layout vmargin(layout, 0, 5);

layout vmargin(layout, 1, 5);

panel layout (panel, layout);
window panel (window, panel);

window title(window, "Hello, World!");
Q Hello World! - X @ Hello World!
Hella!, I'm a label Hello!, I'm a label
Click Me! Click Met!

Figure 2.6: Declarative composition is fast, adaptable, and portable.

2.5. Dependencies

NAppGUI does not use third-party libraries, it only connects with the native APIs of
each operating system. This fact, together with the use of C and static linking, makes it
possible to:

o Applications don’t need additional runtimes like Python, Java, or C# do. They go
directly to the CPU via the system scheduler.

o The entire application can be contained in a single . exe file. As little code as possible
is linked and no additional .d11 need to be distributed. Starting with version 1.3,
NAppGUI can be compiled as dynamic libraries.

2.5 - Dependencies 19

« Applications take up very little disk space, since all their dependencies are naturally
present on the systems where they run.

o The performance is maximum, since they are compiled in native machine code, using
the highest level of optimization that each CPU supports.

o They can be edited, compiled and run on obsolete platforms today like a Pentium
IIT with Visual Studio 2005 and WindowsXP.

o With NAppGUI we can move them from Windows to macOS or Linux, without
touching a single line of source code. See “Generators, compilers and IDEs” (page 114).

Three packages within the SDK will act as technology wrappers (Figure 2.7), hiding
platform-specific details under a common interface, without causing overhead to the pro-

a’c

X
technologies at the base of IS, Ello DA EES ‘

NAppGUIL. In “NAppGUI
API” (page 149) you have the
complete schematic.

o “Osbs” (page 172): Operating System Basic Services. API about files and directories,
processes, threads, memory, etc.

o “Draw2D” (page 278): API for 2d vector drawing, images and fonts.

20

Chapter 2 - Welcome to NAppGUI

“Gui” (page 322): API about graphical interfaces: Windows, controls and menus.

Unix system calls: In Unix-like systems (Linux, macOS) it is the way in which
a program communicates with the kernel to perform some task related to files, pro-
cesses, memory, network or hardware usually.

Windows API: It is the lowest level API provided by Microsoft for programming
under Windows. It is very broad and integrates different aspects of development:

« kernel32.dll: The equivalent of Unix calls (files, processes, memory, etc).

o ws2_32.dll: Provides TCP/IP network functions (Unix calls include TCP/IP
support).

o user3d2.dll, comctl32.dll, comdlg32.dll, uxtheme.dll: Implements standard con-
trols for graphical user interfaces (labels, edit boxes, combos, progress bars,
common dialogs, etc.).

Cocoa: Object-oriented programming API for Mac OSX (now macOS) systems. It
is written in Objective-C, therefore it is not directly accessible from “pure” C. Cocoa
is based on OpenStep, the API of NeXTSTEP, the operating system created by Steve
Jobs when he was fired from Apple. In 1996, Apple buys NeXT and gets Jobs back,
using Jobs’ technology as the basis for the new Macintosh. Many classes in Cocoa
still retain the NS prefix as NeXTSTEP inheritance. Although there is a lower level
C-based API called Carbon, it has been discontinued since Mac OSX 10.4 Tiger.
It does not have access to all system functionality nor is it compatible with 64-bit
applications. Thus, Cocoa is the current lowest level API for Apple systems.

Gtk+: Acronym for GIMP ToolKit. It is a high-level library for creating graphical
interfaces with a multitude of predefined objects (called widgets). It is one of the most
widespread in GNU /Linux systems, but it is actually multiplatform with versions for
Windows and macOS. Desktop environments like Gnome, Xfce or applications like
GIMP are based on GTK.

GDI+: It is the evolution of GDI (Graphics Device Interface), a 2d vector drawing
API developed by Microsoft for the first 16-bit version of Windows. GDI+ was
introduced with Windows XP as a set of C++ classes and is encapsulated in the NET
platform via the System.Drawing namespace. It is also accessible directly from C
via the GDI+ Flat API, but Microsoft recommends using it via C++ classes. It
incorporates substantial improvements over GDI, such as floating point coordinates,
affine transformations, anti-aliasing, gradient shading, and support for image formats
such as JPG, PNG, or GIF. Drawing with masks and incompatibility with PDF
are the two most notable drawbacks compared to Quartz 2D and Cairo, its direct
“competitors” on other platforms.

e Quartz 2D: It is the trade name of Core Graphics, the powerful drawing API

2.6 - Low and high level 21

of macOS. Like Cocoa, Core Graphics is an evolution of the NeXTSTEP graphics
libraries and came to Apple after the NeXT acquisition. Quartz 2D is based on
Adobe PostScript and PDF formats, incorporating alpha channel and anti-aliasing.
Classic Macs (pre-NeXT) used the QuickDraw library, originally developed by Bill
Atkinson for the Apple Lisa. Modern macs still have QuickDraw built in, but Xcode
no longer provides headers, so it can’t be used in new projects. Core Graphics is a
C-based API and all of its functions begin with the CG prefix.

o Cairo: Cairois a C-based 2d vector drawing library. Unlike GDI+ or Quartz 2D, it is
cross-platform, can be downloaded independently and incorporated into any project
(under LGPL license). Since version 3, GTK+ uses Cairo for all widget drawing
tasks. GTK+42 also used Cairo to generate PDF documents for printing. NAppGUI
uses Cairo to implement the draw2d API on the GNU/Linux platform, as this
library is found naturally in all GTK+ based desktop environments: Gnome, Cinna-
mon, LXDE, Mate, Pantheon, Sugar or Xfce. Technically, Cairo is quite advanced,
matching Quartz 2D in terms of functionality. It supports affine transformations,
image masks, bezier curves, text processing, and drawing on PDF and PostScript
surfaces.

o C stdlib: C is a beautiful little language, but it doesn’t provide any additional
support functions. During the 1970s, the C language became very popular and users
began to share ideas on how to solve common and repetitive tasks. With its stan-
dardization in the 1980s, some of these ideas became the C standard library, which
provides a basic set of mathematical functions, string manipulation, type conver-
sions, and input/output. NAppGUI integrates in one way or another the function-
ality of the standard library, so we do not recommend its use in final applications
(see “Sewer” (page 154)).

2.6. Low and high level

During its design and implementation, NAppGUI has tried to maintain a balanced
balance between low-level and high-level programming. Low-level lovers will find a kind of
extended and cross-platform C library to access the system, interface elements and drawing
commands. However, they will still retain the power to create optimized code and direct
memory access. Remember, we are in C!

On the other hand, NAppGUI integrates some high-level solutions such as resource
management, interface composition, automatic translations or data binding, among others.
NAppGUT also incorporates CMake scripts for automated project creation in Visual Studio,
Xcode, or Eclipse/Make.

Finally, it is the developers who decide which libraries to link with according to the needs
of the project and the degree of automation they wish to adopt. Each application based on

22 Chapter 2 - Welcome to NAppGUI

NAppGUI performs a static link of all its dependencies, so neither the executable nor its
final distribution will have traces of unnecessary binary code. In this way, we will produce
small self-contained executables that will not require an installer or include megabytes of
dependencies in the form of .DLLs.

CHAPTER

Hello World!

Once upon a time, there was a company called Taligent. Taligent was created by IBM and Apple
to develop a set of tools and libraries like Cocoa. About the time Taligent reached the peak of its
mindshare, Aaron met one of its engineers at a trade show and asked him to create a simple
application: A window appears with a button. When the button is clicked, the words “Hello,
World!” appear in a text field. The engineer created a project and started subclassing madly,
subclassing the window and the button and the event handler. Then he started generating code:
dozens of lines to get the button and the text field onto the window. After 45 minutes, he was still
trying to get the app to work. A couple of years later, Taligent quietly closed its doors forever.

Hillegass, Preble € Chandler - Cocoa Programming for OSX.

3.1 Hello World! 23
3.2 The complete program 24
3.3 The skeleton 26
3.4 The constructor 27
3.5 The main panel 28
3.6 The destructor 28
3.7 Launch the window 28
3.8 Layout format 29
3.9 Exiting the program 29
3.10 Button Events 30

3.1. Hello World!

There is little we can say about the meaning of the Hello World! program every time
we are faced with a new technology or programming methodology. So, let’s get down to
business.

24 Chapter 8 - Hello World!

Q) Hello, World! — % 2| Hello, World! I'ZIIEIF'S_TI
Hella!, I'm a label Hellal, I'm a label

[Click Me! | [Click, Me!]
Button click |:l:| 0 Button click (D) +

Eutton click (1)
Button click (2)
EButton click (3)
Button click (4) —
Button click (5) w

Button click (2)
Burton click (3)
Button click (4)
Button click (5)

Figure 3.1: Windows 10 y Windows XP.

[] Hello, World! ™ ™ Hello, World!
Hello!, I'm a label Hello!, I'm a label
Click Me! (Click Me!)

DULLULl CLLURN \v) OUTCTUIT CILIIUTK T3]
Button click (1) Button click (1)
Button click (2) Button click (2)
Button click (3) Button click (3)
Button click (4) Button click (4)
Button click (5) Button click (5) -

Figure 3.2: macOS 10.14 Mojave and MacOSX 10.6 Snow Leopard.

Hello, World! o

Hello, World!

Hello!, I'm a label Hello!, I'm a label

Click Me! Click Me!
Button click (@) Button click (@)
Button click (1) Button click (1)
Button click (2) Button click (2)
Button click (3) Button click (3)
Button click (4) Button click (4)

Button click (5) Button click (5)

Figure 3.3: GTK+3 Ambiance (Ubuntu) and Adwaita Dark (Raspbian).

3.2. The complete program

Listing 3.1: demo/hello/main.c

/* NAppGUI Hello World */

#include <nappgui.h>

typedef struct app t App;

struct app t

{
Window *window;
TextView *text;
uint32 t clicks;

b

static void i OnButton (App *app, Event *e)

{

textview printf (app->text,

app->clicks += 1;
unref (e);

static Panel *i panel (App *app)

{

Panel *panel = panel create();
Layout *layout = layout create(l,
Label *label = label create();
Button *button = button push();
TextView *text = textview create();

app->text = text;

"Button click

3.2 - The complete program 25

($d)\n", app->clicks);

label text (label, "Hello!, I'm a label");
button text (button, "Click Me!");

button OnClick(button, listener (app, i OnButton, App)):;
layout label (layout, label, 0, 0);

layout button(layout, button, 0, 1);

layout textview(layout, text, 0, 2);

layout hsize(layout, 0, 250);

layout vsize (layout, 2, 100);

layout margin(layout, 5);
layout vmargin (layout, 0, 5);
layout vmargin (layout, 1, 5);
panel layout (panel, layout);
return panel;

static void i OnClose (App *app, Event *e)

{

osapp finish();
unref (app) ;
unref (e) ;

26 Chapter 8 - Hello World!

static App *i create(void)

{
App *app = heap new((App) ;
Panel *panel = i panel (app):;
app->window = window_create (ekWINDOW STD) ;
window panel (app->window, panel);
window title (app->window, "Hello, World!");
window origin (app->window, v2df (500, 200));
window OnClose (app->window, listener (app, i OnClose, App));
window show (app->window) ;
return app;

static void i destroy(App **app)

{
window destroy (& (*app)->window) ;
heap delete (app, App);

#include <osapp/osmain.h>
osmain (i create, i destroy, "", App)

3.3. The skeleton

A NAppGUI application starts at osmain, a cross-platform macro that unifies the
startup of a desktop program under different systems. It is defined in #include <osapp/
osmain.h> and will receive four parameters: constructor, destructor, arguments (char t),
and the object type. In this way, any basic skeleton looks like this:

#include "nappgui.h"

typedef struct app t App;
struct app t
{

Window *window;

i

static App *i create(void)

{
App *app = heap new((App) ;
return app;

3.4 - The constructor 27

static void i destroy (App **app)
{

heap delete (app, App);
}

#include <osapp/osmain.h>
osmain (i create, i destroy, "", App)

The #include "nappgui.h" directive, includes much of NAppGUI with a single state-
ment. If you prefer, you can choose to include the headers separately as needed. In this
case, we should replace a single #include with eleven. In the Reference Manual, it is
indicated which header to include according to the function module that we are going to
use.

#include <gui/button.h>
#include <gui/gui.h>
#include <gui/label.h>
#include <gui/layout.h>
#include <gui/panel.h>
#include <gui/textview.h>
#include <gui/window.h>
#include <geom2d/v2d.h>
#include <core/event.h>
#include <core/heap.h>
#include <core/strings.h>

3.4. The constructor

The first parameter of osmain is the application constructor. As soon as the program
starts, certain internal structures must be initialized, as well as starting the message loop
inherent to all desktop applications. When everything is ready, the constructor will be
called to create the application object. This object can be of any type and does not
need to be derived from any class Application or similar, we are in C ;-). Because of
the simplicity of this example, the application object contains only one window.

static App *i create(void)
{
App *app = heap new((App) ;
Panel *panel = i panel (app);
app->window = window create (ekWINDOW STD) ;
window panel (app->window, panel);
return app:;

28 Chapter 8 - Hello World!

3.5. The main panel

To create the main window, we need the main panel, a container that integrates all
the interface controls displayed in the window. The space inside the panel is organized in
an invisible grid called Layout. Each panel can have several layouts and switch between
them, but at least one is necessary. Within its cells we will locate the different widgets.

static Panel *i panel (App *app)

{
Panel *panel = panel create();
Layout *layout = layout create(l, 3);
Label *label = label create();
Button *button = button push();
TextView *text = textview create();
label text(label, "Hello!, I'm a label");
button text (button, "Click Me!");
layout label (layout, label, 0, 0);
layout button(layout, button, 0, 1);
layout textview(layout, text, 0, 2);
panel layout (panel, layout);
return panel;

3.6. The destructor

When the application terminates, osmain will call the destructor (second parameter of
the macro) to free the application object and everything that depends on it, in order to
perform a clean exit of the program. We will put a lot of emphasis on this, as failure
to properly free all memory will be considered a serious programming error.

static void i destroy(App **app)

{
window destroy (& (*app)->window) ;
heap delete (app, App):

3.7. Launch the window

By default, NAppGUI creates all windows in hidden mode, so you need to display them
explicitly. We establish a title, an initial position and launch it with window show. We
observe that in this first version our window is not very aesthetically pleasing (Figure 3.4).
We will format it in a moment.

static App *i create(void)

{

3.8 - Layout format 29

window title (app->main window, "Hello World!");
window origin(app->main window, v2df (500, 200));
window show (app->main_window) ;

() 4
Hello!, I'm a label
Click Mel!

Figure 3.4: First version of Hello,
World! (without format).

3.8. Layout format

To improve the appearance of our window, let’s format the layout a bit. Specifically,
we are going to set a column width and a height for the third row (text control). Then we
will leave a margin on the edge and a separation between rows. (Figure 3.5).

layout hsize (layout, 0, 200);
layout vsize(layout, 2, 100);
layout margin(layout, 5);

layout vmargin(layout, 0, 5);
layout vmargin(layout, 1, 5);

Hello!, I'm a label

Click Mel _
vmargin

margin

hsize

Figure 3.5: Hello World! after Layout formatting.

3.9. Exiting the program

When we press the button to close the main window, the program does not finish its
execution. This is typical of macOS applications, where they still continue running in the

30 Chapter 8 - Hello World!

Dock even if there is no window open. NAppGUI follows the same criterion of not closing
the program, so we must make an explicit call to the osapp finish function. To do this,
we will capture the window OnClose event using the listener macro.

static void i OnClose (App *app, Event *e)
{

osapp_finish();
}

static App *i create(void)
{
window OnClose (app->main window, listener (app, i _OnClose, App));

}

3.10. Button Events

Finally, we’ll catch the click event of the button and print a message in the text box
each time it’s clicked. We are going to implement the i OnButton handler, responsible for
composing and displaying the message, and connect it to the Button control we created
earlier.

static void i OnButton (App *app, Event *e)

{
textview printf (app->text, "Button click (%d)\n", app->clicks);
app->clicks += 1;
unref (e) ;

}

button OnClick(button, listener (app, i OnButton, App)):;

An event is an action that occurs during the execution of the program. The operating
system captures it and sends it to us through its callback(defined in 1istener()).
More at “Events” (page 250).

CHAPTER

Use of C

Most programming languages contain good parts and bad parts. I discovered that I could be a
better programmer by using only the good parts and avoiding the bad parts. After all, how can you
build something good out of bad parts?

Douglas Crockford - JavaScript: The Good Parts.

4.1 Use of C 31
4.2 Basic types 32
4.3 Structures and unions 34
4.4 Control 35
4.5 Functions 37
4.6 Scopes 38
4.7 Pointers 39
4.8 Preprocessor 40
4.9 Comments 41
4.10 Input/Output 42
4.11 Mathematical algorithms 43

4.1. Useof C

Programming fast, reducing the probability of error, ensuring portability and generating
optimized binaries have been the main purposes of NAppGUI since its inception and that
includes a revision of the C language itself. A subset of ANSI-C90 with fixed-size
integers <stdint.h>, a feature introduced in C99, has been used as a base language. We
recommend that applications based on this SDK follow the same philosophy. Going into
more detail, the objectives pursued have been these:

32

Chapter 4 - Use of C

Maximum portability: Even on already outdated compilers like MSVC 8.0 (Visual
Studio 2005) or GCC 4.2 (Xcode 3). The latest language features may not be avail-
able on platforms where you must port your code (think embedded devices). You
also ensure that such code will be compatible with future versions of major compilers.

Focus attention: On the “what” and not on the “how”. There are times when we
make the simple complicated just to justify the use of that new “cool” feature. It is
also possible that you are a “hip” addict, which will force you to “modernize” the
code to adapt it to a new version of the standard. Focus on solving the problem
at hand and, if you can, spend more time on lowering the asymptotic complexity of
your solution. NAppGUI will make sure that your applications work wherever they
are needed.

Avoid irrelevant features: Like C11’s multi-threading support (<threads.h>). This
is solved with system calls. See “Threads” (page 176).

Fast compilation: Certain C constructs are nothing more than a kind of “portable
assembler”, which the compiler can interpret and translate incredibly efficiently.

Small and fast binaries: Derived from the previous one, the generated code will
require few assembly statements and will be very easy for the compiler to optimize.

Evidently, this is not the place to learn C nor is it our intention. The core of the

language is small and easy to remember, but programming well requires years of practice.
What we will do here is show the minimum expression of the language that we use daily.
In short, these are our standards.

4.2. Basic types

« Void: void.
» Boolean: bool t. 8-bit type with only two possible values TRUE (1) and FALSE (0).

o Integers: uint8 t, uintl6 t, uint32 t,uint64 t, int8 t, intl6 t, int32 t,

int64 t. Fixed-size integers were introduced in C99 by <stdint.h>. We consider
it an advantage to know that our variables will have the same size in all systems.
The use of int, long, short or unsigned is prohibited, with the sole exception of
the comparison functions .

static int i cmp cir(const Cir2Dd *cirl, const Cir2Dd *cir2)

{

return (cirl->r < cir2->r) 2 1 : -1;

}

arrst sort(circles, i cmp cir, Cir2Dd);

4.2 - Basic types 33

» Floating point: real32 t, real64 t. float and double are not used for consis-
tency with integer types.

« Character: char t (8 bits). The UTFS representation is used “de facto” through-
out the SDK, so random access to elements of a string is prohibited, since it is a
variable-length encoding. Functions included in “Unicode” (page 159) or “Strings”
(page 199) must be used to manipulate arrays of characters. The types wchar t,
charl6 t, char32 t are not used (or recommended). However, if you have wide-
char strings you will need to convert them to UTF8 before using them in any
NAppGUI functions.

Using UTF8 strings

/* Error! */

const char t *mystr = "Ramén tiene un camidn";
while (mystr([i] != '\0'")
{

if (mystr[i] == 'd")

{
/* Do something */

}

else

}

/* Correct! */

const char t *it = mystr;

uint32 t cp = unicode to u32(it, ekUTF8);
while (cp != '\0"'")

{

/* Do something */

it = unicode next (it, ekUTF8);
cp = unicode to u32(it, ekUTF8);

/* Avoid using wchar t constants (when possible).
wchar t uses UTF16 encoding */

const wchar_t *mywstr = L"Ramdén tiene un camidn";

char t mystr[512];

unicode convers((const char t*)mywstr, mystr, ekUTF16, ekUTF8, sizeof (
— mystr));

34 Chapter 4 - Use of C

/* This 1s a NAppGUI function (UTF8-Encoding) */
label text(label, mystr);

o Enumerated: Their main task is to manage the specialization and they will be
evaluated exclusively within a switch. It is forbidden to assign random values to
the elements of an enum, except 1 to the first one. Consider 0 as not initialized
and ENUM MAX (align t) as invalid.

Defining enumerated types

typedef enum align t
{
ekTOP = 1,
ekBOTTOM,
ekLEFT,
ekRIGHT
} align t;

4.3. Structures and unions

Definition of structures and unions

typedef struct layout t Layout;
typedef union attr t Attr;

struct layout_t

{
Cell *parent;
Panel *panel;
bool t is row major tab;
ArrSt (Cell) *cells;
ArrPt (Cell) *cells dim[2];
real32 t dim margin([2];
color t bgcolor;
color t skcolor;

b8

union _attr t
{
struct bool
{
bool t def;
} boolt;

struct int

{
int6ed4 t def;
int64_t min;
int64 t max;

4.4 - Control 35

int64 t incr;
String *format;
} intt;

struct real32

{
real32 t def;
real32 t min;
real32 t max;
real32 t prec;
real32 t incr;
uint32 t dec;
String *format;

} real32t;

}i

In general, structure definitions will not be public and will remain hidden in the *.c.
This means that automatic variables cannot be declared in the “Stack Segment” (page 167)
and will only be accessible by functions that accept opaque dynamic objects.

Use of opaque pointers

Layout *layout = layout create(2, 2);
layout edit (layout, edit, 0, 0);
layout label (layout, label, 0, 1);

panel layout (panel, layout);

/* Layout definition is hidden
We do not know the content of Layout */
Layout layout; /* Compiler error! */

Normally, all dynamic objects will have a destroy function. If it does not exist, it is
because said object only makes sense as part of another object. For example, there
is no layout destroy() or panel destroy (), but there is window destroy which will
destroy the entire hierarchy of panels and associated layouts to the window.

4.4. Control

» if/else. They always open a {...} block, unless ALL paths consist of a single
statement. Using functions as arguments to if/else is generally avoided with the
exception of pure functions.

Use of if/else

if (x == 1)
i do_something (Jj);
else

36

Chapter 4 - Use of C

i do nothing();
if (x == 1)

J o+= 23
i do_something(j);

}

else

{
i do nothing();
}

if (bmath sqrtf(sqlen) < 20.5f)
i do_something(j);

while. Nothing to comment.
do/while. Not allowed. Use for or while.

for. For infinite loops, use for (; ;) instead of while (TRUE), as it avoids warnings in
some compilers. Since there are ANSI-C based compilers, such as MSVC++ 8.0, we
do not use variable declarations inside the for (), a feature that was introduced
in C99.

Use of for

/* Infinite loop */
for(;;)

{

}

/* Will not work in some compilers (not used) */
for (uint32 t i = 0; i < 1024; ++1)

{

}

/* Ok */
uint32 t i = 0;

for (i = 0; i < 1024; ++1)
{

}

switch. It is only used to discriminate between the values of an enum. Any other
data type will NEVER be evaluated in a switch nor will an enum be discriminated
within an i f/else construct. The compiler can drastically optimize the performance
of a build with these features.

4.5 - Functions 37

Use of switch

switch(align) {
case ekTOP:

break;

case ekBOTTOM:
break;

case ekLEFT:
I;J'réak;

case ekRIGHT:
break;

cassert default();

}

Functions

A function can return nothing (void), a basic type, or a pointer.
Input parameters are always const even if they are simple types passed by value.

Any input parameter that is not of basic type will be passed by pointer. Never a
structure by value.

For the output parameters, pointers will always be used. In C there are no references.

Parameters in functions.

uint32 t myfunc(const uint32 t inputl, const Layout *input2, V2Df *outputl
— , real32 t *output2);

The number of public functions should be kept to a minimum, which will be declared
in the *.h and defined in the *.c.

Supporting (or private) functions will be defined static, inside the *.c module and
will have no declaration.

Public function.

/* layout.h */
void layout hsize (Layout *layout, const uint32 t col, const real32 t wid);

/* layout.c */

38 Chapter 4 - Use of C

void layout hsize (Layout *layout, const uint32 t col, const real32 t wid)
{

i LineDim *dim = NULL;

cassert no null (layout);

cassert msg(wid >= 0.f, "Column 'width' must be positive.");

dim = arrst get(layout->lines dim[0], col, i LineDim);

cassert no null (dim);

dim->forced size = wid;

Private function. It can only be called inside layout.c.

/* layout.c */
static Cell *i get cell(Layout *lay, const uint32 t c, const uint32 t r)
{

uint32 t position = UINT32 MAX;

cassert_no_null(lay);

cassert (c < arrst size(lay->lines dim[0], i LineDim));

cassert (r < arrst size(lay->lines dim[1l], i LineDim));

position = r * arrst size(lay->lines dim[0], i LineDim) + c;

return arrst get(lay->cells, position, Cell);

4.6. Scopes

Variables are declared at the beginning of a block and cannot be mixed with statements,
unless we open a new scope. Declarations mixed with statements is a C++ feature added
to the C99 standard, but not all C compilers support it. Yes, it is allowed to initialize a
variable by calling a function.

Variable scopes in C

/* Ok! */
uint32 t varl = 5;
uint32 t var2
uint32 t var3

i get value(stm);
i get value(stm);

i add values (varl, var2, var3);

/* Error in C90 compilers */
uint32 t var4 = 6;

/* Ok! */
{
uint32 t vard4 = 6;

4.7 - Pointers 39

4.7. Pointers

Apart from the advantages of using pointer arithmetic when implementing certain al-
gorithms, in NAppGUI pointers are used essentially in two situations:

o Passing parameters to a function, when said parameter is not a basic type.

Passing of parameters through pointers.
V2Df vl v2df (10, 43.5f);

V2Df v2 = v2df(-4.8f, val);
v2Df v3 v2d addf (&vl, &v2);

/* v2d.h */
V2Df v2d addf (const V2Df *vl, const V2Df *v2);

« Handling opaque objects. Where the definition of the struct is not available and
therefore the only way to communicate with the object is through functions that
accept a pointer to it.

Use of opaque objects.

const V2Df pt[] = { {4/1}! {215}1 {_375}7 {_412}/ {07_3} };
Pol2Df *pol = pol2d createf (pt, 5);
real32 t a = pol2d areaf(pol);

pol2d destroyf (&pol);

/* pol2d.h */
Pol2Df* pol2d createf (const V2Df *points, const uint32 t n);

void pol2d destroyf (Pol2Df **pol);

real32 t pol2d areaf (const Pol2Df *pol);

Special mention should be made of the function pointers that are widely used in C,
but less so in C++ as the language hides them inside vtables. However, a strategically
placed function pointer can make it easier for us to add specialized functionality to existing
objects, without having to adopt a more purist object-oriented design.

Listing 4.1: Use of function pointers.

typedef struct shape t Shape;
typedef void (*FPtr draw) (const Shape*, DCtx *ctx);

struct shape t

{
ArrSt (V2Df) *points;
Material *material;

40 Chapter 4 - Use of C

FPtr draw func draw;

}i

static void i draw conceptual (const Shape *shape, DCtx *ctx)

{
/* Do simple drawing */

static void i draw realistic(const Shape *shape, DCtx *ctx)

{

/* Do complex drawing */

Shape *shape[N];

Shape *shape[0] = heap new(Shape) ;

Shape *shape[l] = heap new(Shape);
shape[0]->func draw = i_draw_conceptual;
shape[1l]->func draw = i draw realistic;

for (i = 0; 1 < N; ++i)
shape[i]->func draw(shapeli], ctx);

4.8. Preprocessor

Our standards make heavy use of the preprocessor, especially for type checking at
compile time. This helps to detect errors in the code before running the program (static
analysis), as opposed to the C++ RTTI that does it once it is running (dynamic analysis).

Using the preprocessor to check types.

#define arrst destroy(array, func remove, type)\
((void) ((array) == (ArrSt(type)**) (array)),\
FUNC CHECK_ REMOVE (func_remove, type),\
arrayfdestroyfimp((Array**)(array), (FPtr remove) func remove, (const char t
— *) (ARRST#type)))

ArrSt (Product) *products = arrst create(Product);

static void i remove product (Product *product)

{

/* 'products' and 'i remove product' will be checked at compile time */
arrst destroy (&products, i remove product, Product);

4.9 - Comments 41

Dynamic typing is not necessarily good. You get static errors at runtime, which really
should be catchable at compile time. Rob Pike.

4.9. Comments

In general, the use of comments will be reduced as much as possible. A comment will
be placed at the beginning of each file as a general description. We also use a comment
line as a separator when implementing functions.

stream.c

/* Data streams. Manage connection-oriented communication */

#include "stream.h"
#include "stream.inl"
#include "bfile.h"
#include "bmem.h"

static void i funcl (void)
{

/* Do something */
}

static void i func2 (void)
{

/* Do something */
}

C++ comments // Comment. .. are NOT allowed, as they generate warnings in certain
gcc -std=gnu90 compilers.

Another aspect that is totally prohibited is the inclusion of documentation blocks
within the source code, not even in the headers themselves. NAppGUI uses ndoc for
documentation tasks, a utility that allows you to create html/pdf documents enriched
with images, cross-references, examples, etc. and that uses its own files totally separated
from the code. Another added advantage is the cleanliness of the *.h headers of all the
modules, where it is very easy to locate what we are looking for.

Documentation blocks are NOT allowed.

/* Forbidden, non used */

42 Chapter 4 - Use of C

/*! Gets the area of the polygon.
\param pol The polygon.
\return The area.
7
real32 t pol2d areaf (const Pol2Dd *pol);

Header example in NAppGUI

/* 2d convex polygon */

#include "geom2d.hxx"

__EXTERN C

Pol2Df* pol2d createf (const V2Df *points, const uint32 t n);
Pol2Df* pol2d copyf (const Pol2Df *pol);

void pol2d destroyf (Pol2Df **pol);

void pol2d transformf (Pol2Df *pol, const T2Df *t2d);
const V2Df *pol2d pointsf(const Pol2Df *pol);
uint32 t pol2d nf(const Pol2Df *pol);

real32 t pol2d areaf (const Pol2Df *pol);

bool t pol2d ccwf (const Pol2Df *pol);

bool t pol2d convexf (const Pol2Df *pol);

__END C

All comments in NAppGUI are made in English language.

4.10. Input/Output

Input/output is not part of the C language as such. As the language spread in the mid-
1970s, a number of useful routines were grouped together into what became the Standard
C Library. NAppGUI encapsulates all its functionality in “Sewer” (page 154), “Osbs”
(page 172) or “Core” (page 193) generally implementing it as much more direct and efficient
calls to the operating system.

Use of safe I/O functions.

/* Do not use cstdlib in applications */
#include <stdio.h>

4.11 - Mathematical algorithms 483

FILE *fp = fopen("/tmp/test.txt"™, "w+");
fprintf (fp, "This is testing for fprintf...\n");
fclose (fp);

/* Use NAppGUI functions */

#include "stream.h"

Stream *stm = stm_to file("/tmp/test.txt", NULL);

stm printf(stm, "This is testing for stm printf...\n");
stm close (&stm) ;

Use of the Standard C Library is not recommended. Look for the equivalent function
in Sewer, Osbs, or Core.

4.11. Mathematical algorithms

NAppGUI uses C++ templates to implement any function or mathematical algorithm.
With this it is possible to offer float and double versions in an elegant way and with
easy maintenance. The templates are hidden and not exposed in the API, so that their
use remains ANSI-C90 compliant. For more information “Math templates” (page 53).

NAppGUI makes internal use of C++98 template<> to implement everything related
to mathematical calculation.

44 Chapter 4 - Use of C

CHAPTER

Use of C++

Web servers are written in C, and if they’re not, they’re written in Java or C++, which are C

derivatives, or Python or Ruby, which are implemented in C.

5.1 Use of C++

5.2 Encapsulation

5.3 Class callbacks

5.4 Combine C and C++ modules
5.4.1 Using C from C++
5.4.2 Using C++ from C

5.5 new and delete overload

5.6 Hello C++ complete

5.7 Math templates

5.1. Use of C++

Rob Pike

45
46
46
48
48
48
49
50
53

Object-oriented programming (encapsulation, inheritance and polymorphism) is a very
powerful tool for modeling certain kinds of problems. However, at NAppGUI we believe
that it is wrong to impose a class hierarchy at the SDK level, as this is too low a level. The
SDK is closer to the operating system and the machine than to the real-world problems
solved by applications, where an object-oriented approach may (or may not) be more

successful.

Although NAppGUI has been designed to create applications in “pure” C, it is possible
to use C++ or mix both languages. We’ll give some advice, porting our “Hello World!”

(page 23) application to C++ (Figure 5.1).

46 Chapter 5 - Use of C++

Q) Hello, C++! — * [] Hello, C++!

Helle!, I'm a label Hello!, I'm a label

; Click Me! | Click Me!

Button click (0) Button click (0)
Button click (1)

Button click (1) i
Button click (2) guttun ci+ci (i]
Button click (3) utkton clic {

Figure 5.1: Migration from Hello, world! to C++.

5.2. Encapsulation

NAppGUI does not enforce any class hierarchy, leaving the programmer the freedom
to encapsulate using their own classes. Of course, since C++ includes C, we can call any
SDK C function inside a member function. For example, we can encapsulate the main
window like this.

class MainWindow

{

public:
MainWindow () ;
~MainWindow () ;

private:
static void i OnClose (MainWindow *window, Event *e);
static void i OnButton (MainWindow *window, Event *e);
Panel *i panel (void);

Window *window;
TextView *text;
uint32 t clicks;

As you can see, relative to the C version, i panel no longer needs parameters, as it
uses the implicit this pointer to access class members.

5.3. Class callbacks

Event handlers are C functions whose first parameter is a pointer to the object that
receives the message. This works the same way using static functions within a C++4 class:

static void i OnClose (MainWindow *window, Event *e);

5.8 - Class callbacks 47

window OnClose (this->window, listener(this, i OnClose, MainWindow)) ;

However, we may want to use member functions as event handlers, using the this pointer
as the receiver. To do this, we derive our MainWindow from the IListener interface and
use the 1isten macro instead of 1istener ()

class MainWindow : public IListener

{

void i OnClose (Event *e);
void i OnButton (Event *e);

bi
void MainWindow::i OnButton (Event *e)
{
String *msg = str printf("Button click (%d)\n", this->clicks);

}

button OnClick(button, listen(this, MainWindow, i OnButton));

IListener is a C++ interface that allows you to use class member methods as event
handlers.

It is also possible to direct the event to a different object (and of a different class) than
the control owner. To do this, we indicate the receiver as the first parameter of listen,
as we see below. The click of the close button will be processed in the App class and not
in MainWindow.

class App : public IListener
{
public:

App () ;

~App () ;

void i OnClose (Event *e);

private:
MainWindow *main window;

i

class MainWindow : public IListener
{
public:

MainWindow (App *app) ;

48 Chapter 5 - Use of C++

}

MainWindow: :MainWindow (App *app)
{

window OnClose (this->window, listen(app, App, i_OnClose));
}

void App::1i OnClose (Event *e)
{
osapp_finish();

}

We can establish as event receiver, any object that implements the TListener interface.

5.4. Combine C and C++ modules

A C/C++ project selects the compiler based on the file extension. For *.c the C
compiler will be used and for *.cpp the C++ compiler. The same project can combine
modules in both languages if we consider the following.

5.4.1. Using C from C++

There is no problem if the C header function declarations are between the macros:
__ EXTERN Cand END C.

__EXTERN C
real32 t mymaths add(const real32 t a, const real32 t Db);
real32 t mymaths sub(const real32 t a, const real32 t b);

__END C

___EXTERN Cand _END C are aliases for extern "C"{}. This tells the C++ compiler
not to use name mangling® with C functions.

“https://en.wikipedia.org/wiki/Name mangling

5.4.2. Using C++ from C

C does not understand the class keyword and will give a compile error when including
C++ headers. It is necessary to define an interface in C over C++ code.

https://en.wikipedia.org/wiki/Name_mangling

5.5 - new and delete overload 49

mywindow.h

__EXTERN C

typedef struct mywin t MyWindow;

MyWindow *mywindow create();

void mywindow move (MyWindow *window, const real32 t x, const real32 t y);

__END C

mywindow.cpp

class MainWindow
{
public:
MainWindow () ;
void move (const real32 t x, const real32 t y);

Y

MyWindow *mywindow create ()
{

return (MyWindow*)new MainWindow () ;

void mywindow move (MyWindow *window, const real32 t x, const real32 t y)
{

((MainWindow*)window) ->move (x, V)

5.5. new and delete overload

C++ uses the new and delete operators to create dynamic instances of objects. We
can make reservations through Heap, the “Heap” (page 195) manager that NAppGUI
incorporates, in order to optimize C++ and control Memory Leaks.

class MainWindow : public IListener

{

void *operator new(size t size)
{

return (void*)heap malloc((uint32 t)size, "MainWindow");

void operator delete (void *ptr, size t size)
{
heap free((byte t**)é&ptr, (uint32 t)size, "MainWindow");

50 Chapter 5 - Use of C++

he

5.6. Hello C++ complete

Listing 5.1: demo/hellocpp/main.cpp

/* NAppGUI C++ Hello World */
#include <nappgui.h>
class App;

class MainWindow : public IListener
{
public:
MainWindow (App *app) ;
~MainWindow () ;

void *operator new(size t size)

{ return (void *)heap malloc((uint32 t)size, "MainWindow");
ioid operator delete(void *ptr, size t size)

{ heap free((byte t **)&ptr, (uint32 t)size, "MainWindow");

private:
void i OnButton (Event *e);
Panel *i panel (void);

Window *window;
TextView *text;
uint32 t clicks;

class App : public IListener
{
public:
App () ;
~App () ;
void i OnClose (Event *e);
void *operator new(size t size)
{
return (void *)heap malloc((uint32 t)size, "App");

}
void operator delete (void *ptr, size t size)

{

5.6 - Hello C++ complete 51
heap free((byte t **)&ptr, (uint32 t)size, "App"):;

private:
MainWindow *main window;

}i

void MainWindow::i OnButton (Event *e)
{
String *msg = str printf ("Button click (%d)\n", this->clicks);
textview writef (this->text, tc(msg));
str destroy (&msqg) ;
this->clicks += 1;
unref (e) ;

Panel *MainWindow::i panel (void)

{
Panel *panel = panel create();
Layout *layout = layout create(l, 3);
Label *label = label create();
Button *button = button push();
TextView *textv = textview create();
this->text = textv;
label text(label, "Hello!, I'm a label");
button text (button, "Click Me!");
button OnClick(button, IListen(this, MainWindow, i OnButton));
layout label (layout, label, 0, 0);
layout button (layout, button, 0, 1);
layout textview(layout, textv, 0, 2);
layout hsize(layout, 0, 250);
layout vsize (layout, 2, 100);
layout margin(layout, 5);
layout vmargin (layout, 0, 5);
layout vmargin (layout, 1, 5);
panel layout (panel, layout);
return panel;

void App::i OnClose (Event *e)
{

osapp_finish();

unref (e);

52 Chapter 5 - Use of C++

MainWindow: :MainWindow (App *app)
{
Panel *panel = i panel();
this->window window create (ekWINDOW STD) ;
this->clicks = 0;
window panel (this->window, panel);
window title(this->window, "Hello, C++!");
window origin(this->window, v2df (500, 200));
window OnClose (this->window, IListen(app, App, 1 OnClose));
window show (this->window) ;

MainWindow: : ~MainWindow ()

{

window destroy (&this->window) ;

App: :App (void)
{

this->main window = new MainWindow (this) ;

static App *i create(void)

{

return new App();

static void i destroy (App **app)
{

delete *app;

*app = NULL;

5.7 - Math templates 53

#include <osapp/osmain.h>
osmain (i create, i destroy, "", App)

5.7. Math templates

In NAppGUI there are two versions for all (Listing 5.2) functions and math types: float
(real32 t) and double (real64 t). We can use one or the other as appropriate in
each case.

Listing 5.2: Cabecera bmath.h (parcial).

/* Math funcions */

#include "osbs.hxx"

__EXTERN C

real32 t bmath cosf(const real32 t angle);
real64 t bmath cosd(const real64 t angle);
real32 t bmath sinf (const real32 t angle);
real64 t bmath sind(const real64 t angle);
extern const real32 t kBMATH PIf;

extern const real64 t kBMATH PId;

extern const real32_t kBMATH_SQRTZf;

extern const real64 t kBMATH SQRT2d;

__END C

All single-precision functions and types end with the suffiz “f” and double-precision
types end with “d”.

When we implement more complex geometric or algebraic functions, it is not easy to be
clear in advance what the correct precision is. When in doubt, we can always choose to use
double, but this will have an impact on performance, especially due to the use of memory
bandwidth. Consider the case of 3D meshes with thousands of vertices. It would be great
to have both versions and be able to use one or the other according to each specific case.

Unfortunately the “pure” C language does not allow programming with generic types,
apart from using horrible and endless macros. We will have to implement both versions
(float and double), with the associated maintenance cost. C++ solves the problem
thanks to templates (template<>). The downside is that, normally, we must “open” the

54 Chapter 5 - Use of C++

implementation and include it in the .h header, since the compiler does not know how to
generate the machine code until the template is instantiated with a specific data type. .
This is in direct conflict with our “Standards” (page 58), especially in the part related to
information encapsulation. Next we will see how to use C++ templates to get the best
of both cases: Generic programming, hiding implementations and keeping headers “clean”.

Just as there is a *.h header for every math module, there is a counterpart *.hpp
usable only from C++ (Listing 5.3) modules.

Listing 5.3: Header bmath.hpp (partial).

/* Math funcions */
#include "osbs.hxx"

template<typename real>
struct BMath
{

static real (*cos) (const real angle);
static real (*sin) (const real angle);
static const real kPI;

static const real kSQRTZ2;
i

These templates contain pointers to functions, whose implementations are hidden in
bmath.cpp. In (Listing 5.4) we have an example of use.

Listing 5.4: Implementation of a generic algorithm.

#include "bmath.hpp"

template<typename real>
static void i circle(const real r, const uint32 t n, V2D<real> *v)
{
real a = 0, s = (2 * BMath<real>::kPI) / (real)n;
for (uint32 t i = 0; i < n; ++i, a += s)
{
v[ii].x r * BMath<real>::cos(a);
v[i].y = r * BMath<real>::sin(a);

This algorithm is implemented within a C++ module (Listing 5.5), but we want to be
able to call it from other modules, both C and C++. To do this we will define the two
types of headers: *.h (Listing 5.6) and *.hpp (Listing 5.7).

Listing 5.5: mymath.cpp. Implementation.

5.7 - Math templates 55

#include "mymath.h"
#include "mymath.hpp"
#include "bmath.hpp"

template<typename real>
static void i circle(const real r, const uint32 t n, V2D<real> *v)
{

real a = 0, s = (2 * BMath<real>::kPI) / (real)n;

for (uint32 t i = 0; i < n; ++i, a += s)

{

v[i].x r * BMath<real>::cos(a);
v[i].y = r * BMath<real>::sin(a);

void mymath circlef (const real32 t r, const uint32 t n, V2Df *v)

{
i circle<real32 t>(r, n, (V2D<real32 t>*)v);

void mymath circled(const real64 t r, const uinté64 t n, V2Dd *v)

{
i circle<real64 t>(r, n, (V2D<real64d t>*)v);

template<>

void (*MyMath<real32 t>::circle) (const real32 t, const uint32 t, V2D<real32 t>*)
— =1 circle<real32 t>;

template<>

void (*MyMath<real64 t>::circle) (const real64 t, const uint32 t, V2D<real64 t>*)
— =1 circle<real64 t>;

Listing 5.6: mymath.h. Cabecera C.

#include "geom2d.hxx"

__EXTERN C

void mymath circlef (const real32 t r, const uint32 t n, V2Df *v);
void mymath circled(const real64 t r, const uint64 t n, V2Dd *v);

__END C

Listing 5.7: mymath.hpp. Cabecera C++.

#include "v2d.hpp"

template<typename real>
struct MyMath

56 Chapter 5 - Use of C++

void (*circle) (const real r, const uint32 t n, V2D<real> *v);

}i

Now we can use our math library in C and C++, both in float and double precision
(Listing 5.8).

Listing 5.8: Using mymaths in generic C++ algorithms.

#include "mymath.hpp"
#include "t2d.hpp"

template<typename real>

static void i ellipse(const real rl, const real r2, const uint32 t n, V2D<real>
— *V)

{
T2D<real> transform;
T2D<real>::scale(&transform, rl, r2);

MyMath<real>::circle(l, n, v);

for (uint32 t i = 0; i < n; ++1)
T2D<real>::vmult (&transform, &v[i]);

CHAPTER

Error management

There is always one more bug to fix.

FEllen Ullman

6.1 Error management 57
6.2 Exhaustive tests 57
6.3 Static analysis 58
6.3.1 Standards 58
6.3.2 Compiler warnings 60
6.4 Dynamic analysis 61
6.4.1 Disabling Asserts 63
6.4.2 Debugging the program 63
6.4.3 Error log 63
6.4.4 Memory auditor 64

6.1. Error management

Developing software of a certain size and complexity can become a hellish task, if we
do not adopt concrete measures to prevent and quickly locate programming bugs. Next
we will talk about some strategies that we have used in the development of NAppGUI and
that you can apply in your own projects.

6.2. Exhaustive tests

Ensuring that our software is bug free is as “easy” as running a test for each and every
case the (Figure 6.1) program will face.

58 Chapter 6 - Error management

]

— €(0..12..9
| é‘i_\

o — L.

[
e W
L =
Figure 6.1: FEzxhaustive tests %
use all possible combinations of
=498¢/

the input data. I

Already from trivial theoretical examples, we see that we are dealing with an exponential
problem (Figure 6.2), which will overwhelm the resources of any system with relatively
few input variables. Therefore, we can intuit that it will be impossible to guarantee that
our software is free of errors since it will not be feasible to reproduce all its use cases.
However, we can define a strategy that helps us minimize the impact that these will have
on the final product, detecting and correcting them as soon as possible.

100¢ = 1e+18
Figure 6.2: With only 9 input vari-
ables (in range 0..99) the computa-
tional resources will overflow. 1 2 3 45 6 7 8 9 Inputs

6.3. Static analysis

Static analysis is the one that is carried out before executing the program and
consists of two parts: The use of standards where rules and quality controls are applied
during the writing of the code itself. And the compiler warnings that will help us locate
potential compile-time errors.

6.3.1. Standards

The use of standards, understood as rules that we follow when programming, is essential
when it comes to maintaining minimum levels of quality in our (Figure 6.3) projects. If
they are not applied, a program of a certain size will become anarchic, unreadable, difficult
to maintain and difficult to understand. In this scenario it will be easy to add new bugs

6.3 - Static analysis 59

as we manipulate the source code.
Figure 6.3: Using standards —_—
will reduce the probability of 7]
bugs.
In reality, it is difficult to differentiate between good and bad standards, since they will

depend on the type of project, programming languages, company philosophy and objectives
to prioritize. We can see them as a Style Guide that evolves over time hand in hand with
experience. What is truly important is to become aware of their usefulness, define and

apply

them. For example, if we decide to name variables with descriptive identifiers in

English and an underscore (product_code), all our code should follow this rule without
exception. Let’s take a look at some of the standards we apply within NAppGUI. They
are not the best nor do they have to adapt to all cases. They are only ours:

Use a small subset of the language, as we’ve seen in “Use of C'” (page 31). For exam-
ple, expressions of the type * ((int*)block + i++)= i+1, are totally prohibited.
They are perfectly valid in C but poorly readable and confusing. Some programmers
think that cryptic and compact code is much more maintainable, but we think they
are wrong.

Comments are prohibited, except on rare occasions and very justified. If something
needs a comment, rewrite it. A comment that even slightly contradicts the code it
is intended to clarify causes more confusion than help. And it is very easy for them
to become obsolete.

Reduced and clean public interfaces. Header files (*.h) represent a high level of ab-
straction as they reduce the connections between software components (Figure 6.4).
They allow condensing, as an index, hundreds or thousands of lines of code in just
fifteen or twenty public functions. It is completely forbidden to include type defini-
tions (they will go in the *.hxx), comments (of course) and documentation blocks
in .h files.

Opaque objects. Object definitions (struct object t) will be made inside the
implementation files (*.c) and never in the *.h. The objects will be manipulated

60 Chapter 6 - Error management

main.c

mEs -
N

e

(b)

| = =) - - -@-|

| o o - o) |

|
]
0
|
]
0
|
|
]
®

|--@-@-|

() .exe
CEEEEEEEEEEEE NS

Figure 6.4: The *.h headers provide a high level of abstraction hiding the com-
plexity of the (a) solution. They facilitate horizontal, problem-based development,
as opposed to vertical learning based on (b) APIs. They help the linker reduce the
size of the (c) executable.

with public functions that accept pointers to them, always hiding the fields that
compose them. This point, together with the previous one on interfaces, perfectly
defines the barriers between modules, clearly marking when one problem ends and
another begins.

The first two rules help reduce the internal complexity of a module by making it as
readable and less cryptic as possible. We could enrich them with others about indentation,
style, variable naming, etc. We more or less strictly follow the advice of the great book
The Practice of Programming (Figure 6.5).

6.3.2. Compiler warnings

The compiler is our great ally when it comes to examining the code for possible (Fig-
ure 6.6) errors. Enabling the highest possible level of warnings is essential to reduce errors
caused by type conversions, uninitialized variables, unreachable code, etc. All projects
built with NAppGUI will trigger the highest level of warnings possible, equivalent to -
Wall -Wpedantic on all (Figure 6.7) platforms.

6.4 - Dynamic analysis 61

>

The Practice of
Programming

Brian W. Kernighan

Rob Pike
|
Simplicity
Clarity
Generality

Figure 6.5: The Practice of Pro- =

gramming by Brian W. Kernighan N
and Rob Pike is a good source of in-

spiration for defining your own pro-

gramming style.

>
v)
=
Z
>
z
=
£
=2
<
E
1
@
L3
5
=)
z
&
<
)
=
=
Zz
Q
o
&
A

BERQAA O =o @

Buildtime (30 RS

¥ il Tutorial 006 1 issue
¥ Apple Mach-0 Linker [Id) Warning
Libstde++ is deprecated; move to libe++ with a minimum deployment target of 05 X 10.9 [-Wdeprecatesd]
¥ mr bdata 1 issue
¥ . Semantic lssue

Code will never be executed

rodree.c
L l:::hgwmid 1issug
A Value Conversion Issua
Implicit conversion loses floating-point precision: ‘double’ to 'real32_t' (aka ‘float’)

atransd.c

Figure 6.6: Fixing all compiler warnings should be a priority.

6.4. Dynamic analysis

Dynamic analysis is performed once the program is running. Here our main weapon
is self-validations, implemented as “Asserts” (page 157) statements. Asserts are checks
distributed throughout the source code, which are evaluated at runtime each time the
program goes through them. If a statement resolves to FALSE, processing will stop and an
(Figure 6.8) informational window will be displayed.

void layout set row margin(Layout *layout, const uint32 t row, const real32 t
~— margin)

{
cassert no null (layout);
cassert msg(row < layout->num rows, "'row' out of range");

62 Chapter 6 - Error management

Figure 6.7: NAppGUI enables the
highest level of warnings possible.

¥ Apple LLVM 9.0 - Warning Policies
Inkibit All Warnings Mo 2
Pedantic Warnings Yes
Treat Warnings as Errors Mo 3
¥ Apple LLVM 9.0 - Warnings - All languages
Block Capture of Autoreleasing Yes 3
Check Switch Statements Yes 3
Deprecated Functions Yes 3
Documentation Comments Mo 3
Empty Loop Bodies Yes o
Four Character Literals Yes 3
Hidden Local Variables Yes
Implicit Boolean Conversions Yeg &
Implicit Constant Conversions Yes &
Implicit Conversion to 32 Bit Type Yes 5
Imipficit Enum Conversions Yes
Implicit Float Conversions Yes 3
Implicit Integer to Pointer Conversions Yes 3
Implicit Non-Literal Null Conversions Yes 3
Implieit Signedness Conversions Yeg &
Infinite Recursion Yes &
Initializer Mot Fully Bracketed Yes &
Mismatched Return Type Yes 3
Missing Braces and Parantheses Yos
Missing Fields in Structure Initializers Yos 3
Missing Funetion Prototypes Yes
Migsing Newline At End Of File Mo 5
Out-of-Range Enum Assignments Yes 5
Pointer Sign Comparison Yes
Sign Comparison Yes I

Figure 6.8: Window displayed
after activating an assert.

C) HelleWorld ran inte a problem —

Debug

The program can continue in UNSECURED WAY. It's
possible that the results now will be incorrect or data loss
occurs, For more information about this incident contact
with: support@nappgui.com.

Assertion failed
"row' out of range”
File: layout.c

Line: 638

Show this window in next assert.

[] Write assert info in log.
C\Users\USUARIC\AppDate\Rozaming\HelloWoridog tet

E Continue i Exit

It is also possible to redirect assert statements to standard output or to the Log file.

6.4 - Dynamic analysis 63

6.4.1. Disabling Asserts

Within the NAppGUI SDK code, more than 5000 assertions have been distributed,
located at strategic points, which constantly evaluate the coherence and integrity of the
software. Obviously, this number will grow after each revision, as more functionality
is integrated. This turns the SDK into a real minefield, where any error in the use of
the API functions will be automatically notified to the programmer. Depending on the
configuration we are using, the assertions will be activated or deactivated:

e Debug: Assert statements are enabled.
¢ Release: The sentences assert are disabled.

e« ReleaseWithDebInfo: As the name suggests, turns on all Release optimizations,
but leaves assert statements on.

6.4.2. Debugging the program

When an assert is activated, the program stops right at the check point, showing the
assert confirmation window. If we press the [Debug] button, we will access the call stack
(Figure 6.9), which is the current function call stack, from the main () itself to the current
breakpoint “Stack Segment” (page 167). By browsing the stack we can check the values of
variables and objects at any call level. This will help us identify the source of the error,
as the cause may be a few levels below detection.

Call Stack -

Line
d * item, const unsigned int group, const char * caption, const char * detail, const char * file, const unsigned int ling) Line 894

margin) Line

_main_imp
app_mai
/inMain(H

Figure 6.9: Call stack while debugging the assertion from the previous example.

6.4.3. Errorlog

An execution “Log” (page 190) is a file where the program dumps information about
its status or anomalies detected. It can be very useful to know the cause of a failure when
the software has already been distributed and it is not possible to debug it. NAppGUI

64 Chapter 6 - Error management

automatically creates a log file for each application located in the application data direc-
tory APP DATA\APP NAME\log.txt, for example C:\Users\USER\AppData\Roaming\
HelloWorld\log.txt

[15:42:29] Starting log for 'HelloWorld'
[15:42:29] TextView created: [0Ox6FFC7A30]

[15:42:32] Assertion failed (c:\\nappgui 1 O0\\src\\guil\layout.c:638): "'row'
— out of range"
[15:42:32] Assertion failed (c:\\nappgui 1 O\\src\\core\\array.c:512): "Array

<~ invalid index"
[15:42:34] You have an execution log in: 'C:\\Users\\USUARIO\\AppData\\Roaming
— \\HelloWorld\\log.txt'

As you can see, the assertions are automatically redirected to the log file. It is possible
to disable this writing by unchecking the 'Write assert info in log' check in the
info window. You can also add your own messages using the log printf method.

log printf ("TextView created: [0x3%X]", view);

6.4.4. Memory auditor

NAppGUI’s memory manager “Heap” (page 195) has an associated auditor that checks
for leaks memory after each execution of each application that uses the SDK. This is a great
advantage over using external utilities, as dynamic memory checks are being performed
always and not in isolated phases of development.

18:57:33] [OK] Heap Memory Staticstics

18:57:33

18:57:33] Total a/dellocations: 652962, 652962

18:57:33] Total bytes a/dellocated: 18085221250, 18085221250
18:57:33] Max bytes allocated: 238229150

18:57:33] Real allocations: 32776 pages of 65536 bytes

18:57:33 13271 pages greater than 65536 bytes
18:57:33

18:57:33] Config: Debug

[1
[1
[]
[1
[1
[18:57:33] Effective reallocations: (0/1169761)
[1
[1
[]
[1
[

18:57:33] You have an execution log in: 'C:\Users\USUARIO\AppData\Roaming\
<~ EuroPlane\log.txt'code.

CHAPTER

Build NAppGUI

7.1 Build NAppGUI 65
7.2 Static linking 65
7.3 Dynamic linking 66
7.4 CMake Options 67
7.5 Build Options 68
7.6 Packaging and installation 69

7.1. Build NAppGUI

In “Quick start” (page 5) we already saw how to compile and run the examples from
the source code. Now we will focus on installing the SDK in order to start creating our
own applications. We will start within the previously downloaded project folder:

git clone --depth 1 https://github.com/frang75/nappgui src.git
cd nappgui_src

7.2. Static linking

The following commands will generate the static link version of the libraries that make
up NAppGUI.

// Windows

cmake -S . -B build -DNAPPGUI DEMO=NO

cmake --build build --config Release -j 4

cmake --install build --config Release --prefix C:/nappgui

// macOS

66 Chapter 7 - Build NAppGUI

cmake -G Xcode -S . -B build -DNAPPGUI DEMO=NO
cmake --build build --config Release -j 4
cmake --install build --config Release --prefix /usr/local/nappgui

// Linux

cmake -S . -B build -DNAPPGUI DEMO=NO -DCMAKE BUILD TYPE=Release
cmake --build build -j 4

cmake --install build --config Release --prefix /usr/local/nappgui

For CMake versions lower than 3.13:

// Windows

mkdir build & cd build

cmake .. -DNAPPGUI DEMO=NO -DCMAKE INSTALL PREFIX=C:/nappgui
cmake --build . --config Release

msbuild INSTALL.vcxproj /p:Configuration=Release

// macOS

mkdir build ; cd build

cmake .. -G Xcode -DNAPPGUI DEMO=NO -DCMAKE INSTALL PREFIX=/usr/local/nappgui
cmake --build . --config Release

xcodebuild -target install -configuration Release

// Linux
mkdir build ; cd build
cmake .. —DNAPPGUIiDEMOZNO —DCMAKEiBUILDiTYPEZRelease —DCMAKEilNSTALLiPREFIXZ/

< usr/local/nappgui
cmake --build
make install

7.3. Dynamic linking

If you prefer to generate NAppGUI in dynamic link mode (.dll, .so, .dylib), follow these
instructions.

// Windows

cmake -S . -B build -DNAPPGUI DEMO=NO -DNAPPGUI SHARED=YES

cmake --build build --config Release -7 4

cmake --install build --config Release --prefix C:/nappgui

// macOS

cmake -G Xcode -S . -B build -DNAPPGUI DEMO=NO -DNAPPGUI SHARED=YES

cmake --build build --config Release -j 4

cmake —--install build --config Release --prefix /usr/local/nappgui

// Linux

cmake -S . -B build -DNAPPGUI DEMO=NO -DNAPPGUI SHARED=YES -DCMAKE BUILD TYPE=

— Release
cmake --build build -j 4

7.4 - CMake Options 67

cmake —--install build --config Release --prefix /usr/local/nappgui

For CMake versions lower than 3.13:

// Windows
mkdir build & cd build

cmake .. -DNAPPGUI DEMO=NO -DNAPPGUI SHARED=YES —DCMAKE_INSTALL_PREFIX:C:/
 nappgui
cmake --build . --config Release

msbuild INSTALL.vcxproj /p:Configuration=Release

// macOS

mkdir build ; cd build

cmake .. -G Xcode -DNAPPGUI DEMO=NO -DNAPPGUI SHARED=YES -DCMAKE INSTALL PREFIX
<~ =/usr/local/nappgui

cmake --build . --config Release

xcodebuild -target install -configuration Release

// Linux
mkdir build ; cd build
cmake .. -DNAPPGUI DEMO=NO -DNAPPGUI SHARED=YES -DCMAKE BUILD TYPE=Release -

— DCMAKE INSTALL PREFIX=/usr/local/nappgui
cmake --build
make install

If you use NAppGUI in DLL mode you must ensure that your future applications find
the libraries, updating the PATH variable of each system.

// Windows
set PATH=C:\nappgui\bin;%PATH%

// Linux
export LD LIBRARY PATH=/usr/local/nappgui/bin:$LD LIBRARY PATHS

// macOS
export DYLD LIBRARY PATH=/usr/local/nappgui/bin:$DYLD LIBRARY PATHS

7.4. CMake Options

We indicate below all the CMake options supported by NAppGUI. In “Generators,
compilers and IDEs” (page 114) you will have more detailed information.

cmake -G [Generator] -S [SourceDir] -B [BuildDir] [Options]

o -G: “CMake Generators” (page 115). If omitted, the value of CMAKE GENERATOR or
a default will be used.

e -3: Directory where the NAppGUI file CMakeLists.txt is located.

68

Chapter 7 - Build NAppGUI

-B: Directory where the compilation projects and binaries will be generated.
-DNAPPGUI DEMO=[YES|NO]: Generate the example applications. By default YES.

-DNAPPGUI SHARED=[YES|NO]: Generates dynamic link libraries (.dll, .so, .dylib).
By default ~o.

-DNAPPGUI WEB=[YES|NO]: Add native support for the webview control. By default
YES. See “Disable WebView” (page 356).

-DCMAKE BUILD TYPE=[Debug|Release]: In mono-configuration generators, eg.
Unix Makefiles, configure the build mode. By default Debug.

-DCMAKE C COMPILER=[gcc|clang|cl]: On Unix Makefiles, MinGW, MSYS or
Ninja select the C compiler.

-DCMAKE CXX_ COMPILER=[g++|clang++]|cl]: On Unix Makefiles, MinGW, MSYS,
or Ninja, select the C++ compiler.

-A=[Win32|x64]: In Windows select the target architecture.

-DCMAKE ARCHITECTURE=[x64]1386|arm|arm64]: On Linux or macOS, select the
target architecture. By default, that of the compilation machine. arm is not sup-
ported on macOS. 1386 is restricted on macOS. See “macOS 32bits” (page 129).

-DCMAKE OSX DEPLOYMENT TARGET=12.4: In macOS, minimum version of the op-
erating system supported. By default, the most modern one included in the compiler.
See “Xcode” (page 124).

-DCMAKE TOOLKIT=GTK3: In Linux it indicates the graphical toolkit used to render
the interface elements. At the moment, only GTK3.

-DCMAKE DISABLE CRTDBG=YES: Disables the crtdbg library on Windows that con-
trols memory leaks during execution. In principle, its use is not recommended, but
it can be useful in projects that use third-party libraries with static or singleton
objects.

7.5. Build Options

Once the scripts have been generated in the previous step, we launch the compilation

using CMake.

cmake --build [BuildDir] --config [Debug|Release] -3j [NumProcs]

o —-build: Directory where the build projects are located (configuration parameter

-B).

7.6 - Packaging and installation 69

e --config: In multi-configuration generators, eg. Visual Studio indicates which
configuration to compile (Debug or Release).

e —3: Number of concurrent compilation processes or threads.

After compilation we will have the executables and dynamic libraries in [BuildDir]/[
Debug|Release] /bin. In /1ib the static libraries.

7.6. Packaging and installation

After compilation, we package the binaries and headers in order to have them available
when creating our own applications.

cmake --install [BuildDir] --config [Debug|Release] --prefix [PackagePath]

o --install: Directory where the binaries are located (configuration parameter -B).
o —-config: Configuration to be packaged (Debug or Release).

o —-prefix: Installation destination directory. If omitted, CMake will use the default
system directories: /usr/local on UNIX or C:/Program Files/{PROJECT NAME}
on Windows.

To install in system directories (without the --prefix), we may have to run cmake
—install in administrator mode.

In the destination path we will have this file and directory structure:

nappgui |—
bin|

I’er|—

-

draw2d| | —
color.h|||—
detx.h| | }—
o=

geom2d|||—
box2d.h| | —
box2d.hpp| | F—
oo —

qui| | f—
button.h|| —
cell.n||—

—

o
inet|| |—

70 Chapter 7 - Build NAppGUI

base64.h| | I—

httpreqg.h | | |—

nappgui. h| |—
osapp||

osapp.def| | |—
osapp.h||

|_
osbs| | —
bfile.h||}—
bmutex.h| | |—
o =
osgui|
osbutton.h| | |—
oscombo.h| | |—

sewer| |—
arch.hxx |—

blib.h||}—

lib| p—
libcore.a| I—

libdraw2d.a| }—
libgeom2d.a
libgui.a| p—
libinet.a| }—
libosapp.a| |—
libosbs.a| I—
libosgui.a| f—
libsewer.al—
pri | —

CMakeTarget.cmake| —
L

version.txtl—

cmake I—

nappgui-config.cmake |—

In the /bin folder the DLLs will be installed, if we have chosen the dynamic link.

Library names are different on Windows (XXXX.lib) than on Linux/macOS (libXXXX.a).

CHAPTER

Create new application

I consider myself a technical person who chose a great project and an excellent way to carry it out.

Linus Torvalds.

8.1 Create new application 71
8.2 Use of find__package() 71
8.3 NAppProject.cmake 73
8.4 Add files 75
8.5 Command line applications 76
8.6 Example projects 78
8.7 C/C++ standard 78

8.1. Create new application

In “Build NAppGUI” (page 65) we have seen how to compile and package the SDK.
Also, in “Hello World!” (page 23), we learned the basic structure of a NAppGUI-based
application. The time has come to create our own applications, taking advantage of the
CMake modules included in the /pr7j folder of the installation.

This chapter is focused on the use of CMake. If you use another build system in your
projects, you will have to adapt the dependency management yourself.

8.2. Use of find_package()

NAppGUI supports the CMake find package () command, so managing dependencies
is extremely simple. It also provides a series of modules within the installation’s /prj

72 Chapter 8 - Create new application

directory, which simplify project creation. Create a new folder and add this single file
CMakeLists.txt:

CMakeLists.txt

cmake minimum required(VERSION 3.0)

project (NAppHello)

find package (nappgui REQUIRED)

include ("${NAPPGUI ROOT PATH}/prj/NAppProject.cmake")
include ("${NAPPGUI ROOT PATH}/prj/NAppCompilers.cmake")
nap config compiler ()

nap project desktop app (napphello hello)

We run CMake inside the new folder:

// Windows
cmake -S . -B build -DCMAKE INSTALL PREFIX=C:/nappgui
cmake --build build --config Debug

// macOS
cmake -G Xcode -S . -B build -DCMAKE INSTALL PREFIX=/usr/local/nappgui
cmake --build build --config Debug

// Linux

cmake -S . -B build -DCMAKE BUILD TYPE=Debug -DCMAKE INSTALL PREFIX=/usr/local/
< nappgui

cmake --build build

For CMake versions lower than 3.13:

// Windows
mkdir build & cd build

cmake .. -DCMAKE INSTALL PREFIX=C:/nappgui

cmake --build . --config Debug

// macOS

mkdir build ; cd build

cmake .. -G Xcode -DCMAKE INSTALL PREFIX=/usr/local/nappgui

cmake --build . --config Debug

// Linux

mkdir build ; cd build

cmake .. -DCMAKE BUILD TYPE=Debug -DCMAKE INSTALL PREFIX=/usr/local/nappgui

cmake --build

In the directory /build/Debug/bin you will have the napphello executable (Fig-
ure 8.1).

The find package () command knows how to locate a package within the usual system
directories, depending on each platform. We will need to specify the prefix only when the
package is installed in any alternate directory.

8.8 - NAppProject.cmake 73

*) Hello, World! - ®
(W]

Helle!, I'm a label

Click Me!

Figure 8.1: Newly created applica-
tion.

-DCMAKE_INSTALL PREFIX does not imply priority in the search. find package
() might first find an installation in the system folders.

8.3. NAppProject.cmake

The nap project desktop app () function that we have used to create our applica-
tion is located within the NAppProject.cmake module and will speed up certain aspects
of the project (resources, dependencies, new files, etc). We open the Visual Studio solution
that has been generated in /build (Figure 8.2).

P [F INSTALL
4[] napphello
[o0 References

P &I External Dependencies

Figure 8.2: Solution created by
NAppProject.cmake.

nap project desktop app (appName path)

o appName: The name of the application.

» path: Subdirectory where the project will be located (in this case hello). Any route
depth is supported. For example: games/myapp, demo/games/myapp, etc.

The first time this function is executed, several things are done:

74 Chapter 8 - Create new application

o A new directory hello has been created with a default desktop application napphello
.c and a CMakeLists.txt.

o A folder hello/res has been created with an image, and it has been used as the
application icon. In “Resources” (page 99) we will continue to delve deeper into how
to include images and texts in the application.

o The newly created hello/CMakeLists.txt has automatically linked to the NAppGUI
binaries.

Successive calls to CMake will not overwrite the project files, so we can edit them with-
out fear of losing the changes. Once the project is created, nap project desktop app
() will simply call add subdirectory () to update changes. The nap desktop app ()
command in hello/CMakeLists.txt knows how to handle the quirks between different
platforms. For example, in the case of macOS it will create a bundle instead of an isolated
executable.

We don’t have to limit ourselves to a single application. Our solution will support
different targets. For example add this line to CMakeLists.txt and rerun cmake -S
-B build.

CMakeLists.txt

cmake minimum required(VERSION 3.0)

project (NAppHello)

find package (nappgui REQUIRED)

include ("${NAPPGUI ROOT PATH}/prj/NAppProject.cmake")
include ("${NAPPGUI ROOT PATH}/prj/NAppCompilers.cmake")
nap_config compiler ()

nap project desktop app (napphello hello)

New project
nap project desktop app (nappbye bye)

If the solution was already open, it is possible that the IDE will notify you that there
have been changes (Figure 8.3). After pressing [Reload], you will see that the new project
(Figure 8.4) has appeared.

File Modification Detected x

1 The selution 'NappHello' has been medified outside the environment.

Press Reload to load the updated solution from disk.
Press Ignore to ignore the external changes, The changes will be used the next time you open the solution,

Figure 8.3: Notice of changes
in Visual Studio.

Reload Ignore

8.4 - Add files 75

P o0 nces

I E] External Dependencies
4 B res
] logo256.ico
Bl res.
4 [sic
b [2] napp

& CMakeLi
4 [5] napphello
o0 References
&1 External Dependencies

Figure 8.4: Solution update, with
the new nappbye project.

8.4. Add files

Going back to the napphello project, we see that by default only one source code file
(napphello.c) is created that contains the entire application. You will most likely want
to split the code between different files. Create a pair of new files hello/myfunc.c and
hello/myfunc.h from the IDE or directly from the browser. Open them and add these
lines:

/hello/myfunc.h

// Example of new header
#include <core/core.hxx>

real32 t myadd func(real32 t a, real32 t b);

/hello/myfunc.c

// Example of new c file
#include "myfunc.h"
real32 t myadd func(real32 t a, real32 t b)

{

return a + b;

Open /hello/napphello.c and edit the i OnButton function.

76 Chapter 8 - Create new application

/hello/napphello.c

static void i OnButton (App *app, Event *e)
{
real32 t res = myadd func(56.4f, 23.3f);
textview printf (app->text, "Button click (%d-%.2f)\n", app->clicks, res);
app->clicks += 1;
unref (e);

Re-generate the solution with cmake -S . -B build. The IDE, Visual Studio in this
case, informs us again that there have been changes in the napphello project. Simply
press [Reload All] as we did in the previous case.

Recompile and run napphello to see the changes you just made. You can create as
many files and subfolders within the hello directory as you need to better organize your
code. Always remember to run cmake -S . -B build every time you add or remove
files from the project. The nap desktop app() command will update the solution by
“cloning” the directory structure within the project (napphello in this case).

At this point we recommend that you spend some time researching, compiling and
testing the examples in the demo folder within the NAppGUI repository.

8.5. Command line applications

Similar to the desktop applications seen above, it is possible to create console applica-
tions. Add this new line to the CMakeLists.txt of the solution.

CMakeLists.txt

cmake minimum required(VERSION 3.0)

project (NAppHello)

find package (nappgui REQUIRED)

include ("${NAPPGUI ROOT PATH}/prj/NAppProject.cmake")
include ("${NAPPGUI ROOT PATH}/prj/NAppCompilers.cmake")
nap_config compiler ()

nap project desktop app(napphello hello)

nap project desktop app (nappbye bye)

New project
nap project command app (myutil utils/myutil)

When regenerating the solution with cmake -S . -B build, Visual Studio will alert
you again that you need to reload the solution. A new project will have been created

8.5 - Command line applications

in utils/myutil (Figure 8.5), but this time if you compile and run it no window
appear. You will only see a message in the Visual Studio console:

77

will

Hello world!

Search Solution Explorer ((I P
solution 'NappHelle' (6 of 6 projects)
[F] ALL_BUILD
[F] INSTALL
myurtil
o0 References
0 External Dependencies

r

[6] myfunc.c
b [myfunch
b [£) napphello
E CMakeli

Figure 8.5: Solution with the three
executables (targets).

If you open myutil.c you will find the code that generated the previous output:

/* NAppGUI Console Application */
#include <core/coreall.h>

int main(int argc, char *argv([])
{
unref (argc) ;
unref (argv) ;
core start();
bstd printf ("Hello world!\n");
core finish();
return 0;

78 Chapter 8 - Create new application

Which is the typical template of a C program, to which the support of the core library
has been included. From here, we can modify the code and compile. nap command app ()
already set everything up for us.

nap _project command app (appName path)

e appName: The name of the application.
» path: Relative path where the project will be located (in this case utils/myutil).

It goes without saying that the behavior of nap project command app () is identical
to that of nap project desktop app(). It will not overwrite the project files once
created and will integrate all new files that we add in the future.

8.6. Example projects

You have several packages at your disposal that you can use to test the installation of
the SDK:

« GuiHello'. Several examples of component usage: Buttons, Labels, Tables, etc.
« Dice?. Example of the use of libraries.
« Products®. Example of HT'TP requests in graphic applications.

WebHello*. Example of a Web browser embedded in an application.

« GLHello®. Example of 3D graphics with OpenGL, embedded in an application.

8.7. C/C++ standard

Compilers generally allow you to check that code conforms to certain C/C-++ standards,
issuing warnings or errors when it does not. For the sake of portability, all projects
generated by nap desktop app () and nap command app () set the older standards (C90
and C++98 respectively). You may want to use more modern standards in your projects.
Open hello/CMakeLists.txt and add these two lines:

hello/CMakeLists.txt
nap desktop app (napphello "" NRC NONE)

nap_ target c standard(napphello 11)

'https://www.nappgui.com/examples/guihello.zip
2https://www.nappgui.com/examples/dice.zip
3https://www.nappgui.com/examples/products.zip
4https://www.nappgui.com/examples/webhello.zip
Shttps://www.nappgui.com/examples/glhello.zip

https://www.nappgui.com/examples/guihello.zip
https://www.nappgui.com/examples/dice.zip
https://www.nappgui.com/examples/products.zip
https://www.nappgui.com/examples/webhello.zip
https://www.nappgui.com/examples/glhello.zip

8.7 - C/C++ standard 79

nap target cxx standard(napphello 14)

target link libraries (napphello ${NAPPGUI LIBRARIES})

The nap target c standard() command has set the C11 standard for napphello.
Likewise, nap_target cxx standard() has selected C++14.

o C standard: 90, 99, 11, 17 y 23.
e C++ standard: 98, 11, 14, 17, 20, 23 y 26.

If CMake or the compiler does not support the indicated standard, the most modern
allowed will be established. It is the responsibility of the programmer to use the
appropriate compilers for the chosen standard.

80 Chapter 8 - Create new application

CHAPTER

Create new library

The only thing that you absolutely have to know, is the location of the library.

9.1
9.2
9.3
9.3.1
9.3.2
9.3.3
9.34
9.3.5
9.4
9.4.1
9.4.2

Create new library
Static libraries
Dynamic libraries

Advantages of DLLs
Disadvantages of DLLs
Check links with DLLs
Loading DLLs at runtime
Location of DLLs

Symbols and visibility

Export in DLLs
Checking in DLLs

9.1. Create new library

Albert Einstein

81
81
85
86
87
88
91
93
95
96
97

The use of libraries will allow us to share common code between several projects. An
example is the NAppGUI SDK, which has been organized into several static or dynamic

link libraries that can be reused by different applications.

9.2. Static libraries

We are going to rescue two applications included in the NAppGUI examples: Die
(Figure 9.1) and Dice (Figure 9.2). In both you must be able to draw the silhouette of a

82 Chapter 9 - Create new library

dice.

&) Die Simulator — | *
Language == English ~
Face Five ~
Padding [|

Corner '
Radius '

Muove the sliders to change
the parametric
representation of the die
face.

Figure 9.1: Die application.

O Dice — Pas

Figure 9.2: Dice application.

It is not very complicated to intuit that we could reuse the parametric drawing routine
in both projects. One way to do this would be to copy said routine from Die to Dice,
but this is not the most advisable since we would have two versions of the same code to
maintain. Another option, the smartest, is to move the drawing function to a library and
link it in both applications.

9.2 - Static libraries 83

Download the complete example from this link!. The structure of the project is very
similar to what was seen in the previous chapter, starting with the main CMakeLists.txt:

CMakeLists.txt.

cmake minimum required(VERSION 3.0)

project (Dice)

find package (nappgui REQUIRED)

include ("${NAPPGUI ROOT PATH}/prj/NAppProject.cmake")
include ("${NAPPGUI ROOT PATH}/prj/NAppCompilers.cmake")
nap_config compiler ()

nap project library(casino casino)

nap project desktop app(Die die)

nap _project desktop app(Dice dice)

o Line 1: Set the minimum version of CMake.

o Line 2: Project name.

o Line 3: Locate the NAppGUI-SDK installation.

e Line 4: Includes the NAppProject.cmake module.

e Line 5: Includes the NAppCompilers.cmake module.

e Line 6: Configure the compiler.

o Line 7: Create a target library in the casino directory.

o Line 8: Create a target application in the die directory.
e Line 9: Create a target application in the directory dice.

Notice that the nap project library() command precedes applications. This is
because CMake needs to process dependencies before the projects that use them.

nap project library(libName path)

e libName: Name of the library.
o path: Relative path where the project is located.

As with application projects, the first time you run nap project library (), a series
of default files are created. Later they can be edited, deleted or added more as we have
just seen in the case of applications.

In die/CMakeLists.txt and dice/CMakelLists.txt we see the link with casino:

die/CMakeLists.txt
nap desktop app(Die "casino" NRC EMBEDDED)

"https://www.nappgui.com/examples/dice.zip

https://www.nappgui.com/examples/dice.zip

84 Chapter 9 - Create new library

dice/CMakeLists.txt
nap desktop app(Dice "casino" NRC NONE)

For now, don’t worry about the constants NRC EMBEDDED and NRC NONE. In “Resource
processing” (page 107) we will see them in detail. You can build and compile the project
in the usual way:

// Windows
cmake -S . -B build -DCMAKE INSTALL PREFIX=C:/nappgui
cmake --build build --config Debug

// macOS
cmake -G Xcode -S . -B build -DCMAKE INSTALL PREFIX=/usr/local/nappgui
cmake --build build --config Debug

// Linux

cmake -S . -B build -DCMAKE BUILD TYPE=Debug -DCMAKE INSTALL PREFIX=/usr/local/
< nappgui

cmake --build build

In build/Debug/bin you will have the executables. Both Die and Dice have added a
dependency on casino (Figure 9.3) via the dependList parameter from the nap desktop_ app
() command. This way CMake knows that it must link, in addition to NAppGUI-SDK
(NAPPGUI LIBRARIES), the casino library, which is where common code from both projects
is found (Figure 9.4).

Figure 9.3: Application
dependency tree, centered
on the casino library.

What does it really mean that Die and Dice have a dependency on casino? From now
on, none of them will be able to compile if there is an error in the casino code, since it is a
fundamental module for both. Within the build project (Visual Studio, Xcode, Makefile,
Ninja, etc.) several things have happened:

4 [%
b
b

!
[
P
[
!

9.8 - Dynamic libraries

casing
n-B References

IF External Dependencies

casino.c
casino.h
casin
ddraw.c
ddraw

B CMakelists.bt

F | "'.|.

b
b
b

Dice

n-B References

N5 Edernal Dependencies
o res

4 o] src

Figure 9.4: NAppDice solution

with the three projects. G

main.c
B CMakelLists.bd
Die

85

« Both applications know where casino is located, so they can do #include "casino

.h" without worrying about its location.

o The binary code for the casino functions will be included in each executable in the
linking process. CMake already took care of linking the library with the executables.

o Any changes made to casino will force the applications to be recompiled due to the
previous point. Again, the build project will know how to do this as efficiently as
possible. We will only have to re-launch cmake --build build to update all the

binaries.

9.3. Dynamic libraries

Dynamic libraries are, in essence, the same as static ones. The only thing that changes
is the way they link to the executable (Figure 9.5). In static linking, the library code is
added to the executable itself, so its size will grow. In dynamic linking, the library code is
distributed in its own file (.d11, .so, .dylib) and is loaded directly before the executable

program.

To create the dynamic version of casino, open casino/CMakelLists.txt and change

the buildShared parameter of nap library () from

NO to YES.

/casino/CMakeLists.txt

nap library(casino "" YES NRC_ NONE)

86 Chapter 9 - Create new library

static link

Dice.exe

Die.exe

I I
I I —

casino.lib

dynamic link

Die.exe
| I

I I —

Figure 9.5: Static or dynamic

casino link. casino.dll

target include directories(casino PUBLIC "${NAPPGUI INCLUDE PATH}")

After re-generating and re-compiling the solution, you will notice that a new casino.
dl1 appears in build/Debug/bin. This d11 will be shared by Die.exe and Dice.exe,
something that did not happen when compiling the static version.

/build/bin/Debug
12/18/23 04:38 PM <DIR>
12/18/23 03:59 PM <DIR> ..
12/18/23 04:38 PM 53,248 casino.dll
12/18/23 04:38 PM 92,672 Dice.exe
12/18/23 04:38 PM 102,400 Die.exe

9.3.1. Advantages of DLLs

As we have been able to intuit in the previous example, using DLLs we will reduce the
size of the executables, grouping the common binary code (Figure 9.6), (Figure 9.7). This
is precisely what operating systems do. For example, Die.exe will ultimately need to
access Windows API functions. If all applications had to statically link Windows binaries,
their size would grow disproportionately and a lot of space would be wasted within the file
system.

Another great advantage of DLLs is the saving of memory at runtime. For example, if
we load Die.exe, casino.dll will be loaded at the same time. But if we then load Dice
.exe, both will share the copy of casino.dl1 existing in memory. However, with static
linking, there would be two copies of casino.lib in RAM: One embedded in Die.exe
and another in Dice.exe.

Name

res

o Bode.exe

c) Bricks.exe

& Col2dHello.exe

cj Dice.exe

C) Die.exe

C) DrawBig.exe

C) DrawHello.exe

C) Drawlmg.exe

C) Fractals.exe

o GuiHello.exe

o HelloCpp.exe
Figure 9.6: The programming & HelloWorld.exe
examples occupy 6.52 Mb in O Products.exe

their static version. O Ullimg.exe

Nare

res
c) Bode.exe
c) Bricks.exe
O Col2dHello.exe
0 Dice.exe
o Die.exe
o DrawBig.exe
o DrawHello.exe
c) Drawlmg.exe
c) Fractals.exe
c) GuiHello.exe
c) HelloCpp.exe
c) HelleWorld.exe
0 Products.exe
c) Urllmg.exe
casino.dll
core.dll
draw2d.dll
geom2d.di
qui.dll
inet.dll
osapp.dil
Figure 9.7: The programming osbs.di

examples occupy 4.08 Mb in °‘9”":'I'I
their dynamic version. e

9.3.2. Disadvantages of DLLs

Date modified

09-Dec-22 19:33
-2218:58
-22 18:58
-2218:58
-2218:58
-22 1858
-22 1858
-22 1858
-22 18:58
-22 18:58
-2218:58
-2218:58
-22 18:58
-2218:58
-2218:58

Date modified

08-Dec-22 19:34
09-Dec-22 18:19
09-Dec-22 19:19
09-Dec-22 1%:19
09-Dec-22 1%:19
09-Dec-22 1%:19
09-Dec-22 1%:19
08-Dec-22 18:19
08-Dec-22 18:19
08-Dec-22 18:19
09-Dec-22 18:19
09-Dec-22 18:19
09-Dec-22 19:19
09-Dec-22 1%:19
09-Dec-22 1%:19
09-Dec-22 1%:19
09-Dec-22 1%:19
08-Dec-22 18:19
08-Dec-22 18:19
08-Dec-22 18:19

9.3 - Dynamic libraries

Type Size

File folder

Application 467 KB
Application 384 KB
Application 512KB
Application 304 KB
Application 402 KB
Application 425 KB
Application 463 KB
Application T43 KB
Application 397 KB
Application 783 KB
Application 401 KB
Application 388 KB
Application 494 KB
Application 419KB
Type . Size

File folder

Application 131KB
Application 124 KB
Application 147 KB
Application 122 KB
Application 129KB
Application 126 KB
Application 184 KB
Application 452 KB
Application 125KB
Application AT3KB
Application 135KB
Application 121KB
Application 149 KB
Application 125KB
Application exten... S1KB
Application exten... 187 KB
Application exten... 156 KB
Application exten... 201 KB
Application exten... 184 KB
Application exten... 113 KB
Application exten... 96 KB
Application exten... TI1KB
Application exten... 175 KB
Application exten... 215KB

87

The main drawback of using DLLs is the incompatibility that may arise between the
different versions of a library. Suppose we launch a first version of the three products:

casino.dll 102,127 (vl)
Die.exe 84,100 (vl)
Dice.exe 73,430 (vl)

A few months later, we released a new version of the application Dice.exe that involves
changes to casino.dl1. In that case, the distribution of our suite would look like this:

88 Chapter 9 - Create new library

casino.dll 106,386 (v2) *
Die.exe 84,100 (v1l)?
Dice.exe 78,491 (v2) *

If we have not been very careful, it is very likely that Die.exe will no longer work as it
is not compatible with the new version of the DLL. This problem bothers many developers
and has been named DLL Hell?. Since in this example we are working in a “controlled”
environment we could solve it without too many problems, creating a new version of all
the applications running under casino.dll (v2).

casino.dll 106,386 (v2)
Die.exe 84,258 (v2)
Dice.exe 78,491 (v2)

This will not always be possible. Now suppose that our company develops only casino.
d11 and third parties work on the final products. Now each product will have its production
and distribution cycles (uncontrolled environment) so, to avoid problems, each company
will include a copy of the specific version of the DLL with which its product works. This
could lead to the following scenario:

/Apps/Die

casino.dll 114,295 (vh)
Die.exe 86.100 (v8)
/BApps/Dice

casino.dll 106,386 (v2)
Dice.exe 72,105 (vl)

Seeing this we sense that the benefits of using DLLs are no longer so great, especially
in relation to the optimization of space and loading times. The fact is that it can get even
worse. Typically, libraries are written to be as generic as possible and can serve many
applications. In many cases, a specific application uses only a few functions in each library
with which it links. Using static libraries, the size of the executable (Figure 9.8) can be
considerably reduced, since the linker knows perfectly well which specific functions the
application uses and adds the strictly necessary code. However, using DLLs, we must dis-
tribute the complete library no matter how few functions the executable uses (Figure 9.9).
In this case, you are wasting space and unnecessarily increasing application loading times.

9.3.3. Check links with DLLs

When an executable is launched, for example Die.exe, all the dynamic libraries linked
to it are loaded into memory (if they do not previously exist). If there is a problem during
loading, the executable will not be able to start and the operating system will display
some type of error.

thtps://en.wikipedia.org/wiki/DLLiHell

https://en.wikipedia.org/wiki/DLL_Hell

9.3 - Dynamic libraries 89

Figure 9.8: With static li-
braries, the space and loading
times of this application are op-
timized.

Die.exe

Figure 9.9: With dynamic li-
braries, this application takes
up more than it should and its
loading times increase.

Links in Windows

Windows will display an error message (Figure 9.10) when it cannot load a DLL asso-
ciated with an executable.

Die.exe - Error del sistema >

PPy La gjecucidn de codigo no puede continuar porque no se
L encontro casino.dll. Este problema se puede solucionar
= reinstalando el programa.

Figure 9.10: Error loading

DLL casino.

If we want to see which DLLs are linked to an executable, we will use the dumpbin
command.

dumpbin /dependents Die.exe
Dump of file Die.exe
File Type: EXECUTABLE IMAGE
Image has the following dependencies:

casino.dll

90 Chapter 9 - Create new library

KERNEL32.d1l1
USER32.d11
GDI32.d1l1
SHELL32.d11
COMDLG32.d11
gdiplus.dll
SHLWAPI.d1l1l
COMCTL32.d1l1
UxTheme.dll
WsS2 32.d11

We see, at the beginning, the dependency with casino.dl11l. The rest are Windows
libraries related to the kernel and the user interface. In the case that we make a casino
static link:

dumpbin /dependents Die.exe
Dump of file Die.exe
File Type: EXECUTABLE IMAGE
Image has the following dependencies:

KERNEL32.d1l1
USER32.d11

GDI32.d1l1

SHELL32.d11
COMDLG32.d11
gdiplus.dll
SHLWAPI.d1l1l
COMCTL32.d11
UxTheme.dll
WS2 32.d11

casino.dll no longer appears, having been statically linked within Die.exe.
Links in Linux

In Linux something similar happens, we will get an error if it is not possible to load a
dynamic library (*.so).

:~/$./Die
./Die: error while loading shared libraries: libcasino.so: cannot open shared
<~ object file: No such file or directory

To check which libraries are linked to an executable we use the 1dd command.

~/$ 1dd ./Die
linux-vdso.so.l (0x00007ff£f58036000)
libcasino.so => libcasino.so (0x00007£6848b£f4000)

9.8 - Dynamic libraries 91

libpthread.so.0 => /1ib/x86 64-linux-gnu/libpthread.so.0 (0x00007£6848bba000)
libgtk-3.s0.0 => /1ib/x86 64-linux-gnu/libgtk-3.s0.0 (0x00007£6848409000)
libgdk-3.s50.0 => /1ib/x86 64-linux-gnu/libgdk-3.s0.0 (0x00007£6848304000)
libpangocairo-1.0.s0.0 => /1ib/x86 64-linux-gnu/libpangocairo-1.0.s0.0 (0

— x00007£68482£2000)
libpango-1.0.s0.0 => /1ib/x86 64-linux-gnu/libpango-1.0.s0.0 (0

— x00007£68482a3000)
libcairo.so.2 => /1lib/x86 64-linux-gnu/libcairo.so.2 (0x00007£684817e000)
libgdk pixbuf-2.0.s0.0 => /1lib/x86 64-linux-gnu/libgdk pixbuf-2.0.s0.0 (0

— x00007£6848156000)
libgio-2.0.s0.0 => /1ib/x86 64-linux-gnu/libgio-2.0.s0.0 (0x00007£6847£75000)
libgobject-2.0.s0.0 => /1ib/x86 64-linux-gnu/libgobject-2.0.s0.0 (0

— x00007£6847£15000)
libglib-2.0.s0.0 => /1ib/x86 64-linux-gnu/libglib-2.0.s0.0 (0x00007£6847dec000)
libm.so.6 => /1ib/x86 64-linux-gnu/libm.so.6 (0x00007£6847c9d000)
libc.so.6 => /1ib/x86 64-linux-gnu/libc.so.6 (0x00007£6847aa9000)

Where we see that Die depends on libcasino.so. The rest are dependencies on the
Linux kernel, the C standard library and GTK.

Links in macOS: We use the otool command.

% otool -L ./Die.app/Contents/MacOS/Die
@rpath/libcasino.dylib
/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa
/System/Library/Frameworks/UniformTypeIldentifiers. framework/Versions/A/

<~ UniformTypeldentifiers
/usr/lib/libc++.1.dylib
/usr/lib/libSystem.B.dylib
/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit
/System/Library/Frameworks/CoreFoundation. framework/Versions/A/CoreFoundation
/System/Library/Frameworks/CoreGraphics.framework/Versions/A/CoreGraphics
/System/Library/Frameworks/CoreText.framework/Versions/A/CoreText
/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation
/usr/lib/libobjc.A.dylib

9.3.4. Loading DLLs at runtime

Until now, the import of DLL symbols is resolved at compile time or, rather, at link
time. This means that:

o Executables can directly access global variables and functions defined in the DLL.
Going back to the code of Dice.exe, we have:

#include "ddraw.h"

static void i OnRedraw (App *app, Event *e)
{

const EvDraw *params = event params (e, EvDraw);

92 Chapter 9 - Create new library

color t green

real32 t w =
real32 t h =
real32 t p =
real32 t c =
real32 t r =

= color rgb (102, 153, 26);
params->width / 3;
params->height / 2;
kDEF PADDING;
kDE F CORNER;
kDEF RADIUS;

draw clear (params->ctx, green);

die draw(params->ctx, 0.f, 0.f, w, h, p, ¢, r, app->face([0]);
die draw(params->ctx, w, 0.f, w, h, p, ¢, r, app->face[l]);

die draw(params->ctx, 2 * w, 0.f, w, h, p, ¢, r, app->face([2]);

die draw(params->ctx, w, h, w, h, p, ¢, r, app->face[4]);

(
(
die draw(params->ctx, 0.f, h, w, h, p, ¢, r, app->face([3]);
(
(

die draw(params->ctx, 2 * w, h, w, h, p, ¢, r, app->face[5]);

e A #include "ddraw.h" has been made, public header of casino.

o The symbols die draw(), kDEF PADDING, kDEF CORNER, kDEF RADIUS, de-
fined in ddraw.h, have been used.

e The dynamic library casino.d11 will load automatically just before Dice.exe.

o Using a static or dynamic version of casino does not imply changes to the Dice
code. We would only have to change the casino/CMakelLists.txt and recompile

the solution.

casino/CMakeLists.txt

Static library

nap library(casino "" NO NRC NONE)
target include directories(casino PUBLIC "${NAPPGUI INCLUDE PATH}")

Dynamic library

nap library(casino "" YES NRC NONE)
target include directories(casino PUBLIC "${NAPPGUI INCLUDE PATH}")

However, there is the possibility that the programmer is in charge of loading, down-
loading and accessing the symbols of the DLLs at any time. This is known as run-time
linking or non-symbol import linking. In (Listing 9.1) we have a new version of Dice:

Listing 9.1: Loading symbols at runtime.

typedef void (*FPtr ddraw) (DCtx*, const real32 t, const real32 t, const real32 t
<~ , const real32 t, const real32 t, const real32 t, const real32 t, const

— uint32 t);

static void i OnRedraw (App *app, Event *e)

{

const EvDraw *params = event params (e, EvDraw);
DLib *casino = dlib open (NULL, "casino");
FPtr ddraw func draw = dlib proc(casino, "die draw", FPtr ddraw);

9.8 - Dynamic libraries 93

color t green = color rgb(102, 153, 26);

real32 t w = params->width / 3;

real32 t h = params->height / 2;

real32 t p = *dlib var (casino, "kDEF PADDING", real32 t);
real32 t ¢ = *dlib var(casino, "kDEF CORNER", real32 t);
real32 t r = *dlib var (casino, "kDEF RADIUS", real32 t);

draw clear (params->ctx, green);

func_draw (params->ctx, 0.f, 0.f, w, h, p, ¢, r, app->face(0]);
func draw(params->ctx, w, 0.f, w, h, p, ¢, r, app->face[l]);
func draw(params->ctx, 2 * w, 0.f, w, h, p, ¢, r, app->face[2]);
func_draw (params->ctx, 0.f, h, w, h, p, ¢, r, app->face[3]);
func draw (params->ctx, w, h, w, h, p, ¢, r, app->face[4]);
func draw(params->ctx, 2 * w, h, w, h, p, ¢, r, app->face[5]);
dlib close(&casino);

Line 6 loads the casino library.

Line 7 accesses the function die draw defined in casino.
Lines 11-13 access public casino variables.

Lines 15-20 use die draw through the func draw pointer.

Line 21 unloads the casino library from memory.

As we see, this loading at runtime does imply changes to the source code, but it also
brings with it certain advantages:

The library is loaded when we need it, not at the beginning of the program. This is
why it is very important that casino does not appear as a dependency of Dice.

nap desktop app(Dice "" NRC_ NONE)

We can have different versions of casino and choose which one to use at runtime.
This is the working mechanism of the plug-ins used by many applications. For exam-
ple, the Rhinoceros 3D program enriches its functionality thanks to new commands
implemented by third parties and added at any time through a system of plugins
(.DLLs) (Figure 9.11).

9.3.5. Location of DLLs

When the operating system must load a dynamic library, it follows a certain search
order. On Windows systems search in this order:

The same directory as the executable.
The current working directory.

The directory $SystemRoot%\System32.

94 Chapter 9 - Create new library

Rhino Options RS
E| Document Properties [NI Plugins =
i B Annotation
- Grid Name 7 Loaded Enabled -
[BElRrrC [Fl
:] [& SketchUp Export
- Re!ﬂdenng (= SketchUp Import
2 Rh!no Render I sLC Bxport
H D: ‘iL'L'n:bs Browser @ SLC mpot
. - ESnlidscape ModelWorks
|=- Rhino Options
... Merter [B]SoldTools
Mliases [Solidworks Import
[Appearance [Blsquish
#- Cortext Menu I STEP Bxport
(- Files (& STEP Import
- Generl [5TL Export
- |dle Processor 5Tl Import
- Keyboard [®] Stratasys Insight N
- Libraries Bl Tibidabo 1
- Licenses n VDA Export 3
- Modeling Aids [VDA Import |
- Mouse ElvisuslARa
St bl coe
- Rhino Render Options = VAL Import =
- Bhino Script Properties....
- Selection Menu
- Toobars [Ask to load disabled plug-ns
- Updates and Statistics
- View [ok [cancd |[Hep |

Figure 9.11: Rhinoceros 3D plug-in system, implemented using DLLs.

o The directory $SystemRoot%.
o The directories specified in the PATH environment variable.
On the other hand, on Linux and macOS:

o The directories specified in the environment variable LD LIBRARY PATH (Linux) or
DYLD LIBRARY PATH (macOS).

o The directories specified in the executable rpath.
o The system directories /1ib, /usr/lib, etc.

Here we have a big difference between Windows and Unix, since in the latter it is
possible to add dependencies search directories within the executable. This variable is
known as RPATH and is not available on Windows. To check the value of RPATH:

// In Linux
~/$ readelf -d ./Die | grep RUNPATH
0x000000000000001d (RUNPATH) Library runpath: [${ORIGIN}]

// In macOS
otool -1 ./Die.app/Contents/MacOS/Die

9.4 - Symbols and visibility 95

Load command 25
cmd LC_RPATH
cmdsize 40
path @executable path/../../.. (offset 12)

Ezxecutables generated by the nap desktop app () command automatically set the
RPATH to find dynamic dependencies in the same directory as executables on Linux or
bundles on macOS.

9.4. Symbols and visibility

In the linking process after the compilation of the library, those elements that can
generate machine code or take up space in the final binary are called symbol. These are
methods, functions and global variables. Symbols are not considered:

o Type definitions such as enum, struct or union. These help the programmer or-
ganize the code and the compiler validate it, but they do not generate any binary
code. They do not exist from the linker’s point of view.

e Local variables. These are automatically created and destroyed in the “Stack Seg-
ment” (page 167) during program execution. They do not exist at link time.

On the other hand, all functions and global variables declared as static within a
module *.c will be considered private symbols not visible in link time and where the
compiler is free to make the appropriate optimizations. With this in mind, the code within
NAppGUI is organized as follows:

o *.c: Implementation file. Definition of symbols (functions and global variables).

o *.h: Public header file. Declaration of functions and global variables (extern),
available to the library user.

o *.hxx: Declaration of public types: struct, union and enum.

o *.inl: Declaration of functions and private variables. Only the internal modules of
the library will have access to these symbols.

o *.ixx: Declaration of private types. Those shared between the library modules, but
not with the outside.

If a function is only needed within a *.c module, it is not included in a *.inl. It
will be marked as static within the same *.c. This way it will not be visible to the
linker and will allow the compiler to perform optimizations.

96 Chapter 9 - Create new library

Likewise, types that are only used within a specific module will be declared at the
beginning of *.c and not in *.ixx.

For the sake of code maintainability and scalability, type and function declarations will
be kept as private as possible.

9.4.1. Exportin DLLs

When we generate a dynamic link library, in addition to including public symbols in
one or more *.h headers, we must explicitly mark them as exportable. The export macro
is declared in the *.def file of each library. For example in casino.def, the macro
_casino_api is defined.

Listing 9.2: casino.def

/* casino library import/export */
/* clang-format off */

#if defined(NAPPGUI_SHARED)
#if defined(NAPPGUI_BUILD_CASINO_LIB)
#define NAPPGUI_CASINO EXPORT DLL
#else
#define NAPPGUI CASINO_ IMPORT DLL
#endif
#endif

#if defined(_ GNUC)
#if defined (NAPPGUT CASINO EXPORT DLL)

#define casino api attribute ((visibility("default")))
#else

#define casino_api
#endif

#elif defined(MSC_VER)
#if defined (NAPPGUI CASINO_ IMPORT DLL)

#define casino _api _ declspec(dllimport)
#elif defined (NAPPGUI CASINO EXPORT DLL)
#define casino_api _ declspec(dllexport)
#else
#define casino api
#endif
#else
#error Unknown compiler
#endif

/* clang-format on */

This macro must precede all public functions and variables declared in the *.h of the li-

9.4 - Symbols and visibility 97

brary. Projects based nap_desktop_app () will define the macros NAPPGUI XXXXX EXPORT DLL
when the DLL is compiled and NAPPGUI XXXXX IMPORT DLL when the DLL is used in
other targets. This way, the export and import of symbols will be done correctly on all
platforms.

9.4.2. Checkingin DLLs

We can see, from the binary of a dynamic library, what public symbols it exports.
On Windows we will use dumpbin /exports dllname, on Linux nm -D soname and on
macOS nm -gU dylibname.

Public core.d11 symbols (Windows).

C:\>dumpbin /exports core.dll

2 1 00001000 array all

3 2 00001010 array bsearch

4 3 00001090 array bsearch ptr
5 4 00001120 array clear

6 5 000011CO array clear ptr

7 6 00001260 array copy

8 7 00001340 array copy ptr

9 8 00001420 array create

10 9 00001430 array delete

11 A 00001530 array delete ptr
12 B 00001640 array destopt

13 C 00001650 array destopt ptr
14 D 00001660 array destroy

15 E 000016FO0 array destroy ptr
16 F 00001790 array esize

17 10 000017A0 array find ptr

18 11 000017D0 array get

Public 1ibcore. so symbols (Linux).

S nm -D ./libcore.so

0000000000011£85 T array all
000000000001305¢c T array bsearch
000000000001316d T array bsearch ptr
0000000000011832 T array clear
00000000000118al T array clear ptr
0000000000011009 T array copy
000000000001115d T array copy ptr
0000000000010fdd T array create
0000000000012649 T array delete
000000000001276b T array delete ptr
0000000000011668 T array destopt
0000000000011746 T array destopt ptr
00000000000115¢c3 T array destroy
00000000000116ad T array destroy ptr

98 Chapter 9 - Create new library

0000000000011b87 T array esize
0000000000012dd3 T array find ptr
0000000000011e8c T array get

Public 1ibcore.dylib symbols (macOS).

)

% nm -gU ./libcore.dylib
00000000000029£f0 T array all

0000000000003¢c90 T array bsearch
0000000000003d60 T array bsearch ptr
00000000000024c0 T array clear
00000000000025d0 T array clear ptr
0000000000001c20 T array copy
0000000000001dd0 T array copy ptr
0000000000001b50 T array create
00000000000030£f0 T _array delete
0000000000003350 T array delete ptr
00000000000022f0 T array destopt
0000000000002470 T array destopt ptr
0000000000002120 T array destroy
0000000000002340 T array destroy ptr
00000000000028b0 T _array esize
0000000000003980 T array find ptr
00000000000028£f0 T array get

CHAPTER

Resources

If we internationalize everything, we end up with rules that stifle freedom and innovation.

Myron Scholes

10.1 Resources 99
10.2 Types of resources 100
10.3 Create resources 101
10.4 Internationalization (i18n) 102
10.5 Runtime translation 104
10.6 Edit resources 106
10.7 Manual management 106
10.8 Resource processing 107
10.9 Resource distribution 107
10.10 nrc warnings 109
10.11 Application icon 110

10.1. Resources

Resources are data that are required by the application but do not reside in the area of
the executable. In other words, they are not directly accessible through program variables,
but rather have to be pre-loaded before they can be used. The most common are the texts
and images used in the user interface, although any type of file can become a resource
(sounds, fonts, 3d models, html pages, etc). To illustrate its use with a real example, we
return to the Die application (Figure 10.1), already covered in previous chapters.

100 Chapter 10 - Resources

) Die Simulator — | *
Language == English ~
Face Five e
Padding [|

Corner '
Radius '

Muove the sliders to change
the parametric
representation of the die
face.

Figure 10.1: Die Application.

10.2. Types of resources

o Texts: Although it is very easy to include texts in the code as C variables, in
practice this is not advisable for two reasons: The first is that, normally, it is not
the programmers who They compose the messages that the program displays. By
separating them into a separate file, other team members can review and edit them
without having to directly access the code. The second reason is internationalization.
It is an almost essential requirement today to be able to change the language of the
program and this can involve several members of the team, as well as the fact that
several text strings refer to the same message. Therefore, extracting them from the
source code will be almost essential.

o Images: It is not usual for the program icons to change depending on the language,
although it may be the case. The tricky thing here is transforming a .jpg or .png
file into a C variable (Listing 10.1). You have to serialize the file and paste it into
the code, something very tedious and difficult for the programmer to maintain. It is
preferable to have the images in a separate folder and access them at runtime.

Listing 10.1: Png image embedded in the source code.

const uint32 t IMG SIZE = 1262;

const byte t IMG[] = {
0x89, 0x50, Ox4E, 0x47, 0x0D, O0x0A, Ox1lA, 0x0A,
0x00, 0x00, 0x00, OxO0D, 0x49, 0x48, 0x44, 0x52,
}i

« Files: Apart from text and images, any file can become a resource. In this case, the
application will receive a block of bytes with its content, which it must know how to
interpret.

10.3 - Create resources 101

10.3. Create resources

If we go to the source directory of the application (/die), we see that there is a folder
called /res added by CMake when creating the project. Inside there are several 1ogo. *
files with the “Application icon” (page 110).

You can also see a folder called /res/res die which wasn’t created by CMake,
but added later when writing the program. This subfolder is considered a resource pack
and will contain a set of texts, images or files that will be loaded “in bulk” at some point
in the execution. We can create as many packages as necessary depending on the size and
logic of our program.

In large applications, organize your resources in such a way that it is not necessary to
load all of them when starting the application. Certain resources may only be needed
when the user performs some action.

You will see that inside /res/res die there is a strings.msg whose content is shown
below:

Listing 10.2: Die’s message file.

/* Die strings */

TEXT FACE Face

TEXT_PADDING Padding

TEXT CORNER Corner

TEXT RADIUS Radius

TEXT ONE One

TEXT TWO Two

TEXT THREE Three

TEXT FOUR Four

TEXT FIVE Five

TEXT SIX Six

TEXT TITLE Die Simulator

TEXT INFO Move the sliders to change the parametric representation of the
— die face.

TEXT LANG Language

TEXT ENGLISH English

TEXT SPANISH Spanish

Also contains the cards.png image and the spain.png and usa.png (Figure 10.2)
icons.

Each line within the strings.msg file defines a new message consisting of an identifier
(eg TEXT FACE) followed by the text to be displayed in the program (Face in this case).
Text is considered from the first non-blank character after the identifier to the end of the
line. You don’t need to put it in quotes ("Face") like you do in C:

BILLY Billy "the Kid" was an American Old West outlaw.

102 Chapter 10 - Resources

Local Disk (C:) » nappgui » src » die » res » all

.

g = ' S/ CS
Figure 10.2: Resource bundle cards.png spain.png strings.msg usa.png
at src/die/res/res_die
OTHER Other text.
You also don’t have to use escape sequences (’\\’, '\”, ...), with the single exception of

"\n' for multi-line messages:

TWO_LINES This is the first line\nAnd this is the second.

The message identifier follows the rules for C identifiers, except that letters must be up-
percase:

_Ibl Ok
0ID2 Wrong!!
id3 Wrong!!
ID3 Ok

Messages accept any Unicode character. We can split the texts into as many *.msg files
as needed and they must be stored in UTF8 format.

Visual Studio does not save files in UTFS by default. Be sure to do so on every *.msg
that contains non-US-ASCII characters. File->Save As->Save with encoding->
Unicode (UTF8 Without Signature)- Codepage 65001.

10.4. Internationalization (i18n)

We have used English as the main language in the program, but we want it to be
translated into Spanish as well. To do this we go back to the /res/res die folder, where
we see the /es_es subdirectory that contains another strings.msg file. The identifiers in
that file are the same as in /res die/strings.msg but the texts are in another language.
Depending on the selected language, the program will use one version or another.

Listing 10.3: Die’s message file, translated into Spanish.

/* Die strings */
TEXT FACE Cara
TEXT PADDING Margen
TEXT CORNER Borde

TEXT RADIUS
TEXT ONE
TEXT_ TWO
TEXT THREE
TEXT FOUR
TEXT FIVE
TEXT SIX
TEXT TITLE
TEXT INFO

— la cara
TEXT LANG
TEXT ENGLISH
TEXT SPANISH

10.4 - Internationalization (i18n) 103

Radio

Uno

Dos

Tres

Cuatro

Cinco

Seis

Simulador de dado
Mueve los sliders para cambiar la representacidén paramétrica de
del dado.

Idioma

Inglés

Espafiol

We must take into account some simple rules when locating resources:

o If the local version of a resource does not exist, the global version of the resource will
be used. CMake will warn if there is untranslated text “nrc warnings” (page 109).

Those resources only present in local folders will be ignored. It is imperative that
the global version of each exists.

Resource “subpackages” are not allowed. Only two levels will be processed: src/
res/packname for globals and src/res/packname/local for locals.

Resource bundles must have a unique name within the solution. One strategy might
be to prepend the project name: /appname packl, libname pack2, etc.

Existing resources in the root folder (/res) will be ignored. All resources must be
contained in a package /res/packl/, /res/pack2/, etc.

Localized texts must have the same identifier as their global counterpart. Otherwise
they are considered different messages.

To create a localized version of an image or other file, include it in its corresponding
local folder (e.g. /res/res die/es es/cards.png) using the same file name
than the global version.

To name the localized folders, use the two-letter language code ISO 639-1! (in, is, fr
, de, zh, ...) and, optionally, the two-letter country code ISO-31662 (en_us, en_ gb,

).

'mttps://en.wikipedia.org/wiki/List of ISO 639-1 codes
thtps://en.wikipedia.org/wiki/ISOi3166—1

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1

104 Chapter 10 - Resources

10.5. Runtime translation

For each resource bundle, CMake creates a *.h with the same name as the folder:
res_die.h in this case (Listing 10.4) . This file contains the resource identifiers, as well
as a function that allows us to access them res die respack (). In (Listing 10.5) we see
the actions to be carried out to use these resources in our program.

Listing 10.4: Header file res_die.h.

/* Automatic generated by NAppGUI Resource Compiler (nrc-r1490) */
#include "core.hxx"
__EXTERN C

/* Messages */

extern ResId TEXT FACE;
extern ResId TEXT_PADDING;
extern ResId TEXT CORNER;
extern ResId TEXT RADIUS;
extern ResId TEXT ONE;
extern ResId TEXT TWO;
extern ResId TEXT THREE;
extern ResId TEXT_FOUR;
extern ResId TEXT FIVE;
extern ResId TEXT SIX;
extern ResId TEXT TITLE;
extern ResId TEXT INFO;
extern ResId TEXT LANG;
extern ResId TEXT_ENGLISH;
extern ResId TEXT SPANISH;

/* Files */

extern ResId CARDS PNG;
extern ResId SPAIN PNG;
extern ResId USA PNG;

ResPack *res die respack(const char t *local);

__END C

Listing 10.5: Load and use of resources.

#include "res die.h"

gui_ respack(res_die_ respack);
gui language("");

label text(labell, TEXT FACE);
imageview image (vimg, CARDS PNG) ;

static void i Onlang (App *app, Event *e)

{

const EvButton *params = event params (e,

gui language (lang);
unref (app) ;

10.5 - Runtime translation

EvButton) ;
const char t *lang = params->index == 0 ? "en us"

"es_es";

105

o Line 1 includes the (Listing 10.4) resource bundle header, which is automatically

generated by CMake.

+ Line 3 registers the package in “Gui” (page 322), the library in charge of the graphical
interface. If the application had more resource packs we would add them in the same

way.

+ Line 4 sets the default language (English).

o Lines 6 and 7 assign a text and an image to two controls respectively. Identifiers are
defined in "res die.h", as we just saw.

o Line 13 translates the entire interface in response to a change in the “PopUp”

(page 336) control (Figure 10.3).

CJ Simulader de dado

Idioma
Cara
Margen
Borde

Radic

— | *
— Espaiiol w
Cince ~

Mueve los sliders para
cambiar la representacidn
paramétrica de la cara del
dado.

Figure 10.3: Translation of the Die application, without destroying

the window or rebooting.

Basically, a call to gui language, involves coordinating three actions:

o Load the located resources and replace them with the current ones.

o Assign the new texts and images to all the controls and menus of the program.

o Resize the windows and menus, since changing texts and images will influence the

size of the controls.

106 Chapter 10 - Resources

10.6. Edit resources

To add new resource files or delete any of the existing ones, we just have to go to
the res/res die folder through the file explorer and do it there directly. The *.msg
message files can be edited from within Visual Studio, as CMake includes them within the
(Figure 10.4) IDE. After making any changes to the resource folder or editing a * .msg file,
we must relaunch CMake so that these modifications are integrated back into the project.
After each update, the identifiers of the new resources will be created and those whose
associated resource has disappeared will be deleted, which will cause compilation errors
that will facilitate the correction of the code.

TEXT_FACE Face

P =B References

3 :;l Ei:icemal Dependencies TEXT_PADDING Padding

4 al TEXT_CORNER Corner
Lo TEXT_RADIUS Radius

all.c

Lo TEXT_ONE One
cards.png —
: TEXT_TWO Two
TEXT_THREE Three
TEXT_FOUR Four

Figure 10.4: Editing resources within Visual Studio.

10.7. Manual management

Although the usual thing will be to delegate the management of resources to the gui
library, it is possible to access the content of the packages directly, as we see in (List-
ing 10.6).

Listing 10.6: Direct access to resources.

#include "res die.h"
ResPack *pack = res_die_respack("es_es");

label text(labell, respack text(pack, TEXT FACE));
imageview image (vimg, image from resource (pack, CARDS PNG)) ;

respack destroy (&pack);

« Line 1 includes the resource bundle header.

o Line 3 creates an object with the content of the package in the Spanish language.
Each resource pack will provide its own constructor, whose name will start with the

10.8 - Resource processing 107

name of its xxxx_respack() folder.
o Lines 5 and 6 get a text and an image respectively to assign to interface controls.
o Line 8 destroys the resource bundle, at the end of its use.

There is a big difference between allocating resources using ResId or using respack
(Listing 10.7) functions. In the first case, the label control will be “sensitive” to language
changes made by gui language . However, in cases 2 and 3 a constant text has been
assigned to the control, which will not be affected by this function. We will be responsible
for changing the text, if necessary.

Listing 10.7: Different ways to access resources.

label text (labell, TEXT FACE);
label text(labell, respack text(pack, TEXT FACE));
label text(labell, "Face");

The choice of one access mode or another will depend on the requirements of the
program. We remind you that in order to carry out automatic translations, resources
must be registered with gui respack.

10.8. Resource processing

Let’s see in a little more detail how NAppGUI generates resource modules. By setting
NRC EMBEDDED in the nap desktop app () command, we tell CMake to process the Die
project’s resources. We can also choose the NRC_PACKED option which we will talk about
below. When we launch CMake, the subfolders within the res directory of each project
are traversed, calling the nrc (NAppGUI Resource Compiler) utility (Figure 10.5). This
program is located in the tools/nrc folder and is automatically compiled before CMake
generates the NAppGUI-SDK build project. For each resource package, nrc creates two
source files (a .c and a .h) and links them to the project. The .h contains the identifiers
and the constructor that we have seen in (Listing 10.4). For its part, .c implements the
package implementation based on the content of each folder and the nrcMode mode.

Files created by nrc are considered generated code and are not stored in the src folder
but in the build folder. They will be updated every time CMake is run, regardless of
the platform we are working on. In contrast, the original resource files (located in the
res folder) are considered part of the source code.

10.9. Resource distribution

In the previous chapter, when creating the Visual Studio solution, we indicated that the
NRC EMBEDDED constant had to be used in the nap desktop app () statement within the

108 Chapter 10 - Resources

C:\nappguildemo\die C:\nappguilbuild\demo\die

Source folder

res die.c
res die.h

Figure 10.5: Processing resources using CMake and nrc.

CMakeLists.txt file. There are two other modes related to resource management that can
be configured separately within each command nap desktop app (), nap command app
() or nap library():

e NRC NONE: CMake will ignore the contents of the res folder, except for the appli-
cation icon. No resource packs will be generated even if there is content inside this
folder.

o NRC EMBEDDED: The resources, with all their translations, are embedded as part of
the (Figure 10.6) executable. It is a very interesting option for small or medium-
sized applications, since we will supply the entire program in a single *.exe file. An
installer will not be necessary and we will have the certainty that the software will
not fail due to the lack of some external file. The drawback is that, obviously, the
size of the executable will grow considerably, so it is not advisable in programs with
many resources, very heavy, or with a multitude of translations.

e NRC_PACKED: For each resource package, a *.res file will be created external to
the executable that will be loaded and released at runtime as needed (Figure 10.7).
The advantages of this method are the disadvantages of the previous one and vice
versa: Smaller executables, but with external dependencies (the .res themselves)
that must be distributed together. Memory usage will also be optimized by being
able to load *.res on demand.

CMake manages the location of the resource packages for us. On Windows and Linux
applications it will copy all *.res into the executable directory. On macOS it will place
them in the resources folder of the bundle. A very important fact is that we don’t
have to modify the source code when switching from one modality to another. nrc
already takes care of managing the payload based on the package type. It makes sense to
start with NRC EMBEDDED, and if the project grows, change to NRC_PACKED. We just have
to launch CMake again and recompile the project for the change to take effect.

10.10 -

nre warnings

Name Date Modified Size Kind
v | Contents Today at 18:09 -- Folder
| Info.plist Today at 18:09 1 KB Property List
¥ | MacOSs Today at 18:09 -- Folder
M Products Today at 18:09 Unix executable
Pkginfo Today at 18:09 8 bytes TextEdit
v | | resources Today at 18:09 -- Folder
» | en.proj Today at 18:09 -- Folder
& logo.icns Today at 18:09 302KB Applei..nimage
Figure 10.6: Distributing a macOS application with embedded resources.
Name Date Modified Size Kind
¥ | Contents Today at 18:11 -- Folder
| Info.plist Today at 18:11 1KB Property List
¥ | MacOS Today at 18:11 -- Folder
M Products Today at 18:11 Unix executable
Pkginfo Today at 18:11 8 bytes TextEdit
¥ | resources Today at 18:11 -- Folder
» | en.lproj Today at 18:11 -- Folder
& logo.icns Today at 18:11 302KB Applei..nimage
@ res_db.res Today at 18:11 526 KB Document
@ res_gui.res Today at 18:11 22 KB| Document
M res_user.res Today at 18:11 36 KB Document

Figure 10.7: A distribution of the same macOS app with packed resources.

On Windows and Linux the *. res files must always be installed in the same directory
as the executable. For macOS, CMake generates a distribution-ready bundle and
installs the resource bundles in the /resources directory of that bundle.

10.10. nrc warnings

nrc is a silent script whose work is integrated into the CMake build process, mostly
unnoticed. But there are times when you detect anomalies in the resource directories
and you need to let us know in some way. In these cases a red line will appear in the
CMake console indicating the affected project and package(s) (Figure 10.8). The details
are dumped into the NRCLog. txt file located in the generated resources folder (CMake
displays the full path).

If the bugs are critical, nrc will not be able to generate the *.h and *.c associated
with the package, preventing the application from crashing. can compile (in essence it is
still a compilation error). Other times they are mere warnings that should be fixed, but
they allow you to continue compiling. Specifically, the critical errors that affect nrc are

110 Chapter 10 - Resources

- HelloCpp: Starting

- HelloCpp: Completed

- Products: Starting

- nrc 'res_gui' warnings (See C:/HAPPGUI_1 0 bujild/demo/products/resgen/NRCLog.txt)
- Products: Completed

- BlockBreak: Starting

- BlockBreak: Completed

- Die: Starting

- Die: Completed

Figure 10.8: nrc encountered anomalies while processing resources.

the following: (we show them in English as they are written in NRCLog. txt).
o MsgError (%s:%d): Comment not closed (%s).
« MsgError (%s:%d): Invalid TEXT ID (%s).
o MsgError (%s:%d): Unexpected end of file after string ID (%s).
« Duplicate resource id in '%s’ (%s).
« Can’t load resource file '%s’.
o Error reading '%s’ resource directory.
» Error reading '%s’ subdirectories.
o Error creating *%s’ header file.
« Error creating *%s’ source file.
o Error creating '%s’ packed file.
On the other hand, non-critical warnings:
« Empty message file *%s’.
o Ignored localized text *%s’ in "%s’. Global resource doesn’t exists.
o Ignored localized file *%s’ in *%s’. Global resource doesn’t exists.
o There is no localized version of the text *%s’ in *%s’.

o Localized directory '%s’ is empty or has invalid resources.

10.11. Application icon

When we create a new project, CMake sets a default icon for the application, which
it places in the /res directory, with the name logo*. This image will be “embedded” in
the executable and will be used by the operating system to render the application on the

10.11 - Application icon 111

desktop (Figure 10.9). Windows and Linux also use it in the window title bar. We have
three versions:

¢ logo256.ico: Version for Windows Vista and later. They must include the resolu-
tions: 256x256, 48x48, 32x32 and 16x16.

« logo48.ico: Version for Linux and VisualStudio 2008 and 2005, which do not support
256x256 resolutions. This version only includes: 48x48, 32x32 and 16x16.

e logo.icns: Version for macOS. Resolutions 512x512, 256x256, 128x128, 32x32 and
16x16 both in normal resolution (@1x) and Retina Display (@2x).

Figure 10.9: Application icons on the Windows taskbar.

CMake already takes care of using the appropriate version of the icon depending on
the platform we are compiling on. To change the default icon, open the logo* files with
some graphical editor (Figure 10.10), make the changes, and relaunch CMake. Very
important: do not change the names of the files, they should always be 10go256.1ico,
logo48.ico and logo.icns.

]

L 0 X D -l v+ ERE DS DXdE
QN 2 e o Background 5
o k t6n16 | ¥ Color Picker ’
o3 hid v
7% e W[
e & -
NAl @ |
- |
/™| =R
&m| - »
----- o ——
256 x 256 # N El
@32-bit L T El
A SO | 255

Figure 10.10: Editing logo.ico.

112 Chapter 10 - Resources

CHAPTER

Generators, compilers and IDEs

It’s hard to write software that runs correctly and efficiently. So once a program works in one
environment, you don’t want to repeat much of the effort if you move it to a different compiler or
processor or operating system. Ideally, it should need no changes whatsoever.

Kernighan & Pike - The Practice of Programming.

11.1 Generators, compilers and IDEs
11.2 Portability concept
11.3 CMake Generators
11.4 Visual Studio
11.4.1 Platform toolset
11.4.2 Visual C++ Redistributable
11.4.3 WindowsXP support
11.4.4 SSE support
11.5 MinGW
11.5.1 MSYS2
11.5.2 MinGW-GCC
11.5.3 MinGW-Clang
11.6 Xcode
11.6.1 Base SDK and Deployment Target
11.6.2 xcode-select
11.6.3 macOS ARM
11.6.4 macOS 32bits
11.7 macOS Make
11.8 Linux GCC
11.8.1 Multiple versions of GCC
11.8.2 Linux 32bits

114
114
115
116
118
119
120
120
121
121
122
123
124
126
127
128
129
130
131
135
136

114 Chapter 11 - Generators, compilers and IDFEs

11.8.3 Linux ARM 136
11.9 Linux Clang 137
11.10 Linux GTK 138
11.11 Ninja 138
11.12 Configurations 140
11.13 Eclipse CDT 142
11.14 Visual Studio Code 143

11.1. Generators, compilers and IDEs

11.2. Portability concept

We understand by portability (Figure 11.1) the ability to compile and debug our
programs on platforms other than those on which they were written, without having to
touch a single line of code. We understand by platform the combination of a compiler
and a CPU architecture. For example, v143 x64 refers to Visual Studio 2022 and Intel
64bits. We understand by configuration the set of flags and compiler options that have
been used to generate the binaries.

C:\nappgui
—P >

Git / SVN / Usb drive
/Users/fran/nappgui

A
S ™ A
A

— \\/home/fran/nappgui
|\

- >

N N Linu),(}}
% .

Update / Pull / Copy CMake Build Run / Test / Debug

Figure 11.1: Stages in porting code between platforms.
« Working copy: A copy of the project’s source code must exist on each machine.
Normally this will be done through a version control system (SVN, Git, etc).

o« CMake: will create or update a build project from source code using /src/CMakeLists
.txt and the scripts in the /prj directory. This will be done fully automatically.

o Compile: Using Visual Studio, Xcode or GCC, the solution will be compiled and
the libraries and executables included in it will be generated.

11.8 - CMake Generators 115

+ Run/Debug: The binaries can now be run and debugged on the target platform.

11.3. CMake Generators

We remember that a compiler acts on a single source file at a time. When we compile
a .c or .cpp, an object file (.0, .obj) is generated that contains the binary code of said
source. But any project of a certain size contains hundreds of files, organized in libraries
that must be linked to create the final executable(s). We know as build system the tool
that orchestrates the compilation of all the project files, in order to make it as fast and
efficient as possible. We can say that CMake is a meta-build system, capable of generating
build projects for different tools (Figure 11.2). To do this we will use the -G option.

cmake -G "Visual Studio 17 2022"
cmake -G Ninja

cmake -G Xcode

cmake -G "Unix Makefiles"

14
Generators w
msbuild xcode ninja make
} |] J
\4
Compilers i a ./') @ C/'/’
MSVC AppleClang GCC Clang

Figure 11.2: Generators and compilers.

Not all generators work on all platforms, and there is usually no strict binding between
generator and compiler. For example, the Ninja generator can use the MSVC, GCC and
Clang compilers underneath. The most important thing we must remember is that CMake,
through the CMakeLists.txt of the project, unifies the entire build process, making it
transparent for the developer, regardless of the generator, compiler and platform.

116 Chapter 11 - Generators, compilers and IDFEs

11.4. Visual Studio

Visual Studio is the development environment par excellence for Windows. In the same
package it integrates the build system (msbuild), the compiler (MSVC) and the editor
(IDE). We can use any version, starting from 2005, to compile NAppGUI on Windows
(Table 11.1). As we already saw in “Quick start” (page 5) the first thing we have to do is

launch CMake on the source code:

Compiler

Platform

Minimum O.S.

Visual Studio 2022

v143 x64 (x86

Vista

Visual Studio 2019

v142 x64 (x86

Vista

Visual Studio 2017

v141l x64 (x86

Vista

Visual Studio 2015

Vista

Visual Studio 2013

v120 x64 (x86

Vista

Visual Studio 2012

v110 x64 (x86

Vista

Visual Studio 2010

(x86)
(x86)
(x86)
v140_x64 (x86)
(x86)
(x86)
(x86)

v100 x64 (x86

XP

Visual Studio 2008

v90_ x64 (x86)

XP

B8 RXRERK

Visual Studio 2005

v80_ x64 (x86)

XP

Table 11.1: Versions of Visual Studio supported by NAppGUI.

cmake -G

"Visual Studio 16 2019"

-A x64 -T v120 -S

. -B build

+ -G is the version of Visual Studio (generator).

-G "Visual Studio 17 2022"
-G "Visual Studio 16 2019"
-G "Visual Studio 15 2017"
-G "Visual Studio 14 2015"
-G "Visual Studio 12 2013"
-G "Visual Studio 11 2012"
-G "Visual Studio 10 2010"
-G "Visual Studio 9 2008"

-G "Visual

Studio 8 2005"

o -A is Intel 32 or 64 bit architecture:

-A x64
-A Win32

11.4 - Visual Studio 117

o -T is the Platform Toolset. If you omit this parameter, the last one supported by
the compiler will be taken.

-T v143
-T v142
-T v141l
-T v140
-T v120
-T v110

// For XP compatibility
-T v141l xp

-T v140 xp

-T v120 xp

-T v110 xp

-T v100

-T v90

-T v80

o -3: Path where the CMakelLists.txt is located.
o -B: Path where the build projects, binaries and temporary files will be generated.

e -DNAPPGUI DEMO=NO: Avoid generating the example applications. Only the SDK
will be compiled.

Support for Visual Studio 8 2005 was removed in CMake 3.12. You must use an
older version of CMake if you are still using VS2005. NAppGUI does NOT work with
versions prior to V.S2005.

NAppGUI does not offer support for non-x86, x64 architectures on Windows: ARM,
Ttanium, etc.

After running CMake, a VisualStudio solution will appear in the /build folder, NAppGUI
.sln or whatever name is configured in project (NAppGUI) of the CMakeLists.txt.
Open that solution and from Visual Studio, Build->Build Solution to compile Debug
->Start Debugging to debug (Figure 11.3).

To change the version of Visual Studio, select another builder in CMake -G “Visual
Studio 15 2017”, close and reopen the solution.

As we already saw in “Build NAppGUI” (page 65), if your intention is only to compile
the SDK, you do not need to open the solution in the editor. You can compile it directly
from the command line.

cmake -G "Visual Studio 17 2022" -S . -B build -DNAPPGUI DEMO=NO

118 Chapter 11 - Generators, compilers and IDFEs

o0

File Edit View Project Build Debug Team Data Tools Test Window Help
Pl S| B9 - -F-5 b [64 | | ||
i R an S22 |08 B 33 Qibuaals = |He % | @~

Process: Thread: \(W Stack Frame: =

A
8

=
9

l

Solution Explorer MR dgui.c < [GIENd

=S E R (Global Scope)
j Solution 'NAppGUI' (21 pij .
v i3 CMakePredefinedTarg Q) Die Simulator - B X
& AL BuD
171 ZERO_CHECK Language == English ~
v ¢ demo
Face Five R
v [pie apPP
(z External Depen Padding '
[res
v B sic Corner ' =

[J draw ' cace

I Radius

] dguih = Move the sliders to change

¢ diec g’, the parametric . ate

representation of the die

L] die-hoc face. 3
|=| CMakelLists.bd

& HelloCpp aloe aloe abe eatce

7 HelloWorld

3 Products

: utils

A core abe abe bhe a =

Figure 11.3: Debugging application Die in Visual Studio 2010.

cmake --build build --config Release -7 4

11.4.1. Platform toolset

Starting with Visual Studio 2010, there is a decoupling between the editor and the
compiler. The term Plaform Toolset identifies the compiler itself, which can continue to
be used with more modern IDEs. If we do not specify anything, CMake will use the default
toolset included in each version of VS, but it can be changed using the -T parameter of
CMake (Table 11.2). For example, we can combine Visual Studio 15 2017 with the
V52013 toolset for Windows XP v120 xp:

cmake -G "Visual Studio 15 2017" -A Win32 -T v120 xp -S . -B build

Toolset (-T) VS version
v143 Visual Studio 2022
v142 Visual Studio 2019
v141 Visual Studio 2017

v141 _xp | Visual Studio 2017 (with XP support)
v140 Visual Studio 2015

11.4 - Visual Studio 119

Toolset (-T) VS version

v140_xp Visual Studio 2015 (with XP support)
v120 Visual Studio 2013

v120_xp Visual Studio 2013 (with XP support)
v110 Visual Studio 2012

v110_xp | Visual Studio 2012 (with XP support)
v100 Visual Studio 2010
v90 Visual Studio 2008
v80 Visual Studio 2005

Table 11.2: Toolset included in every version of VS.

You need to have each version of Visual Studio installed to use its toolset. There are
“light” verstons that install the build tools without the development environment.

11.4.2. Visual C++ Redistributable

By default, Visual Studio dynamically links the functions of the C standard library,
which means that the .exe may not work on machines that do not have the vC++ DLLs
(Figure 11.4). This forces applications to include a copy of MSVCRT.d11, VCRUNTIME.d11
, ... or to install the famous Visual C++ Redistributable packages. to ensure that the
application can run smoothly.

MyProducts_dynamic.exe - Unable To Locate Component E

@ This application has failed to start because WCRUNTIMEL40. dl veas not Found, Re-installing the application may fix this
problem,

Figure 11.4: Error due to missing VC++ .dll.

NAppGUI uses a reduced set of the C library, since it directly accesses the Windows
API whenever possible. For this reason, all applications created with NAppGUI perform a
static link (option /MT) of the necessary functions of the stdlib, avoiding dependencies at
the cost of slightly increasing (a few Kb) the size of the executable. final. This ensures that
applications will run smoothly on all Windows machines without the need for additional
DLLs and without having to install the VC++ Redistributable.

120 Chapter 11 - Generators, compilers and IDFEs

NAppGUI applications do not require the Visual C++ Redistributable. They also do
not use the MFC “Microsoft Foundation Classes” or the .NET platform.

11.4.3. WindowsXP support

Starting with VS2012, the Platform Toolset generates executables that are not compat-
ible with WindowsXP. If we want our applications to run on this system, we must select
the alternative toolset ending in xp: v141 xp, v140 xp, v120 xp, v110 xp. Or v100,
v90 or v80 (VS2010, 2008, 2005), which do directly support XP (Figure 11.5) .

WindowsXP support has been permanently removed in Visual Studio 2019. There is
no Platform Toolset v142 xp.

Fle Edt Wew Froject Buld Debug Tooks Window Community Help
- e @ & G & - [exerute_pro - R E e B
n = @ = (= = =

e Die Simulator

Solution Explorer - 5o.., » & X

2| 2 | [F (5 Language | English v v || “@i_panel(App * app)
[Solution "MApRGUT' (21 pre A N
B 1 CMakePredefinedTarg Face Five Bl create();
= (3 ZERro_CHECK create .
(3 Chiake Rules i J = 0
5] zero_cHECK - 3 ler create();
B~ % demo o 1 t .
o Foe e 3 er create();
dres ler createl() ;
& B sre e _
[draw Move the sliders to change the ehat=Y=Rel =3 §§ M
paramelric representation of
& dyui.c the die Face.
] douih
& die.c - - (200.£, 200.£));
n) die.h
8 o debee cview OnDraw(view, listener(app, i_OnRedraw, App))

T reliscer label text (labell, TEXT LANG);

Helloworld
Froducts label text (label2?, TEXT FACE);
L . label text (label3, TEXT PADDING) ;
< > y ORNER) -
cRlsolution Expl.., [FClass View [€
Autos ~ B X |output
Shaw output from; Debug =N RERENEA
'Die.exe': Loaded 'C:\WINDOWS)system3Zimsctf. dll', MHo symbols loaded.

B (@l (B T (@ (W [BIF. @acsl Stack | @ Ereaknoints | 5] output

Ready u

| %% NAppGUT (Running) - ...) Die Simulator

Figure 11.5: Debugging application Die on WindowsXP with VS2005 (toolset v80).

Cannot create applications with NAppGUI that work on Windows prior to XP.

11.4.4. SSE support

With the Pentium III, Intel introduced an additional instruction set for floating point
operations called SSE Streaming SIMD FExtensions. This allows you to optimize mathe-
matical calculations at the cost of losing compatibility, since applications that use SSE
will not work on Pentium II or earlier models. In NAppGUI the v80 x86 and v90 x86

11.5 - MinGW 121

toolsets have been reserved for building applications compatible with older (Table 11.3)
processors. Starting with v100 x86, SSE2 will be used in all toolsets.

Toolset SSE Minimum CPU
v80_x86 | x87 (no SSE) Pentium II/AMD K6
v90 x86 SSE Pentium I11/AMD Duron
v100 x86 SSE2 Pentium IV/AMD Sempron
v110_x86 SSE2 Pentium IV/AMD Sempron

SSE2

Table 11.3: SSE support

SSE support is only disabled on 32-bit (v86) architectures. All 64-bit (x64) CPUs
incorporate SSE2.

11.5. MinGW

MinGW-w64 is a project created to support GCC/Clang compilers on Windows sys-
tems. It forked in 2007 from the original mingw.org. In addition to the compilers, it
provides Win32 headers and libraries, allowing you to create native Windows applications,
without having to install VisualStudio. Starting with version 1.4.2, NAppGUI provides
support for this environment.

11.5.1. MSYS2

Although there are different ways to install MinGW, the most direct, updated and
recommended is to do it through an MSYS2 console. This project recreates a Unix terminal
on Windows, providing the typical tools (grep, sed, curl, ...) and commands (1s, cp,
rm, cat, ...). MSYS2 also includes the pacman package manager.

MSYS2 provides different compilation environments, being MinGW64 and UCRT64
the two most used. The main difference lies in the version of the standard C library used.
MinGW64 uses MSVCRT, a Microsoft implementation already outdated, while UCRT64
uses Universal C Runtime more recommended for modern applications.

« Download MSYS2 from https://www.msys2.org/!. The typical installation is in C
:\msys64.

o Open an MSYS2 terminal (Figure 11.6) and type:

'https://www.msys2.org/

https://www.msys2.org/

122 Chapter 11 - Generators, compilers and IDEs

GCC install
pacman -S --needed base-devel mingw-w64-ucrt-x86 64-toolchain

Clang install
pacman -S mingw-w64-x86 64-clang
pacman -S mingw-w64-ucrt-x86 64-clang

6_64-mpdecimal T

mp
6_64-ncurses ngw-w64-ucrt-x86_64-openss]

-ucrt-x86_64-readline
4-ucrt-x86_64-tcl
v64-ucrt-x86_64-tk

4-ucrt-x86_64-xz
ucrt-x86_64-zstd
base-devel

mingw-w64-ucrt-x86_64-gdb
db-muTtiarch
aders-git
ibmangle-git
vinpthread-git
mingw-w64-ucrt-x86_64-pkgconf:

[Total Download size: 116.38 MiB
Total Installed size: 895.68 MiB

: Proceed with installation? [Y/n]

Figure 11.6: Installing GCC using MSYS2.

o Add one of these paths to PATH from CMD or writing envar in the Windows search
bar:

:: (Or where your msys2 is installed)
set PATH=C:\msys64\mingw64\bin; $PATHS

:: Alternative (if you want to use UCRT64 environment)
set PATH=C:\msys64\ucrt64\bin; $PATHS

e Open a cMD terminal and check that the compilers work:

C:\>gcc —--version
gcc (Rev6e, Built by MSYS2 project) 13.2.0

C:\>clang --version
clang version 18.1.4

C:\>mingw32-make -version
GNU Make 4.4.1

11.5.2. MinGW-GCC
To compile NAppGUI with MinGW-GCC (Table 11.4) open CMD:

11.5 - MinGW 123

cmake -G "MinGW Makefiles" -S . -B build -DCMAKE C COMPILER=gcc -
— DCMAKE CXX COMPILER=g++ -DCMAKE BUILD TYPE=Release
cmake --build build -j 4

e -DCMAKE BUILD TYPE=[Debug|Release]: Unlike VisualStudio, MinGW is based
on the make tool which is mono-configuration. We must indicate it at generation
time and not at compilation time.

Compiler Platform Minimum O.S.
MinGW-GCC 13 | mwgeel3 2 0 x64 Vista

Table 11.4: MinGW-GCC support in NAppGUIL

Since IDE projects are not generated, we recommend using Visual Studio Code or
Eclipse CDT to debug projects generated with MinGW.

11.5.3. MinGW-Clang

If we want to use the Clang compiler (Table 11.5) instead of GCC:

cmake -G "MinGW Makefiles" -S . -B build -DCMAKE C COMPILER=clang -
<~ DCMAKE CXX COMPILER=clang++ -DCMAKE BUILD TYPE=Release
cmake --build build -j 4

Compiler Platform Minimum O.S.

MinGW-Clang 18 | mwclang18 1 4 x64 Vista

Table 11.5: Support MinGW-Clang in NAppGUI

Lastly, you may want to compile via the MSYS2 console instead of Windows CMD.
Then:

GCC compiler under MSYS
cmake -G "MSYS Makefiles" -S . -B build -DCMAKE C COMPILER=gcc -
— DCMAKE CXX COMPILER=g++ -DCMAKE BUILD TYPE=Release

Clang compiler under MSYS
cmake -G "MSYS Makefiles" -S . -B build -DCMAKE C COMPILER=clang -
— DCMAKE CXX COMPILER=clang++ -DCMAKE BUILD TYPE=Release

Build
cmake --build build -j 4

124 Chapter 11 - Generators, compilers and IDFEs

Both MinGW and MSYS use the same native Windows versions of GCC and Clang.
The difference between both generators lies in the utilities that orchestrate the compi-
lation: Windows-like (MinGW) and Uniz-like (MSYS).

11.6. Xcode

To compile for Apple iMac, macBook and macMini we will need CMake and Xcode?
starting with version 3.2.6 (Table 11.6). NAppGUI allows you to build applications that
work on MacOSX 10.6 Snow Leopard and later:

Compiler Minimum O.S. Platform
" Xcode 16.3 Sequoia sdk15_0_x64 (arm)
& | Xcode 15.4 Sonoma | sdkl4 0_x64 (arm)
\v Xcode 14.3.1 Ventura sdk13_6_x64 (arm)
U Xcode 13.4.1 Monterey sdk12_3_x64 (arm)
e Xcode 12.5.1 Big Sur sdk1l_5_x64 (arm)
6 Xcode 11.7 Catalina sdk10 15 =x64
. Xcode 10.3 Mojave sdk10 14 =x64
ﬁ Xcode 9.4.1 High Sierra sdk10_ 13 x64
m Xcode 8.3.3 Sierra sdk10 12 x64
X Xcode 7.3.1 El Capitan sdk10 11 x64
>< Xcode 6.4 Yosemite sdk10 10 =x64
X Xcode 6.2 Mavericks sdk10 9 x64
@ Xcode 5.1.1 | Mountain Lion sdk10 8 x64
€) | xcode 163 Lion sdk10_7_x64
?ﬁi Xcode 3.2.6 | Snow Leopard | sdk10_6_x64 (x86)

Table 11.6: Xcode versions supported by NAppGUI.

cmake -G Xcode -DCMAKE OSX DEPLOYMENT TARGET=11.0 -DCMAKE ARCHITECTURE=arm64 -S
~ . -B build

2https://developer.apple.com/xcode/

https://developer.apple.com/xcode/

11.6 - Xcode 125

o -Galways Xcode. Use xcode-select to toggle if you have multiple versions installed.

e -DCMAKE OSX DEPLOYMENT TARGET. Minimum operating system that will be sup-
ported. Omitting it will set the Base SDK included in the Xcode version.

-DCMAKE OSX DEPLOYMENT TARGET=15.0 // Sequoia
-DCMAKE 0SX_ DEPLOYMENT TARGET=14.0 // Sonoma
-DCMAKE O0SX DEPLOYMENT TARGET=13.0 // Ventura
-DCMAKE OSX DEPLOYMENT TARGET=12.0 // Monterey
-DCMAKE_0SX_DEPLOYMENT TARGET=11.0 // Big Sur
-DCMAKE OSX DEPLOYMENT TARGET=10.15 // Catalina
-DCMAKE _OSX DEPLOYMENT TARGET=10.14 // Mojave
-DCMAKE OSX DEPLOYMENT TARGET=10.13 // High Sierra
-DCMAKE OSX DEPLOYMENT TARGET=10.12 // Sierra
-DCMAKE OSX DEPLOYMENT TARGET=10.11 // El Capitan
-DCMAKE _OSX_ DEPLOYMENT TARGET=10.10 // Yosemite
-DCMAKE OSX DEPLOYMENT TARGET=10.9 // Mavericks
-DCMAKE OSX DEPLOYMENT TARGET=10.8 // Mountain Lion
-DCMAKE_OSX DEPLOYMENT TARGET=10.7 // Lion

-DCMAKE OSX DEPLOYMENT TARGET=10.6 // Snow Leopard

o -DCMAKE ARCHITECTURE. arm64, x64, 1386. The armé64 architecture is included
starting with SDK 11.0 Big Sur. i386 was deprecated in macOS 10.13 High Sierra.

-DCMAKE ARCHITECTURE=armé64
-DCMAKE ARCHITECTURE=x64
-DCMAKE ARCHITECTURE=1386

NAppGUI does not support the creation of Apple’s Fat binaries. You must indicate
a single value in this field.

e -3: Path where the CMakelLists.txt is located.
o -B: Path where the build projects, binaries and temporary files will be generated.

e -DNAPPGUI DEMO=NO: Avoid generating the example applications. Only the SDK
will be compiled.

After running CMake, an Xcode solution will appear in the /build folder, NAppGUT.
xcodeproj or whatever name is configured in project (NAppGUI) of the CMakeLists.
txt. Opening the Xcode solution, we see the different projects that make it up, including
Die and Dice. Select Die in the top left dropdown and then click Play or Product->Run
(Figure 11.7). This will compile the program and launch it in debug mode, where we can
set breakpoints to inspect the stack and the values of the variables.

126 Chapter 11 - Generators, compilers and IDFEs

¥ 2, ie PID 5303 Slic *slider2 = slider create();

Die Siml_.:lator
Language | == English
Face Five
Padding @
Corner L] 34|
Radius ® [LANG) ;
gy’ :sznegtahfhihs:rr:r:]?atn'c r _FACE) ;

representation of the die PADDI NG) -
face. T — 4

Network

sT CORNER) ;
label text (label5, TEXT_RADIUS) ;

Figure 11.7: Debugging application Die in Xcode.

11.6.1. Base SDK and Deployment Target

Every year, Apple releases a new version of macOS, accompanied by a new SDK and
an update to Xcode that includes the SDK. This is called the Base SDK.

Base SDK is the version included in each new major version of Xcode, which matches
the latest version of the macOS system released on the market.

Apple has a much more restrictive policy than Microsoft regarding the compatibility
of applications with previous versions of the operating system. By default, a program
compiled with SDK 10.14 (macOS Mojave) will not work on the immediately preceding
macOS High Sierra (Figure 11.8).

S

Die

You can’t use this version of the application
d “Die” with this version of mac0S.

You have macOS 10.13.6. The application requires

mac05 10.14 or later.

? [ok |
Figure 11.8: Die with Base SDK
10.14 will not work on High Sierra. ﬂ
To avoid this problem, and for applications to work on older macOS, there is the De-
ployment Target parameter. Using it will trigger a macro that will override the new

11.6 - Xcode 127

features of the Base SDK. This will allow the program to run on older versions at the cost,
of course, of not having access to the latest iMac features. You will be able to select the De-
ployment Target required by your project through the -DCMAKE 0SX DEPLOYMENT TARGET
parameter, as we have already seen in the previous section.

Xcode 14 deprecates Deployment Targets below 10.13 (Figure 11.9). Use Xcode 13 if
you want compatibility with Mac OSX 10.12 Sierra and earlier.

ZERO_CHECK 1 issue

Ficure 11.9: Deployvment Tar A The macOS deployment target
& eployme t a get 'MACOSX_DEPLOYMENT_TARGET' is set to 10.12, but the range
10.12 deprecated as Of Xcode 14. of supported deployment target versions is 10.13 to 13.1.99.

Xcode 8 deprecates Deployment Targets below 10.9 (Figure 11.10). Use Xcode 7 if you
want compatibility with Mac OSX 10.8 Mountain Lion and earlier.

L -{,&; Products 1 issue
v Apple Mach-0 Linker {Id) Warning

Libstdc++ is deprecated; move to libc
++ with a minimum deployment target

Figure 11.10: Deployment Target of 0S X 10.9 [-Wdeprecated]

10.8 deprecated as of Xcode 8.

11.6.2. xcode-select

We have already seen that CMake only offers one generator for Xcode (-G "Xcode"),
although it is possible to have multiple versions installed on the same machine, each within
its own bundle Xcode.app. There will always be a default Xcode on the system (the most
recent one) but it can be changed using the xcode-select utility:

Query the current version of Xcode.

xcode-select -p
/Applications/Xcode.app/Contents/Developer

Changing the active version of Xcode.

sudo xcode-select -s /Applications/Xcode8.app/Contents/Developer

Set the default version of Xcode.

sudo xcode-select -r

You will need to run cmake -G “Xcode’... again each time you use xcode-select
for your project to update the compiler change.

128 Chapter 11 - Generators, compilers and IDEs

11.6.3. macOS ARM

In November 2020 Apple launches its new line of desktop and laptop computers (iMac,
macBook and macMini) based on the Apple M1 processor with ARM (Figure 11.11) ar-
chitecture. Although they are capable of running programs compiled for Intel x64 using
the Rosetta 2 (Figure 11.12) program, the ideal would be to compile our applications for
the new architecture in order to optimize the executables as much as possible.

Figure 11.11: Procesadores M1 de
Apple.

To open “App"”, you need to install Rosetta. Do you
@ want to install it now?

Rosetta enables Intel-based features to run on Apple Silicon Macs

Recpening applications after installation is required to start using

Rosetta

Use of this software is subjec
the software you are ¢
hitps [fwwew apple.com flegal /51

? Mot Now Install

Figure 11.12: Warning Rosetta 2 when trying to run x64 code on an Apple
M1.

NAppGUI supports building for the Apple ARM architecture. You just need to include
the -DCMAKE ARCHITECTURE=armé64 option in CMake, as we saw in the previous section.

You can compile the M1 architecture from Intel x64 machines, but you won’t be able
to debug the executables.

M1 architecture is only available for Big Sur system (macOS 11.0) and later.

11.6 - Xcode 129

11.6.4. macOS 32bits

Since the macOS High Sierra release, Apple has declared the 32-bit architecture obso-
lete?, issuing notices to users in the case of detecting 1386 (Figure 11.13) executables. As
of Xcode 10, (Figure 11.14) cannot be compiled on this architecture.

¥ /A Die 1 issue
v Dependency Analysis Warning

Warning: The i386 architecture is deprecated for your deployment target (macOS 10.9). You
should update your ARCHS build setting to remove the i386 architecture.

Face Five <
. . Padding =
Corner -

“Die” is not optimized for your Mac.

This app needs to be updated by its developer to
_o improve compatibility.

Learn More... (TSN

Figure 11.13: macOS warnings in 32bit applications.

¥ ! Dependency Analysis Error

! Error: The i386 architecture is deprecated. You should update your ARCHS build

setting to remove the i386 architecture.

Figure 11.14: Xcode 10 error when trying to compile in 32bit.

Support for 32bit applications is gone for good in macOS Catalina, which only allows
running 64bit applications.

This makes some sense since all Intel-based iMac models feature 64-bit processors,
except for a few 2006 models in white polycarbonate that mounted the 32-bit Intel Core
Duo (Figure 11.15) . These iMacs supported Mac OSX 10.6 Snow Leopard at most, with a
64-bit CPU being a fundamental requirement as of 10.7 Lion. To compile without problems
in 32bits you must use, at most, Xcode 6 (Figure 11.16).

3https://support.apple.com/en-us/HT208436

https://support.apple.com/en-us/HT208436

130 Chapter 11 - Generators, compilers and IDEs

Figure 11.15: Only Apple models with Intel 32bit processor.

® Die
c| dgui.c - NAppG
Debug | ALL_BUILD | Die x| | _,| |
Overview Action Breakpoints Build and Debu
Groups & Files Il File Name
79 NAppGUI 8 [douic
Sources
ALL_BUILD
ZERO_CHECK Threads n [=
sewer “ ¢ dgui.c:23:6 ¢ [i_OnFace() &
osbs
core
dbase 1
inet 12
geomzd ’
osdraw 13 ams (e,
htmIS Face ; .
2lib . en) ; .
osgui 15 Padding = , params—->width,
gui
glrender 1 Corner O
opengl L Radius —_—
d3d9
utils El == Move the sliders to
demo i ' change the parametric
HelloWorld representation of the
HelleCpp 20 die face.
casino y
21
Die
Ii(2 *params =
c| dgui.c .
[l dguih 2 app->face = params->index +
1] die.hxx 24] y —>vi .
& e (app—>view) ;
res 25

Figure 11.16: 32-bit compilation with Xcode 3.2.6 (Snow Leopard).

11.7. macOS Make

The Unix Make utility is included as part of the Xcode build tools. Therefore, we
can use it as a generator on macOS, if we can do without the Xcode projects. Make is
mono-configuration, so we must indicate the configuration type during generation.

cmake -G "Unix Makefiles" -S . -B build -DNAPPGUI DEMO=NO -DCMAKE BUILD TYPE=
< Release
cmake --build build

11.8 - Linux GCC 131

11.8. Linux GCC

For Linux versions, we will use the gcc (Table 11.7) compiler and the make tool to
generate the binaries, but there is no “official” development environment as it happens in
Windows and macOS. To carry out an elementary configuration of our equipment, type
the following commands in a terminal:

// Development tools

sudo apt-get install build-essential
sudo apt-get install git

sudo apt-get install cmake

// Development libraries

sudo apt-get install libgtk-3-dev

sudo apt-get install libglul-mesa-dev freeglut3-dev mesa-common-dev
sudo apt-get install libcurl4-openssl-dev

// GTK Inspector (Ctrl+D when debugging)
gsettings set org.gtk.Settings.Debug enable-inspector-keybinding true

// Check system libraries version
pkg-config --modversion gtk+-3.0
3.24.20

pkg-config --modversion libcurl
7.68.0

132

Chapter 11 - Generators, compilers and IDEs

SEEGCOOOT

Minimum O.S. Compiler Toolkit Platform
Ubuntu 24.04 LTS GCC 13.3.0 | GTK 3.24.41 geel3_ 2 0_gtk3 x64
Ubuntu 22.04 LTS GCC 11.4.0 | GTK 3.24.33 geell 20 gtk3 x64
Ubuntu 20.04 LTS GCC 9.4.0 | GTK 3.24.20 gee9 4 0 gtk3 x64
Ubuntu 18.04 LTS GCC 7.5.0 | GTK 3.22.30 gee7_5 0 gtk3 x64
Ubuntu 16.04 LTS GCC 5.4.0 | GTK 3.18.9 | gcc5_4_ 0_gtk3 x64 (x86)
Ubuntu 14.04 LTS GCC 4.84 | GTK 3.10.8 | gecd 8 4 gtk3 x64 (x86)
Ubuntu 12.04 LTS GCC 4.6.3 GTK 3.4.2 | gced_6_3_gtk3_x64 (x86)
Raspbian 11 Bullseye | GCC 10.2.1 | GTK 3.24.24 gceel0__gtk3_ arm64
Raspbian 10 Buster GCC 8.3.0 | GTK 3.24.5 gee8 gtk3 arm
Raspbian 9.1 Strech | GCC 6.3.0 | GTK 3.22.11 geeb gtk3 arm
Raspbian 8.0 Jessie GCC 4.9.2 GTK 3.14.5 geed 9 gtk3 arm

11.8 - Linux GCC 133

Minimum O.S. | Compiler | Toolkit | Platform

Table 11.7: GCC versions supported by NAppGUI.

Just like we did on Windows and macOS, we run cmake to generate the build project:

cmake -G "Unix Makefiles" -DCMAKE C COMPILER=gcc -DCMAKE CXX COMPILER=g++ -
<~ DCMAKE BUILD TYPE=Debug -DCMAKE ARCHITECTURE=x64 -DCMAKE TOOLKIT=GTK3 -S
— . -B build

o -G always "Unix Makefiles". Additionally, you can create projects for the main
IDEs available in Linux:

-G "Unix Makefiles"

-G "CodeBlocks - Unix Makefiles"

-G "CodelLite - Unix Makefiles"

-G "Sublime Text 2 - Unix Makefiles"
-G "Kate - Unix Makefiles"

-G "Eclipse CDT4 - Unix Makefiles"

e DCMAKE C COMPILER. C compiler. By default, gcc.
e DCMAKE CXX COMPILER. C++ compiler. Default, g++.

e -DCMAKE BUILD TYPE. Unlike Visual Studio and Xcode, Make does not allow the
creation of multi-configuration projects. It must be indicated at the time of genera-
tion:

-DCMAKE BUILD TYPE=Debug
-DCMAKE BUILD TYPE=Release
-DCMAKE BUILD TYPE=RelWithDebInfo
-DCMAKE BUILD TYPE=MinSizeRel

o -DCMAKE ARCHITECTURE. x64, 1386, arm, arm64. Cross-compiling is not allowed
on Linux. We must select the same architecture as the host machine. This parameter
can be omitted, it will be set automatically.

-DCMAKE_ARCHITECTURE=x64 // Only in Linux Intel 64bits hosts
-DCMAKE ARCHITECTURE=1386 // Only in Linux Intel 32bits hosts
-DCMAKE ARCHITECTURE=arm // Only in Linux ARM 32bits hosts
-DCMAKE ARCHITECTURE=armé64 // Only in Linux ARM 64bits hosts

e -DCMAKE TOOLKIT. As of today, the only option available is GTk3, since NAppGUI
does not support other graphical toolkits. This parameter can be omitted, it will be
set automatically.

-DCMAKE TOOLKIT=GTK3

134 Chapter 11 - Generators, compilers and IDFEs

o -S: Path where the CMakeLists.txt is located.
o -B: Path where the build projects, binaries and temporary files will be generated.

e -DNAPPGUI DEMO=NO: Avoid generating the example applications. Only the SDK
will be compiled.

After executing cmake we will have, in the /build folder, a series of Makefiles ready
to compile the project.

cmake --build build -j 4

[] Linking CXX executable ../../Debug/bin/DrawBig

[93%] Linking CXX executable ../../Debug/bin/GuiHello

[93%] Built target DrawBig

[] Building C object howto/drawhello/CMakeFiles/DrawHello.dir/resgen/
— res drawhello.c.o

4%] Linking CXX executable ../../Debug/bin/Col2dHello

8%] Built target GuiHello

8%] Building C object howto/drawimg/CMakeFiles/DrawImg.dir/resgen/

<~ res drawimg.c.o

98%] Linking CXX executable ../../Debug/bin/UrllImg
98%] Linking CXX executable ../../Debug/bin/DrawHello
98%] Built target Col2dHello

[]

[]

[]

[98%] Linking CXX executable ../../Debug/bin/ColorView
[98%] Built target UrlImg

[98%] Built target DrawHello

[] Linking CXX executable ../../Debug/bin/DrawlImg
[100%] Built target ColorView

[] Built target DrawImg

Once the compilation is finished, we can launch the executables directly from the ter-
minal:

Launch application Die.

./build/demo/die/Debug/Die

If you’re fairly comfortable with gdb, you can try debugging the code directly from the
(Figure 11.17) terminal. Later we will see how to do it using Eclipse and Visual Studio
Code.

Debugging Die with gdb

gdb ./build/demo/die/Debug/Die
(gdb) run

11.8 - Linux GCC 135

_DLL_trunk
gpl.html=>
Die Simulator

Language | 2= English

Face Five

Padding -—

Corner

Radius —
— Move the sliders to
y, change the parametric
representation of the

die face.

Figure 11.17: Debugging Die with GDB from the terminal.

To build the example applications, you must ignore the ~-DNAPPGUI DEMO=NO option
in CMake.

11.8.1. Multiple versions of GCC

Although every Linux distribution comes with a “canonical” version of GCC, it is possi-
ble to have several installed on the same machine and switch between them much like we did
on macOS with xcode-select. To do this we will use the Linux update-alternatives
command. We assume that we are on Ubuntu 18.04 LTS:

Version of gcc installed.

gcc —--version
gcc 7.5.0

Install gcc-6

sudo apt-get install gcc-6 g++-6

Register gce-7 and gee-6

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 60 --slave /
< usr/bin/g++ g++ /usr/bin/g++-7
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-6 50 --slave /

< usr/bin/g++ g++ /usr/bin/g++-6

Switch to gcc-6.

136 Chapter 11 - Generators, compilers and IDFEs

sudo update-alternatives --set gcc /usr/bin/gcc-6
gcc --version

gcc 6.5.0

gt++ —--version

gt+t 6.5.0

Return to the default version of gcc.

sudo update-alternatives --auto gcc
gcc --version

gcc 7.5.0

g++ --version

g+t+ 7.5.0

11.8.2. Linux 32bits

To compile 32bit applications from a 64bit Ubuntu system it is necessary to install the
multilib package:

sudo apt-get install gcc-multilib

But there are currently problems? with cross-compiling that includes the GTK+ library,
so it won’t be possible to use the same machine development to build on both architectures,
just like it does on Windows. Console applications or libraries that do not access GTK
can be compiled in 32bit from a 64bit computer.

It is not possible to compile in 32bits from a 64bit Ubuntu system applications that use
GTK+3. You must use a 32-bit Linux system for this.

11.8.3. Linux ARM

The ARM ° Advanced RISC Machine architecture is the predominant one in the market
for embedded devices such as smartphones and tablets. Currently, NAppGUI does not offer
support for the development of iOS/Android mobile applications, but it does support other
types of boards that support “desktop” versions of Linux ARM, such as the Raspberry PI.
To port our code to the Raspberry Pi we must follow the same steps as in Ubuntu Linux
(Figure 11.18). Both distributions are based on Debian, so GCC, CMake and Make are
available directly via apt-get.

“https://ubuntuforums.org/showthread.php?t=2038875
5https://en.wikipedia.org/wiki/ARMﬁarchitecture

https://ubuntuforums.org/showthread.php?t=2038875
https://en.wikipedia.org/wiki/ARM_architecture

11.9 - Linux Clang 137

Debug - NAppGUI-Debug@NAppGUI_1_0_build/[Source directory]/demo/die/die.c - Eclipse Platform

File Edit Source Refactor Navigate Search Project Run Window Help

CGvEBE G| HsvOovay| X |[miEd| 32

&5 Pro % Deb % = 0| [@dguic | b
% it 5
= [E] Die [C/C++ App
6156]
o gdb (7.12.0.2

Corner
Radius

Die Simulator

Language | &= English

Face

Padding =)

, parametric

CMake 3.7.2 - /nome/pi/NAPpGUI_1_0_build - o x

File Tools Options Help

Search

Where is the source code: | /home/pi/NAppGUI/games
Where to build the binaries: | fhome/pi/NAppGUI_1_0_build

Grouped

Browse Source...

~ || Browse Build...

Advanced |% Add Entry

Five

)
Move the sliders to
change the

representation of the
die face.

Configure | | Generate

CMAKE_ARCHITECTURE
CMAKE_BUILD_CONFIG
CMAKE_PACKAGE_GEN
WY | CMAKE_PACKAGE_PATH
CMAKE_TOOLKIT

Press Configure to update and display new values in red, then press Generate to generate selected

Current Generator: Eclipse CDT4 - Unix Makefiles

Value
armve-a

Debug

TGZ
/home/pi/NAppGUIL1_0_packs
GTK3

0

build files

Figure 11.18: Debugging the application Die on a Raspberry Pi.

11.9. Linux Clang

GCC is the default compiler that is installed with the build-essential package.
However, we can use Clang if we prefer (Table 11.8). The first thing is to install the

compiler:

sudo apt-get install clang

clang --version

clang version 10.0.0-4ubuntul

Minimum O.S.

Compiler

Toolkit

Platform

Ubuntu 24.04 LTS

Clang 18.1.3

GTK 3.24.41

clangl8_1_3_gtk3 x64

Ubuntu 22.04 LTS

Clang 14.0.0

GTK 3.24.33

clangl4 0_0_gtk3 x64

Ubuntu 20.04 LTS

Clang 10.0.0

GTK 3.24.20

clang10_0_0_gtk3_ x64

Ubuntu 18.04 LTS

Clang 6.0.0

GTK 3.22.30

clang6_0_0_gtk3_x64

Ubuntu 16.04 LTS | Clang 3.8.0 GTK 3.18.9 | clang3 8 0_gtk3 x64 (x86)
Ubuntu 14.04 LTS | Clang 3.4.0 | GTK 3.10.8 | clang3_4 0_gtk3 x64 (x86)
Ubuntu 12.04 LTS | Clang 3.0.0 GTK 3.4.2 clang3_0_0_gtk3_x64 (x86)

Table 11.8: Clang versions supported by NAppGUI.

To use Clang, we just change the name of the compiler when generating the compilation

project:

138 Chapter 11 - Generators, compilers and IDFEs

cmake -G "Unix Makefiles" -DCMAKE C COMPILER=clang -DCMAKE CXX COMPILER=clang++
<~ -DCMAKE BUILD TYPE=Debug -DCMAKE ARCHITECTURE=x64 -DCMAKE TOOLKIT=GTK3
~ =S . -B build

11.10. Linux GTK

Unlike Windows and macOS, Linux supports a multitude of desktop environments based
on different libraries (or toolkits), GTK and Qt being the two most famous. NAppGUI
uses GTK+3 for the graphical part since it is the base of the Gnome, Xfce, Lxde, etc,
(Table 11.9) environments present in many of the most widespread distributions. GTK+3
will be present naturally in all of them, with no other additional dependencies being
necessary. Of course, to compile under GTK+3 we will have to install the developer
version, as we saw previously.

Environment Distributions
'é' Gnome Ubuntu, Debian, Fedora, Red Hat, CentOS, Manjaro, Suse, Arch, ...
H& Xfce Xubuntu, Debian, Fedora, Manjaro, ...
7/ i‘ Lxde Lubuntu, Raspbian, Debian, Fedora, Mandriva, ...
@ Cinnamon Mint, Debian, Ubuntu, Fedora, OpenSuse, ...
@ Mate Ubuntu Mate, Mint, Debian, Fedora, OpenSuse, ...
@ Pantheon Elementary OS
* Sugar

Table 11.9: Gtk-based desktop environments.

11.11. Ninja

The Ninja generator allows for faster compilations than Visual Studio, Xcode or Make,
in exchange for losing the *.sln, *.vexproj or *.xcodeproj projects that are very useful for
debugging from the IDE. It is usually used in continuous integration systems where speed
prevails in favor of versatility.

To install Ninja on Windows, we download it from Ninja%, copy ninja.exe to any
system folder and make it accessible through the PATH variable.

Shttps://ninja-build.org/

https://ninja-build.org/

11.11 - Ninja 139

ninja --version

AL o dLdl

1

On macOS, we will install it using brew:

brew install ninja
ninja --version
1.11.1

And in Linux from apt-get:

sudo
ninja
1.10.

apt-get install ninja-build
--version
1

Us

ing Ninja is exactly the same as in previous cases. We will only change the name of

the generator in CMake.

cmake

-G Ninja -S . -B build -DCMAKE C COMPILER=gcc —-DCMAKE CXX COMPILER=g++ -

<> DCMAKE BUILD TYPE=Release

cmake

--build build

We can also use the multi-configuration version of Ninja:

cmake

-G "Ninja Multi-Config" -S . -B build -DCMAKE C COMPILER=gcc -

<~ DCMAKE CXX COMPILER=g++

cmake

--build build --config Release

CMake supports “Ninja Multi-Config” as of version 3.17.

-DCMAKE C COMPILER DCMAKE CXX COMPILER: Ninja will use any C/C++ compiler
we have installed. gcc/g++, clang/clang++ or c1/cl (MSVC).

On Windows, the MvSC compiler, in principle, is not accessible directly from the com-

mand

line. To make it accessible we have two ways:

Use the Developer Command Prompt 2022 console (or whatever version you choose).
This terminal knows the location of the build tools.

Set the environment variables using the script vevarsall.bat:

Visual Studio 2022
C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build
— \vcvarsall.bat

Visual Studio 2019
C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary
< \Build\vcvarsall.bat

140 Chapter 11 - Generators, compilers and IDFEs

=+

Visual Studio 2017
C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary
<~ \Build\vcvarsall.bat

S

Visual Studio 2015
C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat

Visual Studio 2013
C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.bat

Visual Studio 2012
C:\Program Files (x86)\Microsoft Visual Studio 11.0\VC\vcvarsall.bat

B

Visual Studio 2010
C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\vcvarsall.bat

11.12. Configurations

NAppGUI supports the default configurations established by CMake through CMAKE CONFIGURATIO

o Debug: Includes debugging information in the binaries and does not perform code
optimizations. It is the developer version.

e Release: Remove debug information and perform all possible optimizations. It is the
version for the user.

o RelWithDebInfo: It is the Release version, but leaving the “Asserts” (page 157)
statements active. It is aimed at the end user, but in cases where it is necessary to
obtain detailed information on possible anomalies, at the cost of a decrease in the
overall performance of the program.

o MinSizeRel: 1t is the Relaase version, but optimizing binaries disc space.

Both Visual Studio and Xcode are multi-configuration environments, that is, we can
switch between one and the other directly from the editor itself. In Visual Studio we have
a dropdown at the top of the (Figure 11.19) editor.

In Xcode it is a bit more hidden. We do Product->Scheme->Edit Scheme. A popup
window will appear. Select Run->Info->Build Configuration (Figure 11.20).

Unfortunately, Unix make does not support multiple configurations. This forces us
to pass the CMAKE BUILD TYPE (Figure 11.21) to set the configuration in CMake before
generating the build scripts.

Mono-configuration generators.

11.12 - Configurations 141

juild Debug Test An

MinSizef -

Debug

(CMAKE_DEB

Configuration Manager...

Figure 11.19: Config change in Visual Studio.

Info Arouments Options Diagnostics
Debug
Build Configuratio| | f Release
MinSizeRel
RelWithDebinfo

Executabl

Debug Process As

LLDB Init File

Launch & Automatically

Wait for the executable to be launched

Figure 11.20: Config change in Xcode.

cmake -G Ninja -S . -B build DCMAKE BUILD TYPE=Release
cmake --build build

Multi-configuration generators.

cmake -G Xcode -S . -B build
cmake --build build --config Release

Name Value

CMAKE_BUILD_TYPE

Release
RelwithDeblInfo
MinsizeRel

Figure 11.21: Change configuration in CMake-GUI (Unix Makefile).

142

Chapter 11 - Generators, compilers and IDEs

11.13. Eclipse CDT

Generators based on Ninja and Unix Makefiles are terminal-oriented, while those
based on Visual Studio and Xcode generate an IDE project. Working directly with
the terminal gives us great flexibility when configuring our own tools. Going back to
the console and typing cmake --build build will recompile everything you need. Now,
using GDB directly will be quite tedious, so it will be very useful to have alternative IDEs
to debug projects based on these generators. In the development of NAppGUI we use two:
Eclipse CDT and Visual Studio Code.

Figure 11.22: Launching an
executable to debug in Eclipse. CoT Build Con

Eclipse CDT” is an open source platform composed of a set of C/C++ programming
tools available since 2021 on all platforms. To use it we must prepend Eclipse CDT4
to the name of the generator:

-G "Eclipse CDT4 - Unix Makefiles"
-G "Eclipse CDT4 - MinGW Makefiles"
-G "Eclipse CDT4 - Ninja"

In addition to the Makefile, the .cproject and .project files necessary to import
the project into Eclipse will be created.

Open Eclipse and do File->Import->Existing Projects into Workspace. A
dialog box will appear where we indicate the build directory that we have configured
in CMake (/build). Eclipse will open the project by placing a tree with all the files
on the left.

To compile Project->Build All.

When debugging (Die in this case) we display the Binaries tree, selecting the exe-
cutable, right click Debug As->Local C/C++ Application (Figure 11.22).

> 35 Dice - [x86_64/le]
» 35 Die- [x2aaaddle

» %5 DrawH New

> 35 Draw Open

LE<IEWT Open with
> 35 Fracta
* % GuiHel
» 35 Hellod
» 35 Hello
* 35 htjson|

Copy

Delete

Move...
Rename...

Import...
Export...

Refresh
Make Targets
Run As
Profile As

B console 28 Debug Configurations...

Team

"https://www.eclipse.org/cdt/

https://www.eclipse.org/cdt/

11.14 - Visual Studio Code 143

o Finally we will place the Breakpoints where we are interested and navigate through
the code step by step, inspecting variables or the call stack (Figure 11.23).

dom 12:07

workspace - NAppGUI-Debug@NAppGUI_1_0_build/[Source directo

« | @ ‘*Debug HED i L imiar o,

« Debug X B Proje.. — & @B daguic B die.c %
I gui_start();

op ann =
«* Die [27290] Die Simulator
» gdb .20)
Language |Z= English
Face Five
Padding =—{;)
df(200.f, 200.f));
(app, i OnClose, App));

Corner =

Radius F
— Move the sliders to
]’ change the parametric
representation of the
die face.

i destroy(App **app)

Figure 11.23: Debugging the Die application with Eclipse.

Some interesting Eclipse CDT options under Window->Preferences.

« Run/Debug->Launching->Terminate and Relaunch while launching.

11.14. Visual Studio Code

Another interesting environment to develop and debug is Visual Studio Code®. With the
appropriate extensions, it is possible to work in C/C++ with CMake in a very comfortable
and fluid way. You have installers for all platforms, but it is also available from various
package managers, for example apt-get:

sudo apt-get install code

We added, at a minimum, the C/C++4 Extension Pack which will also include
support for CMake (Figure 11.24).

We open our project with Open Folder. Later, we run CMake from the environment
itself: [F1]->CMake:Configure. The first time, VSCode will ask for the location of the
CMakeLists.txt main (Figure 11.25) (/src/CMakeLists.txt).

After the configuration we can compile with [F1]->CMake:Build. In the Output tab
of VSCode we will see the evolution of the process:

8https://code.visualstudio.com/

https://code.visualstudio.com/

144 Chapter 11 - Generators, compilers and IDFEs

C/C++ Extension Pack

Micr 4 L
CIC++ Popular extensions for C++ development in V

Disable |v Uninstall |~ <

Thi

Details Changelog Runtime Status

Extension Pack (3)

C/C++ Themes

C++ development ir

Figure 11.24: C/C++ Extension Pack.

${workspaceFolder}/src/CMakelLists.txt
] R o

Figure 11.25: Selection of the main CMakeLists.txt of the project.

[build] [97%] Building C object demo/die/CMakeFiles/Die.dir/resgen/res die.c.o

[build] [98%] Built target Bode

[build] [98%] Building C object demo/products/CMakeFiles/Products.dir/products
— .c.o

[build] [98%] Built target Fractals

[build] [98%] Building C object demo/products/CMakeFiles/Products.dir/prview.c
— .0

[build] [99%] Linking CXX executable ../../Debug/bin/Die

11.14 - Visual Studio Code 145

[build] [100%] Building C object demo/products/CMakeFiles/Products.dir/resgen/
— res products.c.o

[build] [100%] Built target Die

[build] [100%] Linking CXX executable ../../Debug/bin/Products

[build] [100%] Built target Products

To debug, the first thing is to select the target (or executable) with [F1]->CMake:Set
Debug Target (Figure 11.26).

Figure 11.26: Selection of the executable to debug.

And we launch the debugger with [F1]->CMake:Debug (Figure 11.27).

146 Chapter 11 - Generators, compilers and IDFEs

RUN.. [Die
s VARIABLES d Die Simulator
Language | == English
Face Five
Padding
Corner

Radius

Move the sliders to
change the parametric
representation of the
die face.

EvSlider *params =
app->padding = params->pos;
view update(app->viev

Figure 11.27: Debugging application Die from Visual Studio Code.

Part 2

Introduction to the API

147

CHAPTER

NAppGUI SDK

While civilians (i.e., nonprogrammers) often fantasize about winning the lottery, the equivalent
for many programmers is the rare opportunity to create a new library from scratch, without the
constraints that often frustrate their desires to extend and improve an existing library.

Philip J. Schneider - Industrial Light + Magic

12.1 NAppGUI API 149
12.2 Online resources 151
12.3 A little history 151

12.1. NAppGUI API

The NAppGUI implementation has been split into several libraries written in ANSI-C
(C90) with small parts in C++98 (Figure 12.1). The project compiles without problems
in all versions of Visual Studio (since VS2005), Xcode (since 3) and GCC (since 4). It can
be used for developing high-performance applications written in C on Windows, macOS,
and Linux systems. A clear line has been drawn that separates packages oriented to com-
putation and data access (back-end) from those intended for the presentation or interface
layers (front-end). We have also followed certain “Standards” (page 58) whose bases are
centralized in the “Sewer” (page 154) library, which, although it does not incorporate
much functionality, does define the basic types and configuration macros common to all
the project.

. Packages that do not contain platform dependent code.

« [Packages that contain platform dependent code under a common interface.

150 Chapter 12 - NAppGUI SDK

o
gd}ﬁ runloop

k desktop

%m

Figure 12.1: NAppGUI architec-
ture.

o “Sewer” (page 154): Basic types, assertions, Unicode, standard C library, math
functions.

o “Osbs” (page 172): Operating system services. Portable API on files, directories,
processes, threads, memory, etc.

o “Core” (page 193): Commonly used non-graphical utilities. Memory auditor, data
structures, I/O channels, lexical analysis, etc.

o “Geom2D” (page 257): 2D geometry. Transformations, vectors, polygons, collisions,
etc.

o “Draw2D” (page 278): Vector drawing API, images and fonts.
o “Gui” (page 322): High-level user interface composer.
o “OSApp” (page 415): Desktop applications. Message loops.

o “Encode” (page 423): Data formats, encodings.

12.2 - Online resources 151

o “INet” (page 435): Internet protocols and services, such as HTTP.
o “OGL3D” (page 439): OpenGL support, contexts.

12.2. Online resources

For obvious reasons of space, it is impossible in this book to include a complete reference
of each and every one of the functions that make up NAppGUI. On the project’s Website'
you will find a detailed feature-by-feature guide, as well as the source code of several sample
applications.

Therefore, please go through this entire section of the book in a leisurely manner, with
the sole purpose of getting a general idea of the structure of the software and the different
parts that compose it.

12.3. Alittle history

I started working on this project unconsciously, in the middle of 2008 when I was
finishing my studies in Computer Engineering at the University of Alicante. I wanted to
develop a physical systems simulator that would work on both PC-Windows computers
and Apple iMacs without having to duplicate all the work. The technological alternatives
of the time, such as GTK or Qt, did not convince me at all since they were too heavy,
complicated to use and slow, so they would end up tarnishing the quality, elegance and
effort that I was putting into my mathematical calculation algorithms. After spending
several months evaluating different libraries for cross-platform programming, I downloaded
some technical manuals from Apple to program directly in Cocoa, the base technology for
developing software on iMac. In the middle of 2010 I started to see the first results and this
was encouraging. I had built an application with my simulator prototype in just 500Kb
(Figure 12.2), in contrast to the 30+Mb of dependencies required by third-party solutions.
The code was compact and clean, the application worked at breakneck speed and, above
all, it had a professional appearance that was somewhat reminiscent of iMovie, it allowed
3D views to be manipulated like in a video game and provided technical simulation data in
real time. This inspired me to continue working on drawing a barrier between the reusable
part of the application and the part that depends on a specific technology. This would
allow my simulator to be adapted to different computer models and operating systems.

At the same time, in September 2008 I rejoined the labor market after six years at the
University, a market in which I am still currently (May 2021), although the last few years
I have been working as a freelancer from home, which allows me to organize the agenda
and optimize my time to the maximum. In these years I have not abandoned my personal
project, I have continued working on it part-time simply for pure hobby. Its development

"https://www.nappgui.com

https://www.nappgui.com

152 Chapter 12 - NAppGUI SDK

O st e meisiswa

Figure 12.2: iMech simulator, based on a primitive version of NAppGUI.

has allowed me to investigate and delve into interesting areas for me and constantly recycle
myself. In 2013 I made my first foray into the world of entrepreneurship as a co-founder
of iMech Technologies, a software company with which I am still linked and whose main
objective was the sale of the simulation engine that I had previously created. By not
coming up with a solid marketing strategy, we didn’t achieve our initial goals with iMech,
but we were able to turn it around by adding new customers and it’s still alive today.

In mid-2015 T began to consider the fact that all the technical effort made during
these years has enough entity to become a product by itself. It was then when I created
the NAppGUI project and started migrating all the iMech libraries dedicated to cross-
platform development. Over the last few years I've completed support for Cocoa and
included support for Win32 and Gtk+. I have created this documentation in Spanish and
English, with the help of Google translation services.

On December 31, 2019, I upload to GitHub the first public pre-compiled version of
NAppGUL

In May 2020 I start the development of the first commercial application programmed
entirely with NAppGUI.

On September 8, 2021, I release the source code of NAppGUI 1.2.0 on GitHub, making
it an Open Source project under the MIT license.

From this version, the evolution of the project is documented through its Changelog?.

?https://github.com/frang?’ 5/nappgui_ src/blob/main/Changelog.md

https://github.com/frang75/nappgui_src/blob/main/Changelog.md

CHAPTER

Sewer library

Even the grandest palaces needed sewers.

Tom Lehrer

13.1 Sewer 154
13.1.1 The C standard library 154
13.2 Asserts 157
13.3 Pointers 158
13.4 Unicode 159
13.4.1 UTF encodings 161
13.4.2 UTF-32 161
13.4.3 UTF-16 161
13.4.4 UTF-8 162
13.4.5 Using UTF-8 163
13.5 Maths 164
13.5.1 Random numbers 164
13.6 Standard functions 165
13.6.1 Date conversion 165
13.7 Standard I/O 166
13.8 Memory 167
13.8.1 Stack Segment 167

13.8.2 Heap Segment 168

154 Chapter 13 - Sewer library

13.1. Sewer

Sewer is the first library within the NAppGUI SDK (Figure 13.1). It declares the
basic types, the Unicode support, assertions, pointers safe manipulation, elementary math
functions, Standard I/O and dynamic memory allocation. It is also used as a “sink” to bury
the unsightly preprocessor macros necessary to configure the compiler, CPU, platforms,
etc. As dependencies only has a few headers of the C standard library:

I

C stdlib

Figure 13.1: Dependencies of sewer.
See “NAppGUI API” (page 149).

13.1.1. The C standard library

The C standard library (cstdlib) is not part of the C language, but implements func-
tions of great utility for the developer that solve typical programming problems. Any C
programmer has used it more or less and its study is usually linked to learning the language
itself (Figure 13.2).

THE
SUANDAD

. LIBRARY
Figure 13.2: A complete reference

to the C library is found in the P). PLAUGER
P.J.Plauger book.

This library is located halfway between the application and system calls and provides
a portable API for file access, dynamic memory, I/0, time, etc (Figure 13.3). It also
implements mathematical functions, conversion, search, string management, etc. In one

13.1 - Sewer 155

way or another, NAppGUI integrates its functionality, so it’s not necessary (or advisable)
to use cstdlib directly in the application layer. The reasons that have motivated this design
decision can be summarized in:

I Application

Figure 13.3: The functionality of
the C library has been integrated in
NAppGUI, avoiding its direct use in Kernel
applications.

S—

o Small differences: Unix-like systems do not support the secure cstdlib versions
implemented by Microsoft (strcpy s () and others). The use of classical functions
(without the suffix s) is insecure and will trigger annoying warnings in Visual
Studio.

e Security: Related to the previous one, avoids buffer overflow vulnerabilities in the
processing of memory blocks and strings.

o Duplicity: Much of the functionality of cstdlib is already implemented in osbs
library using direct system calls (files, dynamic memory, I/O, time, etc.)

» Completeness: The cstdlib functions related to files (fopen () and others) do
not include support for directory management. “Files and directories” (page 183)
presents a complete API based on system calls.

o Performance: In certain cases, especially in mathematical functions and memory
management, it may be interesting to change the implementation of cstdlib to an
improved one. All applications will benefit from the change, without having to
modify your code.

o Clarity: The behavior of some cstdlib functions is not entirely clear and can lead
to confusion. For example, strtoul has a very particular functioning that we must
remember every time we use it.

char *sl1l = "-56";

156 Chapter 13 - Sewer library

char *s2 = "asCzr";

char *s3 = "467Xd";

int v1, v2, v3;

vl = strtoul(sl, NULL, 10); // vl = 4294967240, errno = OK
v2 strtoul (s2, NULL, 10); // v2 = 0, errno = OK

v3 strtoul (s3, NULL, 10); // v3 467, errno = OK

o Style: The use of sewer functions does not break the aesthetics of an application
written with NAppGUI.

real32 t al = 1.43f;

realed t a2 = .38;

real32 t ¢ = (real32 t)cosf((float)al);
real64 t t = (real64 t)tan((double)a2);
real32 t ¢ = bmath cosf (al);

real64 t t = bmath tand(a2);

o Independence: NAppGUI internally uses a very small subset of cstdlib functions.
It is possible that in the future we will make our own implementations and completely
disconnect the support of the standard library.

o Static link: If we statically link the standard library, sewer will contain all de-
pendencies internally. This will avoid possible incompatibilities with the runtimes
installed on each machine (the classic Windows VC++ Redistributables). With this
we will be certain that our executables will work, regardless of the version of the
C runtime that exists in each case. If all calls to cstdlib are inside sewer, we free
higher-level libraries from their handling and possible runtime errors related to the
C runtime.

Static link of the cstdlib in Sewer. Doesn’t need the C runtime.

RUNTIME C LIBRARY "static"
dumpbin /dependents dsewer.dll
Image has the following dependencies:

KERNEL32.d11

Dynamic binding of the cstdlib in Sewer. Needs to have a specific runtime installed.

RUNTIME C LIBRARY "dynamic"
dumpbin /dependents dsewer.dll
Image has the following dependencies:

KERNEL32.d11

15.2 - Asserts 157

VCRUNTIME140D.d11
ucrtbased.dll

To avoid possible bugs or incompatibilities, do not use C Standard Library functions
directly in applications. Always look for an equivalent NAppGUI function.

13.2. Asserts

asserts are sentences distributed by the source code that perform an intensive “Dy-
namic analysis” (page 61), helping to detect errors at runtime. When the assert condition
becomes FALSE, the program execution stops and a warning window is displayed (Fig-
ure 13.4).

o Use cassert to introduce a dynamic check in your code.

o Use cassert no null once you have to access the content of a pointer.

void layout vmargin(Layout *layout, const uint32 t row, const real32 t
“— margin)

{
cassert no null (layout);
cassert msg(row < layout->num rows, "'row' out of range");

(:) HelloWorld ran inte a problem — et

The program can continue in UNSECURED WAY. It's
possible that the results now will be incorrect or data loss
occurs, For more information about this incident contact
with: support@nappgui.com.

Assertion failed
"row' out of range”
File: layout.c

Line: 638

Show this window in next assert.

[] Write assert info in log.
Clsers\USUARID AppData\Roaming\HelloWorldjog tt

Figure 13.4: assert window Debug i Continue { Exit
displayed after a runtime error.

At this time we have three alternatives:

« Debug: Debug the program: Access the call stack, inspect variables, etc. More in
“Debugging the program” (page 63).

158 Chapter 13 - Sewer library

o Continue: Continue with the execution, ignoring the assert.
o Exit: Exit the program.

To avoid showing this window in futher asserts, deactivate the check 'Show this
window in next assert'. Future incidents will be directed to a log file. You can also
omit dumps in this log, deactivating 'Write assert info in log'.

asserts sentences provide very valuable information about program anomalies and
should never be ignored.

In the previous example we have seen a “continuable” assert, that is, the execution of
the program can continue if we press [Continue]. However, as we indicated, they should
not be ignored indefinitely. On the other hand we have the critical asserts (Figure 13.5).
Normally they are related to segment violation problems, where it will not be possible to
continue running the program.

& HelloWorld ran into a problem - >

\'(— You can't continue with the program running. For more
infarmation about this incident contact with:
support@nappgui.com.

NULL pointer access
layout

File: layout.c
Line: 637

Figure 13.5: Critical assert Debug Exit
caused by null pointer access.

13.3. Pointers

The sewer library provides macros and functions for “safe” pointers manipulation. By
“safe” we mean the fact that the SDK will detect improper pointer access just before a
segment violation occurs. Does it make sense to detect a segment violation if the program is
going to crash anyway? Pre-detection plays a very important role when running automated
tests. Before the inevitable process closing, it will leave a note in the execution log.txt,
indicating the reason for the crash.

« Use ptr get to get the content of a pointer.

// v2 = NULL
// Segmentation fault
V2Df vl = *v2;

18.4 - Unicode 159

// "v2 is NULL in file::line"
// will be record in log.txt
// and then, Segmentation fault
v2Df vl = ptr_get(vZ, vV2Df) ;

13.4. Unicode

Unicode is a standard in the computer industry, essentially a table, which assigns a
unique number to each symbol of each language in the world (Figure 13.6). These values
are usually called codepoints and are represented by typing U+ followed by their number
in hexadecimal.

o Use unicode convers to convert a string from one encoding to another.

o Use unicode to u32 to get the first codepoint of a string.

Latin capital letter A

Latin small letter a with acute
@ Cyrillic capital letter Abkhasian Ha
RE ldeograph to swindle

Fi§urej 13.6: Several Unicode Greek small letter Pi

codepoints.

Related to its structure, it has 17 planes of 65536 codepoints each (256 blocks of 256
elements) (Figure 13.7). This gives Unicode a theoretical limit of 1114112 characters, of
which 136755 have already been occupied (version 10.0 of June 2017). For real-world
applications, the most important one is Plane 0 called Basic Multilingual Plane (BMP),
which includes the symbols of all the modern languages of the world. The upper planes
contain historical characters and additional unconventional symbols.

The first computers used ASCIT American Standard Code for Information Interchange,
a 7-bit code that defines all the characters of the English language: 26 lowercase letters
(without diacritics), 26 uppercase letters, 10 digits, 32 punctuation symbols, 33 codes
control and a blank space, for a total of 128 positions. Taking the additional bit within a
byte, we will have space for another 128 symbols, but still insufficient for all in the world.
This results in numerous pages of extended ASCII codes, which is a big problem to share
texts, since the same numeric code can represent different symbols according to the ASCII
page used (Figure 13.8).

Already in the early 90s, with the advent of the Internet, this problem worsened, as
the exchange of information between machines of different nature and country became

160 Chapter 13 - Sewer library

Plane 16

Plane O - BMP

O0000o0ooooooooon
oo oo o o o o o o o o
O0000o0ooooooooon
O0000o0ooooooooon
Oooooo0ooooooooo
O0000o0ooooooooon
oo oo o o o o o o o o
oo oo o o o o o o o o
O0000o0ooooooooon
O0000o0ooooooooon
Oooooo0ooooooooo
O0000o0ooooooooon
oo oo o o o o o o o o
O0000o0ooooooooon
oo oo o o o o o o o o
0000000000000000

oo o o o o o o o o o o
O0oooooooooooooon
O0oooooooooooooon
o o o o o o o
O0oooooooooooooon
oo o o o o o o o o o o

O0oooooooooooooon
oo o o o o o o o o o o
oo o o o o o o o o o o
O0oooooooooooooon
O0oooooooooooooon
oo o o o o o o o o o o
DDDDDDDDDDDDDDDD

DDDD 00000000000
ooo O0ooooooooo
oog 00000000g

U+4200
U+42FF

U+100000-U+10F¢F

U+0000-U+FFFF

Figure 13.7: Unicode has 17 planes of 256x256 codepoints each.

Extended EIFIEIGIEIEIEE Us-AsC!l

1252 WINDOWS LATIN 1 (ANSI)

1253 WINDOWS GREEK

nxx&ozcw_omTwum¢.¢,XnWquziu?o
n,vAaxBAY .ons.rj,,ﬂ,omzde\AJu,
wHnP”lmm”ZmeTm.o;Xn.w;Qn.Im.TTam
1=]]]
81 imIL I AIMINTT O W_ILKT&ML
Qlo A4HZa o 5. 4 mse=d . ..EmHnIA»NOM
n. mm‘.“ ‘WAm.ru\nm‘wvrn:,Sam" .u©na L 4
w_lmm‘ mM u\“\\n» 4. A _m|m.,m m,ll‘,mw'm
Q=i s a4z 2 meim$m%m$m<m$.
ME-SR-% R Sutmunvmwﬂxmynzm{J|m
HEEE R EN-ERCEL-E R EDTE R ERCEELE LS B R
Sl OiMinnd—ID V.W"X.YnZu[n\.
“M@uAnBMCuD.EnFmG H”IHMJ M oA
2O I INAIMNAT AN OISO =4 =~5 V 4
Nﬁ J!MHJ#M$J%“&u.,(.\,*n+\ -3
(-] - ~ L < n © ~ @ o < L] o
20110104030 0F0 k1 8FDF DD D4 >A.07 D
“7~an¢.,,a4Aa»._”~aw"aw_”.aw @mﬁgn;em,en.e.e._lv‘lflJl.w
2 Rz 0¢0w0¢0w0¢xmﬂvaU A AP i
u,.A%A;AirﬁA ﬁcﬁéﬁémi?mi?m
“ﬂo ._+__z ER L.U.,.ﬂnﬁ 4 «3a da 424
mﬁ mh wi.,n.m.,v..,--JS: 1@im 4 ¥
Mﬁ , -~ 8 2 2. _‘m”_; EFIE) >“_Gm.|;|mmv..m
8| - by nmm‘T¢Im..%psﬁ<m@‘LL$tL;
el ot “rasmlmumvuwmxmymZ&{:|M}L~u
w.« .g, fbﬂC»dmemrlwgmh.m.lm.lik”lmmmnmom
ﬂPA ,RLSQT»UuV&,WnX“YnZLW[\Jfl_A g |4
| Rl 1 !
ﬂ@4 BL,C;D“EEFAGLH“_I“J.L‘,K, M_N o
MNOJ 2nﬁ3n,445‘.6 ™~ 400 40 ¢ u,, V2 __4>.‘.?.n¥
} 4 i)
ﬂ e "y#nshqm&+.%(d)4*c+u,“_#.A/J
(-] - ~ L] <] © ~ L] o < @ (4] [-] w -

Figure 13.8: On each Extended ASCII page, the top 128 codes represent different char-

acters.

something everyday. The Unicode Consortium (Figure 13.9) was constituted in California

in January of 1991 and, in October of the same year, the first volume of the Unicode

standard was published.

18.4 - Unicode 161

I & B Go-oe 8% 1551 B

Figure 13.9: Full members of the Unicode Consortium.

13.4.1. UTF encodings

Each codepoint needs 21 bits to be represented (5 for the plane and 16 for the displace-
ment). This match very badly with the basic types in computers (8, 16 or 32 bits). For this
reason, three Unicode Translation Format - UTF encodings have been defined, depending
on the type of data used in the representation (Figure 13.10).

Plane (5) Code point (16)
f f
R — L
_-[=I-]1]olofofo]ofo]oof0]o0]0]o[0[0]0[0]0]0]0]
Figure 13.10: Encodings to store
21-bit codepoints by elements of 8, 16, [8] | 16| | 52 |
or 32. UTF-8 UTF-16 UTF-32

13.4.2. UTF-32

Without any problem, using 32 bits we can store any codepoint. We can also randomly
access the elements of an array using an index, in the same way as the classic ASCII C
(char) strings. The bad news is the memory requirements. A UTF32 string needs four
times more space than an ASCII.

const char32 t codel[] = U"Hello";
const char32 t code2[] = U"aéiodu";
uint32 t sl = sizeof (codel); /* sl == 24 */
uint32 t s2 = sizeof(code2); /* s2 == 24 */

for (i = 0; i < 5; ++1i)
{ /* Accessing by index */
if (codel[i] == 'H'")
return 1i;

13.4.3. UTF-16

UTF16 halves the space required by UTF32. It is possible to store a codepoint per
element as long as we do not leave the 0 plane (BMP). For higher planes, two UTF16
elements (32bits) will be necessary. This mechanism, which encapsulates the higher planes
within the BMP, is known as surrogate pairs.

const charl6 t codel[] = u"Hello";

const charl6é t code2[] = u"aéiodu";

162 Chapter 13 - Sewer library

uint32 t sl = sizeof(codel); /* sl == 12 */
uint32 t s2 = sizeof(code2); /* 52 == 12 */
for (i = 0; i < 5; ++1i)
{ /* DANGER! Only BMP */
if (codel[i] == 'H'")
return 1i;

To iterate over a UTF16 string that contains characters from any plane, it must be
used unicode next.

13.4.4. UTF-8

UTFS is a variable length code where each codepoint uses 1, 2, 3 or 4 bytes.

o 1 byte (0-7F): the 128 symbols of the original ASCII. This is a great advantage,
since US-ASCII strings are valid UTFS8 strings, without the need for conversion.

» 2 bytes (80-7FF): Diacritical and Romance language characters, Greek, Cyrillic,
Coptic, Armenian, Hebrew, Arabic, Syriac and Thaana, among others. A total of
1920 codepoints.

3 bytes (800-FFFF): Rest of the plane 0 (BMP).
4 bytes (10000-10FFFF): Higher planes (1-16).

(8] US-ASCII

Plane 0
[8]8] Latin/European BMP
[BI8]8] Others
[BI8[8[8] Higher planes (1-16)

Figure 13.11: Each character in UTFS8 uses 1, 2, 3 or 4 bytes.

More than 90% of websites use UTF8 (august of 2018'), because it is the most optimal
in terms of memory and network transmission speed. As a disadvantage, it has associated
a small computational cost to encode/decode, since it is necessary to perform bit-level
operations to obtain the codepoints. It is also not possible to randomly access a specific
character by index, we have to process the entire string.

const char t codel[] = "Hello";

]
const char t code2[] = "&aéion";

const char t *iter codel;
uint32 t sl = sizeof(codel); /* sl == */
uint32 t s2 = sizeof(code2); /* s2 == 11 */

1https://w3techs.com/technologies/overview/characteriencoding/all

https://w3techs.com/technologies/overview/character_encoding/all

18.4 - Unicode 163

for (i = 0; 1 < 5; ++1i)
{
if (unicode to u32(iter, ekUTF8) == 'H')
return i;
iter = unicode next (iter, ekUTF8);

13.4.5. Using UTF-8

UTF8 is the encoding required by all the NAppGUI SDK functions. The
reasons why we have chosen UTF-8 over other encodings have been:

o It is the natural evolution of the US-ASCII.

o The applications will be directly compatible with the vast majority of Internet ser-
vices (JSON/XML).

o In multi-lingual environments the texts will occupy less space. Statistically, the 128
ASCII characters are the most used on average and only need one byte in UTFS.

» As a disadvantage, in applications aimed exclusively at the Asian market (China,
Japan, Korea - CJK), UTFS is less efficient than UTF16.

Within NAppGUI applications they can cohexist different representations (charlé t,
char32 t, wchar t). However, we strongly recommend the use of UTFS8 in favor
of portability and to avoid constant conversions within the API. To convert any string to
UTFS8 the unicode convers function is used.

wchar t text[] = L"My label text.";
char t ctext[128];
unicode convers((const char t*)text, ctext, ekUTFl6, ekUTF8, 128);

NAppGUI does not offer support for converting pages from Extended ASCII to Unicode.

The stream object provides automatic UTF conversions when reading or writing to
I/0O channels using the methods stm set write utf and stm set read utf. It is also
possible to work with the string type (dynamic strings), which incorporates a multitude
of functions optimized for the UTF8 treatment. We can include constant text strings
directly in the source code (Figure 13.12), although the usual thing will be to write them
in resource files (“Resources” (page 99)). Obviously, we must save both the source and
resource files in UTF8. All current development environments support the option:

+ By default, Visual Studio saves the source files in ASCII format (Windows 1252). To

change to UTFS, go to File->Save As->Save with encoding->Unicode (UTF8

Without Signature)- Codepage 65001. There is no way to set this configura-
tion for the entire project :-(.

164 Chapter 13 - Sewer library

o In Xcode it is possible to establish a global configuration. Preferences->Text
editing->Default Text Encoding->Unicode (UTF-8).

o In Eclipse it also allows a global configuration. Window->Preferences->General
->Workspace->Text file encoding.

char_t text[] = {
"Hello World!",
" [CAITEERER] 7,
"ReF. R,
"MpuBeT Mup!",
"leld oou Koope!" };

label text(label, text[2]);

Figure 13.12: UTF8 constants in a button text(button, text[3]);
C source file. -

13.5. Maths

BMath offers a compact interface on the elementary mathematical functions of the C
standard library. It also defines some of the most used constants, such as the number Pi,
conversions between degrees and radians or the root of 2.

o Use bmath cosf to calculate the cosine of an angle (wrapper over cstdlib cosf ()).

o Use bmath sqgrtf to calculate the square root (wrapper over cstdlib sqrtf ()).

13.5.1. Random numbers

BMath includes a seed-based pseudo-random number generator. From the same seed,
the sequence of numbers generated will always be the same. The sequences produced by
two different seeds will be radically disparate. Hence they are called pseudo-random.

o Use bmath rand seed to set the random number seed.
o Use bmath randf to get a random floating point number, within an interval.

In the case of multi-threaded applications, this sequence may vary depending on the
order of execution of the threads, since these functions are not re-entrant. You must
use an “environment” of random numbers for each thread in question, in case you need to
always ensure the same sequence (deterministic algorithms).

o Use bmath rand env to create a random number safe environment.

» Use bmath rand mtf to get a random number from an environment.

13.6 - Standard functions 165

13.6. Standard functions

BLib includes useful functions from the C standard library that don’t fit in other mod-
ules like BMath or BMem. As in <stdlib.h> we find text conversion functions, algorithms
or interaction with the environment.

o Use blib strcmp to compare two text strings.

« Use blib gsort to sort a vector of elements.

e Useblib bsearch to perform a dichotomous search on an ordered vector.

o Useblib abort to end program execution.

13.6.1.

Date conversion

o Useblib strftime to convert a date to text.

Specifier | Replaced By Example
Yoa Abbreviated weekday name Sun
%A Full weekday name Sunday
%b Abbreviated month name Mar
%B Full month name March
%c Date and time representation Sun Aug 19 02:56:02 2012
%od Day of the month (01-31) 19
%H Hour in 24h format (00-23) 14
%l Hour in 12h format (01-12) 05
% Day of the year (001-366) 231
%om Month as a decimal number (01-12) 08
%M Minute (00-59) 55
%p AM or PM designation PM
%S Second (00-59) 02
%U Week number with the first Sunday as the first day of 33

week one (00-53)
Tow Weekday as a decimal number with Sunday as 0 (0-6) 4
%W Week number with the first Monday as the first day 34
of week one (00-53)

166 Chapter 13 - Sewer library

Specifier | Replaced By Example
%ox Date representation 08/19/12
%X Time representation 02:50:06
Yoy Year, last two digits (00-99) 01
%Y Year 2012
NZ Timezone name or abbreviation CDT
%% A % sign %

Table 13.1: Date format modifiers.

13.7. Standard 1/0

All processes have input and output channels by default, without the need to create
them explicitly. By channels we mean streams or data flows.

» Use bstd printf to write text to standard output.

o Use bstd read to read bytes from standard input.

Each running process has three standard communication channels:

o stdin: data input. The process will read data that comes from outside.
o stdout: data output. The process will write results on this channel.

o stderr: error output. The process will write on this channel information regarding
€rrors.

It’s like having three perpetually open files where the program can read and write
without limits. When we execute a process from the Console or the Terminal, stdin
automatically connects to the keyboard and stdout/stderr to the screen (Figure 13.13).
However, these standard channels can be redirected to use files as input sources or output
destinations:

dir > out.txt
ls > out.txt
sort < out.txt

In this code snippet, the result of the command dir (1s in Unix) has been redirected
to the file out.txt, so we will not see anything on the screen. On the other hand, the
command sort it does not wait for the user to enter through the keyboard. Simply
taking the file out.txt, sorting its lines. Therefore, whenever we write applications on
the command line, we should conveniently use these standard channels without making

13.8 - Memory 167

Terminal

stderr

> -

parent
Figure 13.13: Executing a process \
stdout .
S — child

from the Terminal. — I

presumptions from where the information processed by the application comes from or
where it goes.

13.8. Memory

From the programmer perspective, access to memory is done through variables and
manipulated through the language operators (+, -, *, =, ...) and always in the same way,
regardless of how the variables were created or in what memory zone they are hosted.
Within bmem.h we have several functions to make copies, assignments or checks of generic
memory blocks. This module also defines functions for dynamic memory manipulation

(Heap).
o Use bmem malloc to reserve a dynamic memory block.
o Use bmem free to free a block of dynamic memory.

o Use bmem copy to copy the contents of two memory blocks, previously reserved.

13.8.1. Stack Segment

The memory of a compiled and running C program is divided into several segments.
One of them is the stack, a space of variable but limited size, where local variables and
function calls (call stack) are stored. It grows and shrinks as the process enters and leaves
areas or functions (Figure 13.14). It is automatically managed by the compiler as a LIFO
Last-in First-out structure, so it goes unnoticed most of the time, since it does not require
extra attention from the programmer. We are aware of its existence when receiving the
Stack Overflow error, usually caused by infinite recursion or the reservation of very large C
vectors (Listing 13.1). The debugger allows us to inspect the state of the stack at execution
time “Debugging the program” (page 63).

Listing 13.1: Two simple cases that cause the stack overflow.

int func(int n) { func(n); } // Stack Overflow

float v[2000000]; // Stack Overflow

168 Chapter 13 - Sewer library

void func(int a, int b)

{
inti;
char str[10];

’

str{0] = 'A’; str="A"
} i=5
b=2
int main() -
{ a=1
intg =5; func i
func(l, 2); =5 =5 =10
& = 10: g 9 g
}

Figure 13.14: Stack state in different points of the program.

While the use of the stack is ideal due to its high performance, security and ease of
use, sometimes falls short. On the one hand, it is necessary to foresee in the design time
the amount of memory needed and define it statically (eg. struct Product pr([100];),
something very inflexible when it comes to building real applications. On the other hand,
variables are destroyed when closing a scope or leaving a function, which prevents sharing
data globally.

13.8.2. Heap Segment

The heap is a memory zone that the process can request on demand, through calls to
the system. It is complementary to the stack and is characterized by:

o It can be accessed globally, from any point of the program through a pointer.
e The amount of available memory is practically unlimited.
o It is less efficient than the stack.

o Requires management. Operating systems provide functions for requesting dynamic
memory blocks (HeapAlloc (), sbrk()), being the responsibility of the process, or
rather the programmer, to release these blocks when they are no longer needed.

As allocations and de-allocations can be made in any order, internal fragmentation
occurs as the program progresses (Figure 13.15). Here would come into play the so-called
memory manager, which are algorithms that allow optimizing the use of the heap by
compacting it and reusing the released blocks. The standard C library provides the familiar
functions malloc () /free (), which implement a generic memory manager through system
calls.

13.8 - Memory 169

Figure 13.15: Fragmentation of the

heap during the execution of the pro- IHE B 32]

cess.

NAppGUI implements its own dynamic memory manager/auditor “Heap” (page 195)
very optimized to serve numerous requests of small size, which is what applications
demand normally. bmem malloc/bmem free connect to the operating system through
system calls and should not be used directly.

170 Chapter 13 - Sewer library

CHAPTER

Osbs library

There is mo neat distinction between operating system software and the software that runs on top

of it.

14.1 Osbs
14.2 Processes
14.2.1 Launching processes
14.2.2 Multi-processing examples
14.3 Threads
14.3.1 Throwing threads
14.3.2 Shared variables
14.3.3 Multi-thread example
14.4 Mutual exclusion
14.4.1 Locks
14.5 Loading libraries
14.5.1 Library search paths
14.5.2 Search order in Windows
14.5.3 Search order on Linux/macOS
14.6 Files and directories
14.6.1 File System
14.6.2 Files and data streams
14.6.3 Filename and pathname
14.6.4 Home and AppData
14.7 Sockets
14.7.1 Client/Server example
14.8 Time

Jim Allchin

172
173
173
174
176
177
177
178
181
181
181
182
182
183
183
183
184
184
185
185
186
189

172 Chapter 14 - Osbs library

14.9 Log 190

14.1. Osbs

osbs (Operating System Basic Services) is a portable wrapper that allows applications
to communicate with the operating system core at the level of processes, memory, files
and networks. This communication is carried out through a series of system calls (Fig-
ure 14.1) which vary according to the operating system for which we are programming. It
is the non-graphic lowest level API to communicate with hardware devices and access the
machine resources. Below are the device drivers managed directly by the kernel, to which
applications have access denied.

Portable API

osbs

al
g A A System calls

e | R

Figure 14.1: System calls are the gateway to the operating system kernel.

Darwin, the macOS kernel, and Linux are Unix-like systems, therefore, they share the
same system calls (with subtle differences). But Windows presents a radically different
architecture and function set. The NAppGUI osbs library is nothing more than a small
wrapper that internally handles these differences and provides a common way to access the
same resources on different platforms (Figure 14.2). It only depends on “Sewer” (page 154)
and its functionalities have been divided into different modules:

o “Processes” (page 173), “Threads” (page 176), “Mutual exclusion” (page 181).
o “Loading libraries” (page 181).

o “Files and directories” (page 183).

14.2 - Processes 173

o “Sockets” (page 185).

o “Time” (page 189).

0 |
osbs ws2_32.d11

-

oL
darwin ><

O

-—

Figure 14.2: osbs dependencies. See linux kernel
“NAppGUI API” (page 149). -

14.2. Processes

From the programmer perspective, multi-processing is the possibility of launching and
interacting with other processes (children) from the main process (parent). The operating
system can execute the child process in another CPU core (true multitasking) or in the
same as the parent (context switch). This is a system decision in which the programmer
can not influence and will depend on the processor type and its workload. The final effect
will be that both processes (parent and child) run in parallel.

» Use bproc exec to launch a new process from the application itself.
» Use bproc read to read from the standard output of the process.

o Use bproc write to write to the standard input of the process.

14.2.1. Launching processes

bproc exec will launch a process from our own C program in a similar way as the
Terminal does (Figure 14.3). In this case, the “Standard I/0” (page 166) stdin, stdout
and stderr will be redirected to the Proc object through anonymous pipes. From here,
we can use bproc_write to write on the son stdin channel and bproc read to read from
his stdout. The rules of reading/writing are those that govern the operating system pipes
and that we can summarize in:

bproc_exec()
stderr

Figure 14.3: Launching a process parent
from our own C code.

stdout

174 Chapter 1 - Osbs library

o If the parent calls bproc read and the child has not written anything (empty buffer),
the parent will be blocked (wait) until there is information in the child’s output
channel.

o If the child ends and parent is waiting to read, bproc read will return FALSE and
the parent will continue his execution.

o If the parent calls bproc write and the writing buffer is full, the parent will block
(wait) until the child reads from his stdin and free space in the channel.

o If the child ends and the father is blocked by writing, bproc write will return FALSE
and the parent will continue his execution.

« Some commands or processes (eg sort) will not start until reading the entire stdin
contents. In these cases, the parent process must use bproc write close to indi-
cate to the child that the writing on his stdin has finished.

o When the parent calls bproc close, all the I/O channels will be closed and both
processes will continue their execution independently. To finish the execution of the
child process (kill) use bproc cancel.

» bproc wait will stop the parent process until the child completes. To avoid overload-
ing the child output buffer stdout, close the channel through bproc read close.

o bproc finish will check, in a non-blocking way, if the child has finished running.

14.2.2. Multi-processing examples

Let’s look at some practical examples of IPC Inter-Process Communication using the
standard I/O channels in linked parent-child processes. In (Listing 14.1) we will dump
the child process stdout output in a file. In (Listing 14.2) we will redirect both channels,
we will write in stdin and we will read from stdout using disk files. Finally, we will
implement an asynchronous protocol where the parent and child exchange requests and
responses. In (Listing 14.4) we show the code of the child process, in (Listing 14.3) the
parent process and in (Listing 14.5) the result of the communication, written by the parent
process.

Listing 14.1: Reading from a process stdout and saving it in a file.

byte t buffer([512];

uint32 t rsize;

File *file = bfile create("out.txt", NULL);

Proc *proc = bproc_exec("dir C:\Windows\System32", NULL);

while (bproc read(proc, buffer, 512, &rsize, NULL) == TRUE)
bfile write(file, buffer, rsize, NULL, NULL);

bproc close (&proc);

bfile close(&file);

14.2 - Processes

175

The shell commands are not portable in general. We use them only as an example.

Listing 14.2: Redirecting the stdin and stdout of a process.

byte t buffer([512];

uint32 t rsize;

File *fsrc = bfile open("members.txt", ekFILE READ, NULL);
File *fdes bfile create("sorted members.txt", NULL);
Proc *proc bproc_exec("sort", NULL);

// Writes to stdin
while (bfile read(fsrc, buffer, 512, &rsize, NULL) == TRUE)
bproc write(proc, buffer, rsize, NULL, NULL);

// Closes child stdin
bproc write close(proc);

// Reads child stdout
while (bproc read(proc, buffer, 512, &rsize, NULL) == TRUE)
bfile write(fdes, buffer, rsize, NULL, NULL);

bfile close(&fsrc);
bfile close (&fdes);
bproc close (&proc) ;

Listing 14.3: Asynchronous protocol (parent process).

Proc *proc;
uint32 t commands[] = {
uint32 t exit command =
uint32 t i;

26, 32, 778, 123, 889, 712, 1, 55, 75, 12 };

3
0
proc = bproc exec("child", NULL);

for (i = 0; i < 10; ++i)
{
uint32 t response;
uint32 t time;
// Send command to child
bproc write(proc, (byte t*)s&commands[i], sizeof(uint32 t), NULL);

// Waits for child response

bproc read(proc, (byte t*)&response, sizeof (uint32 t), NULL);
bproc_read(proc, (byte t*)&time, sizeof(uint32 t), NULL);

bstd printf ("Child command %d in %d milliseconds.\n", response, time);

bproc write (proc, (byte t*)s&exit command, sizeof (uint32 t), NULL);
bproc close (&proc);

176 Chapter 1/ - Osbs library

Listing 14.4: Asynchronous protocol (child process).

for (;;)
{
uint32 t command;
// Reads from standard input a command from parent.
if (bstd read((byte t*)&command, sizeof (command), NULL) == TRUE)
{
if (command != 0)
{
// Waits random time (simulates processing).
uint32 t timer = bmath randi (1000, 2000);
bthread sleep(timer);

// Writes to standard output the response to parent.
bstd write((const byte t*)&command, sizeof (command), NULL);
bstd write((const byte t*)&timer, sizeof (timer), NULL);
}
else
{
// Command 0 = Exit
break;

Listing 14.5: Parent process execution result.

Child command 326 in 1761 milliseconds.
Child command 32 in 1806 milliseconds.
Child command 778 in 1989 milliseconds.
Child command 123 in 1909 milliseconds.
Child command 889 in 1043 milliseconds.
Child command 712 in 1153 milliseconds.
Child command 1 in 1780 milliseconds.

Child command 55 in 1325 milliseconds.
Child command 75 in 1157 milliseconds.
Child command 12 in 1426 milliseconds.

14.3. Threads

The threads are different execution paths within the same process (Figure 14.4). They
are also known as light processes, since they are more agile to create and manage than
the processes themselves. They share code and memory space with the main program, so
it is very easy to exchange information between them through memory variables. A thread
starts its execution in a method known as thread__main and, at the moment it is launched,
it runs in parallel with the main thread. Like the processes, they are objects controlled by
the core of the system that will dictate, ultimately, whether the threads will be executed

14.8 - Threads 177

in another CPU core (true multitasking) or will share it (context switch).
o Use bthread create to create a new thread.

o Use bthread wait to force the main thread to wait for the thread to execute.

G
O™

[

Figure 14.4: A process with multi- .
ple execution threads. process (main thread)

14.3.1. Throwing threads

Each call to bthread create will create a new thread in parallel starting at the func-
tion passed as a parameter (thread main). The “natural” way to end it is by returning
from thread__main, although it is possible to abort it from the main thread.

Basic code to launch a parallel execution thread.

static uint32 t i thread(ThData *data)

{
// Do something

// Thread execution ends
return 0;

}

Thread *thread = bthread create (i thread, data, ThbData);
// Main thread will continue here
// Second thread will run 'i thread'

14.3.2. Shared variables

Each new thread has its own “Stack Segment” (page 167) therefore, all automatic
variables, function calls and dynamic allocations will be private to said thread. But it
can also receive global data from the process through the thread main data parameter.
We must be careful when accessing global data through multiple concurrent threads, since
modifications made by other threads can alter the logical code execution, producing errors

178 Chapter 14 - Osbs library

that are very difficult to debug. The program (Listing 14.6) is correct for single-thread
programs, but if the variable vector is accessed by two simultaneous threads, can lead to
a Segmentatin Fault error if thread-1 frees memory while thread-2 is executing the loop.

Listing 14.6: Dangerous access to shared variables.

if (shared->vector != NULL)
{
shared->total = 0;
for(i = 0; i < shared->n; i++)
shared->total += shared->vector[i];
bmem free (shared->vector);
shared->vector = NULL;

To avoid this problem, we will have to protect the access to shared variables through
a Mutex (Listing 14.7). This “Mutual exclusion” (page 181) mechanism guarantees that
only one thread can access the resource in a moment of time. A thread will be stopped if it
intends to execute the code located between bmutex lock and bmutex unlock if another
thread is within this critical section.

Listing 14.7: Secure access to shared variables.

bmutex lock (shared->mutex) ;

if (shared->vector != NULL)

{
shared->total = 0;
for(i = 0; i < shared->n; i++)

shared->total += shared->vector[i];

bmem free (shared->vector);
shared->vector = NULL;

}

bmutex unlock (shared->mutex) ;

14.3.3. Multi-thread example

The tricky part of multi-threaded programming is to decompose a solution into parts
that can run in parallel and organize the data structures so that this can be carried out in
the most balanced way possible. In (Listing 14.8) the program will run four times faster
(x4) since a perfect division of the problem has been made (Figure 14.5). This is just a
theoretical example and this result will be very difficult to achieve in real situations. We
must also minimize the number of shared variables and the time of the critical sections,
otherwise the possible inter-blocks will reduce the gain.

Listing 14.8: Multi-threaded processing of a very large vector.

typedef struct app t App;
typedef struct thdata t ThData;

14.8 - Threads 179

Figure 14.5: Collaboration of four
threads in a vector calculation. process

struct app t

{
uint32 t total;
uint32 t n;
uint32 t *elems;
Mutex *mutex;

}i

struct thdata t

{
uint32 t thread id;
uint32 t start;
uint32 t end;
uinted_t time;
App *app;

i

static uint32 t i thead(ThData *data)
{
uint32 t i, total = 0;
uint64 t tl = btime now();
for (i = data->start; i1 < data->end; ++1)
{
// Simulates processing
uint32 t time = bmath randi (0, 100);
bthread sleep(time);
total += data->app->elems[i];

// Mutual exclusion access to shared variable 'total'
bmutex lock (data->app->mutex) ;

data->app->total += total;

bmutex unlock (data->app->mutex) ;

data->time = (btime now() - tl) / 1000;

return data->thread id;

180 Chapter 14 - Osbs library

// Threads creating function
uint32 t i, m;

uinted _t t;

App app;

ThData thdatal[4];

Thread *thread[4];

// App data vector

i init data(&app);

app.mutex = bmutex create();
m = app.n / 4;

// Thread data
for (i = 0; 1 < 4; ++1)

{

thdata[i].thread id = i;
thdata[i] .app = &app:;
thdata[i].start = 1 * m;
thdata[i]l.end = (i + 1) * m;

// Launching threads

t = btime now();
for (i = 0; i < 4; ++1)
thread[i] = bthread create(i thead, &thdata[i], ThbData);

// Wait for threads end

for (1 = 0; 1 < 4; ++1i)

{
uint32 t thid = bthread wait(thread[i]);
bstd printf ("Thread %d finished in %d ms.\n", thid, thdata[thid].time);
bthread close(&thread[i]);

// Process total time
t = (btime now() - t) / 1000;
bstd printf ("Proccessing result = %d in %d ms.\n", app.total, t);

bmutex close (&app.mutex) ;

Listing 14.9: Resultado.

Thread 0 finished in 13339 ms.
Thread 1 finished in 12506 ms.
Thread 2 finished in 12521 ms.
Thread 3 finished in 12999 ms.
Proccessing result = 499500 in 13344 ms.

14.4 - Mutual exclusion 181

14.4. Mutual exclusion

In processes with multiple threads, mutual exclusion guarantees that only one of them
can execute a critical section at a specific moment of time. The critical section is a block
of code that normally protects a shared resource that does not support concurrent access.

o Use bmutex create to create a lock.
» Use bmutex lock to lock a critical section.

» Use bmutex unlock to unlock a critical section.

14.4.1. Locks

Locks or Mutex are synchronization objects managed by the operating system that
mark the beginning and end of a critical section (Figure 14.6). When a thread is going
to access a certain share, you must call the method bmutex lock to guarantee exclusive
access. If another thread is using the resource (it has previously called bmutex lock), the
current thread will stop until the resource is released through bmutex unlock. Blocking
and unblocking threads is handled by the operating system itself. The programmer should
only worry about identifying and protecting the critical sections. “Multi-thread example”
(page 178).

. . Mutex
Figure 14.6: A mutex protecting

the critical sections of two threads, E 2

which can not be executed concur- -
rently. The rest of the code can run
in parallel.

14.5. Loading libraries

The usual, in projects of relative size, is to divide the program code into libraries in
order to be able to reuse them in different projects. The link of these libraries within the
final executable can be done in three ways:

o Compile time: The library code is copied into the executable, forming an insepa-
rable part of it (static libraries) (Figure 14.7) (a).

o Load time: The library code is distributed separately (dynamic libraries) and is
loaded together with the main program, at the same time (Figure 14.7) (b).

182 Chapter 14 - Osbs library

o Runtime: Dynamic libraries that the program loads when it needs them (Fig-
ure 14.7) (c).

Executable Library

I ieiinnenm

(DN DEDEEREEREE @

//—\‘
GrAnianang (E0000000]w

X
GPannnnnnn [E0000000]w©

Figure 14.7: Library link and dynamic loading.

The linking process is relatively complicated and is handled automatically by the com-
piler and operating system’s loader. The programmer should only intervene in the third
case, since it is necessary to include code to load the libraries and access the appropriate
methods or variables at all times.

o Use dlib_open to load a library at runtime.
o Use dlib proc to get a pointer to a library function.

o Use dlib var to get a pointer to a library variable.

14.5.1. Library search paths

A dynamic library is in a different file than the executables that can make use of it.
Each operating system implements different search strategies that we must know to install
and/or configure the programs correctly.
14.5.2. Search order in Windows

o Directory path of d1ib open.

o The same directory as the executable.

o The current directory bfile dir work.

o Directory $SystemRoot%\System32.

14.6 - Files and directories 183

o Directory $SystemRoot$.

o The directories specified in the environment variable PATH.

14.5.3. Search order on Linux/macOS

o The directories specified in the environment variable LD LIBRARY PATH (Linux) or
DYLD LIBRARY PATH (macOS).

o The directories specified in the executable rpath.

o System directories /1ib, /usr/lib, etc.

14.6. Files and directories

14.6.1. File System

The file system (filesystem) is the hierarchical structure composed of directories and files
that allows organizing the persistent data of the computer (Figure 14.8). It is something
with which computer users are very familiar, especially after the emergence of graphic
systems that introduced the analogy of desktop, folder and document. It starts in a
directory called root (/ on Unix or C:\ on Windows) and, from here, all sub-directories
and files hang down forming a tree that grows deep. At the programming level, the file
system is managed through system calls that allow directories to be created, browse their
content, open files, delete them, obtain attributes, etc.

o Use bfile create to create a new file.

o« Usebfile dir create to create a directory.

Use bfile dir open to open a directory to explore its contents.

o Use bfile dir get to get information about a directory entry.

)

=

. . N i
Figure 14.8: Typical structure of a B
file system.

11—
11—

]

1115

184 Chapter 1/ - Osbs library

14.6.2. Files and data streams

A process can read or write data to a file after opening an I/O (“Streams” (page 232))
which provides a stream of binary data to or from the process itself (Figure 14.9). There
is a pointer that moves sequentially each time data is read or written. It is initially in
byte 0, but we can modify it to access random positions in the file without reading the
content (Figure 14.10). This can be very useful when working with large files whose data
is indexed in some way.

« Use bfile open to open an existing file.
o Usebfile read to read binary data from a file.
o Usebfile write to write binary data to a file.

o Use bfile seek to modify the file pointer.

Figure 14.9: After opening a file,
the process has an I/O channel to
read or write data.

tr
readed ‘p¢
CETT T T T T et i
Figure 14.10: Sequential read or 0 4 n-1
random access. seek (n-5) ptr

14.6.3. Filename and pathname

These two concepts are recurrent and widely used by API functions that manipulate
files. When we navigate through the contents of a directory bfile dir get, we obtain a
sequence of filenames that is the “flat” name of the element (file or subdirectory) without
including its path within the file system (without characters '/' or '\'). On the other
hand the pathname is a sequence of one or several filenames separated by '/', '\', which
indicates the way forward to locate a certain element. This path can be absolute when
it starts with the root directory (C:\Users\john\docs\images\party.png) or relative
(docs\images\party.png) when it indicates the partial route from the process current
working directory.

o Usebfile dir work to get the current working directory.

o Use bfile dir set work to set the working directory.

14.7 - Sockets 185

14.6.4. Home and AppData

These are two typical directories used by applications to store files relative to a partic-
ular user. On the one hand, home indicates the personal directory of the user currently
registered in the system, typically C:\Users\john (Windows), /home/john (Linux) or
/Users/john (macOS). On the other hand appdata is a directory reserved for saving tem-
porary or configuration data of applications. Typical locations can be C:\Users\john\
AppData\Roaming (Windows), /home/john/.config (Linux) or /User/john/Library
(macOS). The usual thing will be to create a sub-folder with the name of the application
/User/john/Library/TheApp.

o Usebfile dir home to get the user home directory.
o« Usebfile dir data to get the application data directory.

o Usebfile dir exec to get the current executable directory.

14.7. Sockets

We can define a socket as a communication channel between two processes that are
running on different machines. They use as a base the family of TCP/IP protocols that
govern Internet communication from the first prototypes of the big network back in 1969.
For its part, the IP protocol (Internet Protocol) is responsible for sending small data packets
between two remote computers through the network. As there are packets that can be
lost or take different paths when crossing the Internet nodes, TCP (Transmission Control
Protocol) will be in charge of sorting them sequentially and re-ordering those that have
been lost. Another important aspect that TCP adds is the concept of a port, which allows
the same machine to have multiple connections open at the same time. The conjunction
of TCP/IP provides the process of a reliable bidirectional communication channel (full-
duplex) with the remote process and is the basis of the client/server model (Figure 14.11).

» Use bsocket connect in the client process to create a communication channel with
a remote server.

o Use bsocket server in the server process to listen for client requests.

o Use bsocket accept to accept a client’s request and start communication.
» Use bsocket read to read data from a socket.

» Use bsocket write to write data to a socket.

Sockets are the lowest-level communication primitive accessible by applications. They
are extremely fast but, in general, their functions are blocking, that is, they will stop the
process until the other party responds.

186 Chapter 1/ - Osbs library

Figure 14.11: TCP/IP sockets al- B
low two processes to be connected

through the Internet. TCP/IP

o bsocket connect will stop the client process until the server responds or the timeout
expires.

* bsocket accept it will stop the server process until a request from a client arrives
or the timeout is fulfilled.

e bsocket read will stop the process until the other interlocutor writes data to the
channel or the timeout is fulfilled.

e bsocket write will stop the process until the other peer reads data from the channel
and frees the intermediate buffer or the timeout is fulfilled.

Apart from these indications, working with sockets is very similar to working with files
on disk. The TCP/IP implementation is complicated and is part of the operating system,
so the establishment of the connection has been simplified through the system calls seen
above. Since a socket only allows sending and receiving bytes, both partners need to define
a protocol that indicates the order, sequence and type of data to be shared in such a way
that communication is satisfactory and free of deadlocks. Some of the most used protocols
on the Internet are: HT'TP, SMTP, FTP, SSH, etc.

14.7.1. Client/Server example

As an example we are going to see how two processes exchange information through
sockets. The protocol is extremely simple. After connection, the client (Listing 14.11)
will send a series of numerical values to the server (Listing 14.10) and it will respond by
resending the same value. When the client sends the value UINT32 MAX the communication
will end.

Listing 14.10: Simple socket-based server.

uint32 t client id = 0;
Socket *server sock = bsocket server (3444, 32, NULL);

if (server sock == NULL)
return;

for (;;)

{
Socket *income sock = NULL;
uint32 t ip0, ipl;
uintlé t pO, pl;

14.7 - Sockets 187

bstd printf ("Waiting for a new client\n");

income sock = bsocket accept(server sock, 0, NULL);
if (income sock == NULL)
continue;

bstd printf("Client %d arrives\n", client id);
bsocket local ip(income_sock, &ip0O, &p0);
bsocket remote ip(income sock, &ipl, &pl);
bstd printf ("Local IP: %s

:%d\n", bsocket ip str(ip0), p0);
bstd printf ("Remote IP:

s:%d\n", bsocket ip str(ipl), pl);

for (;;)

{
byte t datal4];
uint32 t rsize;

if (bsocket read(income sock, data, sizeof (data), &rsize, NULL) == TRUE
—)
{
uint32 t i;
bsocket ntoh4 ((byte t*)&i, data):;
if (i != UINT32 MAX)
{
bstd printf ("Readed %d from client\n", 1);
bsocket hton4 (data, (byte t*)&i);
if (bsocket write(income sock, data, sizeof(data), NULL, NULL)
== TRUE)
{
bstd printf("Sending %d to client\n", 1i);
}
else
{
bstd printf ("Error writting to client\n");
break;
}
}
else
{
bstd printf("Client %d say bye!\n", client id);
break;
}
}
else

{

bstd printf ("Error reading from client\n");
break;

bstd printf ("\n\n");

188 Chapter 14 - Osbs library

bsocket close (&income sock);
client id += 1;

bsocket close (&server sock);

Listing 14.11: Client process.

Socket *sock = NULL;
serror t error;
uint32 t i = 0;
byte t datafl4];

sock = bsocket connect (bsocket str ip("192.168.1.21"), 3444, 5000, &error);

if (sock == NULL)

{
bstd printf ("Connection error\n");
return;

bsocket read timeout (sock, 2000);
bsocket write timeout (sock, 5000);

while (i < kPING COUNTER)
{
bsocket hton4 (data, (const byte t*)s&i);
if (bsocket write(sock, data, sizeof(data), NULL, NULL) == TRUE)
{
bstd printf("Sending %d to server\n", 1i);
}
else
{
bstd printf ("Error writting in socket\n");
break;

if (bsocket read(sock, data, sizeof(data), NULL, NULL) == TRUE)
{
uint32 t j;
bsocket ntohd ((byte t*)&j, data);
bstd printf ("Readed %d from server\n", j);
if (3 !'= 1)
{
bstd printf ("Error data corruption\n");
break;

14.8 - Time 189

bstd printf ("Error reading in socket\n");
break;

}

if (i == kPING COUNTER)
{
i= UINT327MAX;
bsocket hton4 (data, (const byte_t*)&i);
if (bsocket write(sock, data, sizeof(data), NULL, NULL) == TRUE)
{
bstd printf ("Sending FINISH to server\n") ;
}
else
{
bstd printf ("Error writting in socket\n");
}
}

bsocket close (&sock);

14.8. Time

The operating system measures the passage of time using an internal clock, typically
implemented by a counter of the ticks that have passed since an initial moment called
epoch. In Unix-like systems this counter represents the number of seconds elapsed since
January 1, 1970 UTC. However, in Windows it represents the number of 100 nanosecond
intervals since January 1, 1601 coinciding with the beginning of the Gregorian calendar.
In NAppGUI these values have been unified to work with Uniz Epoch on all platforms.

o Use btime now to get the number of micro-seconds elapsed since January 1, 1970
UTC.

o Use btime date to get the system date.

o Use btime to micro and btime to date to convert dates to Unix Time and vice
versa.

Unix Epoch:
0:00

january 1, 197

Figure 14.12: Unix Epoch Instant
0.

190 Chapter 14 - Osbs library

The difference between two instants will give us the time elapsed during the execution
of a task.

uint64 t ed, st = btime now();

// Do something...

ed = btime now();
bstd printf ("Total elapsed micro-seconds: %lu\n", ed - st);

14.9. Log

A log or diary is a record of anomalies that occur at runtime and that help to further
debug the program or determine the cause of an error (Figure 14.13). This report is
aimed more at programmers or software administrators and not at the end user, so it
is advisable to include specific technical information on the cause of the problem. The
messages addressed to the end user must be written in a more friendly tone, far from
technicalities and sent to the standard output (stdout stderr) or to the window system,
if we are facing a desktop application.

o Use log printf to write a message to the execution log.
app_log.txt
Figure 14.13: Messages related to

internal anomalies of the program,
can be sent to a log.

CHAPTER

Core library

A strong core will improve your technique, strength, endurance and will complement everything

you do.
Susan Trainor
15.1 Core 193
15.2 Heap 195
15.2.1 Multi-thread memory 196
15.2.2 How Heap Works 197
15.3 Buffers 199
15.4 Strings 199
15.5 Arrays 201
15.5.1 Create arrays 202
15.5.2 Access to elements and iteration 203
15.5.3 Array copy 204
15.5.4 Array serialization 205
15.5.5 Sort and search in arrays 205
15.5.6 Comparators and keys 206
15.5.7 Insert and delete in arrays 207
15.5.8 Type declaration in arrays 208
15.5.9 Array limitations 208
15.6 Pointer arrays 209
15.6.1 Create pointer arrays 209
15.6.2 Copying arrays of pointers 210
15.7 Sets 211
15.7.1 Create sets 212

15.7.2 Insert and delete elements in sets

213

192 Chapter 15 - Core library

15.7.3 Search and tour in sets. Iterators

15.7.4 Comparison of arrays and sets
15.8 Pointer sets

15.8.1 Create pointer sets
15.9 Data binding

15.9.1 Register data types

15.9.2 Type aliases

15.9.3 Creating objects

15.9.4 Object initialization

15.9.5 Object copy

15.9.6 Editing objects

15.9.7 Basic types

15.9.8 Nested objects

15.9.9 Binary objects

15.9.10 Using arrays

15.9.11 Default values

15.9.12 Numeric ranges

15.9.13 Object compare with DBind

15.9.14 Serialization with DBind

15.9.15 Import and export to JSON

15.9.16 Synchronization with graphical interfaces
15.10 Streams

15.10.1 Stream Types

15.10.2 File stream

15.10.3 Socket stream

15.10.4 Block stream

15.10.5 Memory stream

15.10.6 Standard stream

15.10.7 Null stream

15.10.8 Binary stream

15.10.9 Text stream

15.10.10Tokens

15.10.111dentifiers

15.10.12Strings

15.10.13Numbers

15.10.14Symbols

15.10.15Comments

15.10.16Stream advantages

214
215
217
218
219
219
221
222
222
223
223
224
224
225
226
227
228
229
230
230
231
232
233
233
233
234
235
236
237
238
238
239
241
242
242
243
243
244

15.1 - Core 193

15.10.17Unify serialization 244
15.10.18More elegance 244
15.10.19Higher productivity 245
15.10.20Higher performance 246
15.10.21Byte order 246
15.10.22Stream state 247
15.11 Regular expressions 248
15.11.1 Define patterns 249
15.11.2 Regular languages and automata 250
15.12 Events 250
15.13 Keyboard buffer 252
15.14 File operations 252
15.15 Resource packs 254
15.16 Dates 255
15.17 Clocks 255
15.1. Core

Just as a building needs a strong foundation, any software project must be supported
by robust and efficient pillars. For this purpose, the core library has been developed (Fig-
ure 15.1), which provides commonly used non-graphical utilities. In addition to being the
basis of NAppGUI-SDK, it will also facilitate the development of our own programs and
libraries, guaranteeing maximum efficiency and portability. core has no external depen-
dencies, except “Osbs” (page 172), which will provide the elementary calls to the operating

system.
back-end

Figure 15.1: core dependencies. See
“NAppGUI API” (page 149).

The power of core lies in the efficient and safe management of memory, together with
the automation of operations on objects and the management of collections based on

194

Chapter 15 - Core library

arrays and binary search trees (Figure 15.2). All this would be incomplete without a
robust serialization system, which allows us to export/import data from/to memory, using
different communication channels.

“Heap” (page 195). Paged memory manager with leaks auditor.

“Buffers” (page 199). Generic dynamic memory block.

“Strings” (page 199). Text strings in dynamic memory.

“Arrays” (page 201). Collection of elements in contiguous memory locations.

“Sets” (page 211). Container that optimizes the search, insertion and deletion of
elements.

“Data binding” (page 219). Automation of operations on objects.

“Streams” (page 232). Input and output channels. Incorporates a text parser to read
tokens.

Memory page

=0 © &

Figure 15.2: Relationship between memory management, data
structures and streams.

Additionally, core provides these utilities:

15.2 - Heap 195

o “Regular expressions” (page 248).

o “Fvents” (page 250). Base for the event management subsystem.
o “File operations” (page 252). File and directory utilities.

o “Resource packs” (page 254).

o “Dates” (page 255). Date/time related functions.

o “Clocks” (page 255). Accurate time measurement.

15.2. Heap

Heap is a very efficient dynamic memory manager and auditor included in the core
library and available for all NAppGUI-based projects (libraries and applications). It is
common for applications to request a large number of small blocks of memory to hold
different objects (character strings, interface controls, structure instances, I/O buffers,
etc.). The strategy behind the manager is none other than asking the operating system
for memory pages of a certain size (64kb or more) using bmem malloc and using them to
resolve multiple requests more efficiently.

o Use heap new to dynamically create an object.
o Use heap malloc to reserve a memory block.
o Use heap delete to destroy an object.

o Use heap free to free up a memory block.

Product *prod = heap new(Product);
byte t *memblock = heap malloc (1024, "MyOwnBlock");

// Do something

heap delete(&prod, Product);
heap free (&memblock, "MyOwnBlock");

Using Heap instead of the classic malloc () /free () will provide us with certain ben-
efits:

o Performance: A call to heap malloc is solved only by increasing the value of a
counter. heap free it only updates the header of the affected page.

o Locality: Two consecutive calls to heap malloc () are located in contiguous physical
memory positions. This reduces the number of cache failures because, according to
the locality principle, there is a high probability that two objects that are created
together will be used together.

196 Chapter 15 - Core library

o Memory leaks: heap points reservations and releases by object type. If necessary,
will notify the programmer through “Asserts” (page 157) or “Log” (page 190) that
there are objects not released. The great advantage of this auditor over other tools is
that it is always being executed as part of the program. This exploits the temporal
coherence, because if after a program change leaks are detected where there was
not before, it is very likely that we can limit and detect the error, since it will be
something we have just worked on.

o Statistics: We can obtain memory usage profiles (time/bytes). This can help us
detect bottlenecks (especially at startup) or optimize page size.

15.2.1. Multi-thread memory

By default, heap is configured to work optimally in single-threaded applications. If we
want several threads of the same process to reserve or release dynamic memory concurrently
and safely, we must use:

* heap start mt to start multi-thread support.
* heap end mt to end multi-thread support.

The moment heap start mt is called, the synchronization mechanisms within the
heap are activated to guarantee mutual exclusion to the memory manager until a call to
heap end mt is received which will return to single-threaded operation mode. Successive
calls to heap start mt will accumulate, so it will remain in multi-threaded mode until
all open blocks are closed (Listing 15.1). It is the responsibility of the programmer to use
this pair of functions at those points of the program that require it.

Any section that begins with heap start mt must be closed with heap end mt.

There is no problem in activating multi-threaded support in single-threaded sections,
except for a slight performance penalty.

Listing 15.1: Multi-thread sections.

// Single-threaded block

heap start mt();
// Multi-threaded block

heap start mt();

heap end mt();
// Continue multi-threaded block

15.2 - Heap 197

heap _end mt () ;

// Single-threaded block

15.2.2. How Heap Works

When a program starts, heap creates a default memory page. The first bytes are reserved
as a header, a small structure that controls the state of the page. Fach request is assigned
sequentially within the same page, increasing the value of a pointer (Figure 15.3). When
the page runs out of space, a new one is created bmem malloc, which is linked to the
previous one and labeled as the new default page (Figure 15.4). Each call to heap free
update the header with the number of blocks/bytes released (Figure 15.5). These blocks
are not reused, otherwise the logic of heap would be complicated by slowing it down.
The address of the header is stored at the end of each block, so do not have to iterate to
locate it. When all the blocks on the page have been released, the entire page is destroyed
by bmem free and the pointers between neighboring pages restored (Figure 15.6).

[Header | [PZIN [P7HN (7] ETRNN FTHN 3

s NG

offset
Figure 15.3: Reserve a
new memory block with
heap malloc(). heap_malloc(48)
bmem_malloc(65536) 3
/N

O o o e) o—

= s . P l
Figure 15.4: Request to 2-:“
the operating system of a new B . Ly RAM
empty page. heap_malloc? e .

Heap also counts the number of alloc/dealloc per object type using the parameter name
of heap malloc. At the end of the execution of the program, if the application lacks
memory leaks, it will write in “Log” (page 190) a message like this:

198 Chapter 15 - Core library

[Header | [EZIN (P70 (7Y (R ETHN EE3

Figure 15.5: Releasing a block
of memory (only updates the
header). heap_free()

Figure 15.6: Destroying the

entire page. bmem_free(65536)
[12:58:08] [OK] Heap Memory Staticstics
[12:58:08]
[12:58:08] Total a/dellocations: 1126, 1126
[12:58:08] Total bytes a/dellocated: 74611, 74611
[12:58:08] Max bytes allocated: 54939
[12:58:08] Effective reallocations: (0/34)
[12:58:08] Real allocations: 2 pages of 65536 bytes
1

[12:58:08

But if after the execution, the application has memory to be released, the message will be
different:

[13:00:35
[13:00:35
[13:00:35

Total bytes a/dellocated: 75704, 75596 (108 bytes)
Max bytes allocated: 54939

[13:00:35] [FAIL] Heap Object Leaks!!!
[13:00:35]
[13:00:35] 'App' a/deallocations: 1, 0 (1 leaks)
[13:00:35] 'String' a/deallocations: 414, 410 (4 leaks)
[13:00:35]
[13:00:35] [FAIL] Heap Global Memory Leaks!!!
[13:00:35]
[13:00:35] Total a/dellocations: 1161, 1156 (5 leaks)
1
1
1

That warns that we have an object App and four String without releasing. If in the
previous execution there were no leaks, it is very likely that we can narrow the error

15.3 - Buffers 199

without too much difficulty.

The heap auditor does not intend to replace more advanced memory testing tools, it
is only a first filter that constantly alerts us during the development and test phase.
Although the overhead that occurs at runtime is minimal, the auditor is completely
disabled in the Release configuration.

15.3. Buffers

Buffer objects are simply dynamically reserved blocks of memory stored in the “Heap
Segment” (page 168) (Figure 15.7). They are useful for sharing generic data between
different functions or threads. For the latter case, they must be protected by a Mutex if
multiple concurrent threads could access it (they are not thread-safe). They are fixed size.
Once created they cannot be resized, although they can be rewritten as many times as
necessary.

Figure 15.7: Dynamic memory
block.

o Use buffer create to create a dynamic memory block.

« Use buffer destroy to free up a block of dynamic memory.
o Use buffer data to get a pointer to the memory block.
o Use buffer read to read from a stream.

o Use buffer write to write to a stream.

15.4. Strings

String objects contain dynamically reserved “UTF-8” (page 162) character strings. Al-
though on certain occasions we can use static text strings (char t str[128]), on other
occasions we will need the texts to be persistent or be part of structures or objects. It
won’t always be possible to predict how much memory the string will need, so storing it
dynamically will be a better option. The first four bytes of the object store the size (in
bytes) of the text, including the final null character (Figure 15.8), so we must use the
tc () function to access the const char t* with the text. The NAppGUI strings.h
module offers a multitude of functions for working with UTF8 text strings, both static
and dynamic.

« Use str c to create a dynamic copy of a static C string.

o Use str printf to compose a dynamic string using the same format as C printf.

200 Chapter 15 - Core library

» Use tc to get a const char t* pointer to the content of a string.
« Use str len to get the size in bytes of the string.

o Use str nchars to get the number of characters.

e [(13 THello Worldi 0]
String in memory.

String *strl = str c("This a static char array."):;

String *str2 = str printf("Code: %s, Price %8.2f.", tc(product->code),
— product->price);

const char t *cstrl = tc(strl);

const char t *cstr2 = tc(str2);

// cstrl = "This a static char array."

// cstr2 = "Code: 456-34GH-JKL, Price 439.67."

Do not confuse String objects with C text strings const char t *str or char t

str[128]. The first contain a pointer to the dynamic memory area and an integer
with the number of bytes reserved.

Do not confuse the size of the string len with the number of characters nchars. In
UTFS$ they do not have to match.

In the case that it is necessary to create more extensive texts from loops, the most
efficient way is to create a Stream and, later, obtain the associated String.

String *str = NULL;
Stream *stm = stm memory(2048);
uint32 t n = arrpt size(products, Product);
stm _printf (stm, "List of %d products\n", n);
arrpt foreach (product, products, Product);
stm _printf(stm, "Code: %s, Price %8.2f.\n", tc(product->code), product->

— price);
arrpt end()
str = stm str(stm);

stm close (&stm) ;

// Do something with 'str'

str_destroy(&str);

15.5 - Arrays 201

15.5. Arrays

The Array (or Vector) is a container (or collection) of elements that are stored in
contiguous memory locations. This fact provides a series of advantages that make it the
most used data structure and the one we should resort to in the first instance. These can
be summarized in:

« Direct access O(1) to elements using pointer arithmetic, which makes the use of
iterators or algorithms to retrieve information unnecessary.

« Efficient use of cache. When an array element is read, adjacent elements are probably
loaded into the cache due to spatial locality.

o Many algorithms (search, sorting, etc.) require iterating or manipulating data se-
quentially.

o Less memory fragmentation. By reserving contiguous space, arrays tend to cause
less fragmentation compared to structures that store elements in dispersed locations.

The C language provides an elementary implementation of arrays (Listing 15.2) that
have all the advantages that we have just described, but suffer from a major deficiency:
they are static. That is, they cannot grow or contract on demand; the number of
elements must be previously defined, either statically (in the Stack) or dynamically (in the
Heap).

Listing 15.2: Arrays in C.

typedef struct product t Product;
struct product_t
{
type t type;
String *code;
String *desc;
Image *image;
real32 t price;
}i

// Stack memory
Product sprods[100];

// Heap memory
Product *dprods = heap new n (100, Product);

// Heap free
heap delete n(&dprods, 100, Product);

The Arrst type implemented in NAppGUI is, in essence, a dynamic C array plus
a series of methods to manipulate it. By dynamic we mean that the structure adjusts
its size to the actual number of elements, preserving the main premise that all remain

202 Chapter 15 - Core library

together in memory. When an Array is created, memory is reserved for a few registers
(Figure 15.9). Later, we can add new elements at the end (typical) or insert them in any
random position in case we already have data in the container. In the latter case, the
rest of the elements will be moved to the right. When the number of reserved records is
exceeded, the internal dynamic block will be duplicated to accommodate the new positions.
Likewise, it is possible to eliminate any element from the collection, moving the rest to the
left to maintain the spatial coherence of the structure. If the number of items decreases by
half, the memory block will be reduced. In this way, during the life of the container, the
memory will be adjusted by multiplying or dividing by 2 the number of reserved elements.

reserved
N ———— /
used free Insert [
grow
[Reader] [[[[[[| I/ CITT T T T 1]
Insert]
shrink
I
[Reader] [[[] [T T |
Delete

Figure 15.9: The Array will adapt its internal memory to the
actual number of elements.

15.5.1. Create arrays
o Use arrst create to create an array.
o Use arrst destroy to destroy an array and its elements.
» Use arrst new to add a new element to the array.

In (Listing 15.3) we have a simple example of how to create an array of type Product
(Figure 15.10). Adding a new element using arrst new () will return a pointer to the
memory area reserved for it. It is very important to keep in mind that the content of
said memory is indeterminate, so we must initialize all the fields with consistent values.
Likewise, when destroying the array, we must provide a destructor (i remove ()) to cor-
rectly free the memory that our object may have reserved. The memory occupied by the
object itself is managed by the container and we do not have to worry about it.

Listing 15.3: Create and destroy arrays.

static void i remove (Product *prod)
{

str destroy (&prod->code) ;

str destroy (&prod->desc);

15.5 - Arrays

image destroy (&prod->image) ;

ArrSt (Product) *products = arrst create(Product);

Product *prod = arrst new(products, Product);

prod->type = ekHDD;

prod->code = str c("GTK-1050");

prod->desc = str c("Gigabyte GeForce GTX 1050 OC 2Gb GDDR5");
prod->image = load image ("card.png");

prod->price 573.34;

arrst destroy (&products, i remove, Product);

203

real32_t Image* String* String* type_t
- g 8 g yhe Product

(20 bytes)

| Gigabyte GeForce GTX 1050 OC 2Gb GDDRS5 (38) |

ArrSt(Product) *products

[Header| Product | Product | Product [[.

Figure 15.10: Array of Product type objects.

15.5.2. Access to elements and iteration
o Use arrst size to get the number of elements.
o Use arrst get to get an element.
o Use arrst all to get all elements.

o Use arrst foreach to loop through the elements.

As we mentioned at the beginning, accessing an element of the array is nothing more
than obtaining a pointer to its memory address, calculated from a base and an offset. This
allows us to get a random element using its index or get the starting address (arrst all)
and use pointer arithmetic to loop through all elements (Listing 15.4). This is what the

arrst foreach macro does, iterating in a more elegant way.

Listing 15.4: Access and loop an array.

uint32 t i, n = arrst size(products, Product);
for (i = 0; i < n; ++i)
{

const Product *prod = arrst get const(products, i, Product);

204 Chapter 15 - Core library

// Do something

const Product *prod = arrst all const(products, Product);
for(i = 0; 1 < n; ++i, ++prod)
{

// Do something

arrst foreach(prod, products, Product)
// Do something

arrst end()
// In reverse order
arrst forback(prod, products, Product)

// Do something

arrst _end()

15.5.3. Array copy
Use arrst copy to copy an array.

In the case that we want to make an exact copy of an array, we must provide a copy
method that allows all the fields of an object to be correctly initialized from another already
existing (Listing 15.5). Making an exact copy of the memory block of the original object
will not be safe in case there are dynamically hosted fields (String, Image).

Listing 15.5: Copying a Product array.

static void i copy(Product *dest, const Product *src)

{
dest->type = src->type;

dest->code = str copy(src->code);
dest->desc = str copy(src->desc);
dest->image = image copy (src->image);
dest->price = src->price;
}
ArrSt (Product) *nproducts = arrst copy(products, i copy, Product);

arrst destroy(&nproducts, i remove, Product);

15.5 - Arrays 205

15.5.4. Array serialization
o Use arrst read to read an array from a Stream.
o Use arrst write to write an array to a Stream.

Serialize is to transform a memory object into a stream of bytes (Stream) in order to
send them to a certain destination through an output channel. Deserializing is the reverse
process, reading a stream of bytes from an input channel and re-creating the original object
in memory. In the case of arrays, the operation is reduced to (de)serializing each of its
elements, as we see in (Listing 15.6).

Listing 15.6: Serialization of an array.

static void i read(Stream *stm, Product *prod)

{
prod->type = stm read enum(stm, type t);

prod->code = str read(stm);
prod->desc = str read(stm);
prod->image = image read(stm);
prod->price = stm read r32(stm);

static void i write(Stream *stm, const Product *prod)
{

stm write enum(stm, prod->type, type t);

str write(stm, prod->code);

str write(stm, prod->desc);

image write(stm, prod->image);

stm write r32(stm, prod->price);

ArrSt (Product) *products = arrst read(istream, i read, Product);

arrst write(ostream, products, i write, Product);
arrst destroy(&products, i remove, Product);

15.5.5. Sort and search in arrays
o Use arrst_sort to sort an array.
o Use arrst search to search for an element in a linear O(1) way.
o Use arrst bsearch to search for an element in a binary O(logn) way.

The usual way of using arrays will be to add elements at the end using arrst new and
then iterate over the set. This “natural” order will be sufficient in most cases, but it is
possible that we need to organize the elements according to another criterion to:

o Present the information ordered by one or more fields of the structure.

206 Chapter 15 - Core library

o Optimize searches. To locate a certain element, there is no choice but to traverse
the entire array, with linear cost O (n). But we can solve the search in logarithmic
time O (logn) if the array is sorted, dramatically increasing performance especially
on large sets (Figure 15.11).

0 999

250

Figure 15.11: In a maximum of 10
steps we will find one element in a
thousand (20 steps for a million).

15.5.6. Comparators and keys

Sort and search are two closely related concepts where keys and comparators come
into play.

o Key: Set of fields of an object, normally only one, that uniquely identify it within a
container (code, id, reference + size, etc.). They should be as compact and fast to
process as possible (e.g. integer better than string).

o Comparator: Function that establishes an order relationship between two elements of
the same type by comparing their keys, for example i compare () in (Listing 15.7).
They are used to organize items in containers.

o Key comparator: Compares an element with a key, using the same order relation-
ship as the element comparator. They are used to search, where it would only be
necessary to provide the key. In (Listing 15.8) we have a search example where we
use a text string as a key, since it is enough to identify the object.

Listing 15.7: Sort an array using a comparator.

static int i compare (const Product *pl, const Product *p2)

{

return str scmp (pl->code, p2->code) ;

}

15.5 - Arrays 207

arrst sort(products, i compare, Product):;

In the case of arrays, searches can be optimized using arrst bsearch () if the array
has been previously sorted. If it is not ordered, we will have no choice but to use the much
slower arrst search () sequential search.

Listing 15.8: Search for an element using a key comparator.

static int i compare key(const Product *pl, const char t *key)

{
return str cmp(pl->code, key);

// Element position
uint32 t posl, pos2;

// Slow O(n)
Product *prodl = arrst search(products, i compare key, "G3900", &posl, Product,
— char t);

// Fast O(logn)
Product *prod2 = arrst bsearch(products, i compare key, "G3900", &pos2, Product
<~ , char t);

15.5.7. Insert and delete in arrays
Use arrst insert n to insert elements.
Use arrst delete to delete an element.
Use arrst clear to remove all elements.

It is not usually common to add and/or delete elements from arbitrary positions in the
array, but it is possible to do so if the case arises (Listing 15.9).

Listing 15.9: Insert or delete elements.

// New element at 6th position

Product *prod = arrst insert n(products, 6, 1, Product);
prod->type = ekHDD;

prod->code = str c("GTK-1050");

prod->desc = str c("Gigabyte GeForce GTX 1050 OC 2Gb GDDRS5S");
prod->image = load image("card.png"):;

prod->price = 573.34;

// Remove 8th element
arrst delete(products, 8, i remove, Product);

// Remove all (without destroy the array)
arrst clear(products, i remove, Product);

208 Chapter 15 - Core library

15.5.8. Type declaration in arrays
e Use Declst to declare struct and enum types.

To work correctly with user types, it is necessary to declare the macro (Dec1St (Product
), Declst (type t)). This will define custom functions that will perform compile-time
type checking, which will help us maintain the correctness of our code (Listing 15.10).
In the case of basic types, it is not necessary to make this declaration, nor to provide a
destructor, since these basic types do not generate dynamic memory.

Listing 15.10: Type declaration.

typedef enum type t type t;
typedef struct product t Product;
DeclSt (type t);

DeclSt (Product) ;

ArrSt (uint32 t) *ints = arrst create(uint32 t);
ArrSt (type t) *types = arrst create(type t);
ArrSt (Product) *products = arrst create(Product);

// No destructor required

arrst destroy(&ints, NULL, uint32 t);

arrst destroy(&types, NULL, type t);

// Destructor required

arrst destroy(&products, i remove, Product);

15.5.9. Array limitations

While it is true that Arrst is an optimal structure in terms of performance and ease of
use, there are cases in which we must take special care:

« Opaque objects: If the type definition is not public, the container cannot calculate
the space needed for each element, so we can only work with pointers to them. See
“Pointer arrays” (page 209).

o Shared objects: If other structures in the model maintain pointers to the container
elements, we will have Segmentation Fault problems due to the change of memory
addresses when relocating the internal block of the container (Figure 15.12). In these
cases, we must also use pointer arrays.

o Many insertions and deletions: Using arrays may not be optimal in cases where you
are constantly adding or deleting elements at arbitrary positions. Fach operation
involves moving presumably large blocks of memory to maintain the spatial coherence
of the container. Use “Sets” (page 211) sets.

15.6 - Pointer arrays 209

0x45A20] realloc 0x87810 _ 8row

[Header| Product | Product | [Header]| Product | Product | Product |

Y
‘\

0x45A20 oxasa20(Q) Segmentation fault

Figure 15.12: Danger when maintaining pointers to array elements.

15.6. Pointer arrays

These containers are a specialization of arrays, where pointers to objects will be stored
and not the objects themselves (Figure 15.13). Although, in general, everything seen in
“Arrays” (page 201) works, there are certain peculiarities that we must take into account:

e You have to create and free dynamic memory for each object.
o Access may be slower, since a pointer must be dereferenced for each element.

o Maintaining the array (inserting, deleting, sorting) can be faster since less memory
has to be moved, especially in the case of handling large structures or arrays with
many elements.

o The value NULL can be placed in any position.
o It is safer if other parts of the application maintain pointers to the container elements.

o It is the only option to work with opaque objects.

[Product | [Product |
Product
[Header| Product | Product | Product] ... [Header| * [* [* [* [* [* }—{ Product |
[Product | [Product |

Figure 15.13: Array of objects vs array of pointers.

15.6.1. Create pointer arrays
o Use arrpt create to create an array.
o Use arrpt destroy to destroy an array and its elements.
o Use arrpt append to add a new pointer to the array.

o Use DeclPt to declare pointer types to struct.

210 Chapter 15 - Core library

In (Listing 15.11) we see how to create and destroy arrays of Product pointers. The
main difference with respect to object arrays lies in the management of the dynamic
memory of each element.

Listing 15.11: Create and destroy arrays of pointers.

static void i destroy(Product **product)
{
str destroy (& (*product)->code) ;
str_destroy (& (*product) ->desc) ;
image destroy (& (*product)->image) ;
heap delete (product, Product);

ArrPt (Product) *products = arrpt create(Product);

Product *prod = heap new(Product);

arrpt append(products, prod, Product);

// Will modify the stored object

prod->type ekHDD;

prod->code = str c("GTK-1050");

prod->desc = str c("Gigabyte GeForce GTX 1050 OC 2Gb GDDR5");
prod->image = load image ("card.png");

prod->price = 573.34;

arrpt destroy (&products, i destroy, Product);

15.6.2. Copying arrays of pointers
Use arrpt copy to copy an array.

The copy works in a similar way as in “Array copy” (page 204), with the difference that
we must dynamically reserve space for the object itself (Listing 15.12).

Listing 15.12: Copying an array of Product pointers.

static Product *i copy(const Product *src)
{
Product *dest = heap new(Product);
dest->type = src->type;

dest->code = str copy(src->code);
dest->desc = str copy(src->desc);
dest->image = image copy (src->image);
dest->price = src->price;

return dest;

ArrSt (Product) *nproducts = arrpt copy(products, i copy, Product);

arrpt destroy(&nproducts, i destroy, Product);

15.7 - Sets 211

15.7. Sets

The sets are data containers that allow us to work with collections of objects, just
like the array. The main difference is that the elements are not stored in contiguous
memory locations, but rather use a tree-like structure where each node has two descendants
(Figure 15.14). They are known as BST (binary search trees) or red-black trees.

array
[o[1]2]3]4a]s5]6]7][8]9]10]11]

Figure 15.14: Representation of ar-
rays and sets.

BST are structures optimized for cases where insertions, deletions and searches are very
frequent. They are permanently sorted, hence it is possible to insert, delete or locate any
element in logarithmic time 0O (logn), without the need to use sorting functions such as
arrst_sort (Figure 15.15). In order for maintenance to be carried out efficiently, the tree
that supports the structure must meet a series of characteristics:

insert (1] [9] delete X[[2]

Figure 15.15: In search trees, insertion or deletion does not break the order of the
set.

o Binary: Each node can only have 0, 1 or 2 children.

e Ordered: All descendants to the left of a node are of lower value and those to the
right of a node are of higher value. The order and search criteria are set in the
constructor using a compare-key function and cannot be changed during the lifetime
of the container. The new elements will be inserted in their correct position accord-
ing to this order. It does not support duplicate elements or elements in arbitrary
positions.

o Balanced: A tree can satisfy both of the above properties, but have degenerated to

212 Chapter 15 - Core library

a list where lookups can no longer be resolved in logarithmic time (Figure 15.16). In-
ternally, NAppGUI setst containers are implemented with so-called red-black trees,
where a maximum height of 21og (n+1) is guaranteed. This is achieved by restruc-
turing the tree after each insertion or deletion, so adding a new element (or deleting
it) resolves to a maximum of 0 (logn). This is much faster than in arrays, where
you have to move all the elements to insert a record in a specific position, with an
associated cost of O (n).

Figure 15.16: Balanced degenerate
search tree.

15.7.1. Create sets
o Use setst create to create a set.
o Use setst destroy to destroy the set and its elements.

Because the set of elements must always remain ordered under the same criteria, we
must indicate the object-key comparison function in the constructor (see “Comparators
and keys” (page 206)) (Listing 15.13). As occurred when sorting and searching in arrays,
we need to define the fields that will make up the unique key of the object, which will
allow us to locate elements later. The function that destroys an element of the set should
not release the memory occupied by the object itself, since it is managed by the container,
just as happens with Arrst.

Listing 15.13: Creation of a set, which uses char t* as a key.

typedef struct product t Product;
struct product t
{

type t type;

String *code;

String *desc;

Image *image;

real32 t price;

}:

static void i remove (Product *prod)

{
str destroy (&prod->code) ;

15.7 - Sets

str destroy (&prod->desc);
image destroy (&prod->image) ;

static int i compare (const Product *prod, const char t *code)

{

return str cmp(prod->code, code);

SetSt (Product) *products = setst_create(i_compare, Product, char t);

setst destroy(&products, i_remove, Product) ;

213

15.7.2. Insert and delete elements in sets
o Use setst insert to insert an element.

o Use setst delete to delete an element.

Unlike what happens with arrays, we cannot add elements in any arbitrary position,
so inserting implies a search using the object key (Listing 15.14). If an element with the
same key already exists, the insertion will not be carried out and NULL will be returned.
Otherwise, we will be returned the memory address where we must initialize our object.

Listing 15.14: Insertion of a new element.

Product *prod = setst insert (products, "GTK-1050", Product, char t);
if (prod != NULL)
{
prod->type = ekHDD;
prod->code = str c("GTK-1050");
prod->desc = str c("Gigabyte GeForce GTX 1050 OC 2Gb GDDR5");
prod->image = load image ("card.png");
prod->price = 573.34;

}

else

{
// Object already exists

}

setst destroy(&products, i_remove, Product) ;

Duplicates are not allowed in SetSt, meaning those elements that have the same key.

Delete is similar to insert, we will only have to provide the key and a destructor. If an

element with said key does not exist, FALSE will be returned (Listing 15.15).

Listing 15.15: Deleting an element.

214 Chapter 15 - Core library

bool t del = setst delete(products, "GTK-1050", i remove, Product, char t);
if (del == TRUE)
{
// Deleted!
}
else
{
// Not found
}

15.7.3. Search and tour in sets. Iterators
» Use setst get to search for an element.
» Use setst next to move the iterator to the next element.
» Use setst prev to move the iterator to the previous element.
o Use setst first to move the iterator to the first element of the set.
o Use setst last to move the iterator to the last element of the set.

We cannot access the elements of a set using a random index, as was the case with
arrays. The nodes are dispersed in different memory areas, which makes it impossible to
calculate the position of a specific element from a base address. An iterator is nothing
more than a pointer within the set that acts as a marker for the currently selected element
(Figure 15.17). Starting from a specific position, we can move to the previous or next
element, but never make arbitrary jumps. In (Listing 15.16) we see how to go through the
elements iterating from the first record, and in (Listing 15.17) how to locate an element
with a known key.

Figure 15.17: Iterators allow
us to move through the struc- prev
ture.

Listing 15.16: Iterating over the elements of a set.

const Product *prod = setst first(products, Product);
while (prod != NULL)
{

// Do something

}

15.7 - Sets 215

prod = setst next (products, Product);

setst foreach(prod, products, Product)

// Do something

setst fornext (prod, products, Product)

// In reverse order
setst forback(prod, products, Product)

// Do something

setst forprev(prod, products, Product)

Listing 15.17: Locating an element of a set.

const Product *prod = setst get const(products, "GTK-1050", Product, char t);
if (prod != NULL)

{

// Do something

// From here, we can move next or prev
prod = setst next (products, Product):;

After setst get (), the iterator will be set to the element.

15.7.4. Comparison of arrays and sets

(Table 15.1) shows a performance comparison when using both containers. The Product
structure described in (Listing 15.13) has been used. We will compare six types of con-
tainers, combining registers and pointers. The test conditions are:

Elements will be sorted by the code field using the i compare method described in
(Listing 15.13).

Elements have been previously created and reside in memory. The times only reflect
the management carried out by the containers.

The code field takes values from "0" to "n-1", where n=100, 000 is the number of
elements. The elements have been previously shuffled using the bmem shuffle n
function.

The tests have been carried out on a Raspberry Pi 3 Model B with NAppGUI
compiled in Release version. We have chosen this platform due to its clear technical
inferiority compared to others. In this way the asymptotic difference is more evident.

216 Chapter 15 - Core library

15.8 - Pointer sets 217

Operation ArrSt | ArrPt | ArrSt-Sort | ArrPt-Sort | SetSt | SetPt

Add(100k) 0.006 | 0.004 27.600 2.896 0.159 | 0.274
Loop(100k) | 0.000 | 0.000 0.000 0.000 0.022 | 0.025
Search(100k) | 84.139 | 588.080 0.101 0.218 0.121 | 0.232

Sort(100k) 0.085 | 0.205 - - - -
Delete(100k) | 0.004 | 0.003 31.198 3.064 0.171 | 0.253

Table 15.1: Comparison results (in seconds).

In view of these data, we can reach the following conclusions:

Linear searches 0 (n) are extremely slow.

Maintaining an ordered array after each insertion or deletion is expensive. It is
more efficient to add all the elements and then sort, although this will not always
be possible. If the elements enter or leave arbitrarily but the set must always be
ordered, it is better to use sets.

Record-based containers are more efficient in queries, but less efficient in inserting
or deleting. However, this test does not include the time to create or free dynamic
memory, something inherent to pointer containers.

Iterating on arrays is practically free, but iterating on sets has a small cost due to
the jump logic between nodes.

We cannot say that one container is better than another in general. It will depend
on each specific case.

For small groups (less than 1000 elements) the differences are practically impercep-
tible.

For extremely small groups (up to 100 elements) always use arrays. The asymptotic
improvement of sets is clouded by the much more efficient implementation of Arrays.

15.8. Pointer sets

Just like we saw the Arrpt, the type setPt are set-type containers (based on binary
search trees) but they contain pointers instead of complete objects. Therefore, everything
seen in “Sets” (page 211) works, except for the need to create and free the memory oc-
cupied by each object, since in the container there will only be one pointer to the object
(Figure 15.18). The decision to use setst or SetPt will depend on each case, but the
reasons will be practically the same as those that conditioned the choice between Arrst
and ArrPt.

218 Chapter 15 - Core library

o If external references to elements are maintained, use SetPt.

« If we host opaque objects, use Setpt.

Product | Product | Product | [Product | [Product | [Product

Figure 15.18: Sets of objects and pointers.

15.8.1. Create pointer sets
» Use setpt create to create a set.
o Use setpt destroy to destroy the set and its elements.
o Use setpt insert to insert an element.

The main difference with respect to Setst lies in the insertion and deletion of objects.
This time setpt insert () will not return the memory address of the inserted object,
but rather a boolean indicating whether the insertion was possible or not (Listing 15.18).
For its part, the destructor must free the memory of the object itself, in addition to the
memory reserved by the object for each field.

Listing 15.18: Creation of a set, which uses char t* as a key.

typedef struct product t Product;
struct product t
{

type t type;

String *code;

String *desc;

Image *image;

real32 t price;

}i

static void i destroy(Product **prod)
{
str destroy (& (*prod)->code) ;
str destroy (& (*prod)->desc);
image destroy (& (*prod)->image) ;
heap delete(prod, Product);

static int i compare (const Product *prod, const char t *code)

{

15.9 - Data binding 219

return str cmp(prod->code, code);

}
SetPt (Product) *products = setpt_create(i_compare, Product, char t);

Product *prod = heap new(Product);

prod->type = ekHDD;

prod->code = str c("GTK-1050");

prod->desc = str c("Gigabyte GeForce GTX 1050 OC 2Gb GDDR5");

prod->image = load image ("card.png");
prod->price = 573.34;
if (setpt insert(products, "GTK-1050", prod, Product, char t) == FALSE)

{
// Insert error
i destroy (&prod) ;
}

setpt destroy(&products, i destroy, Product);

15.9. Data binding

In high-level languages, such as .NET or Javascript, data binding is a technique that
allows establishing an automatic connection between the data of an application and its user
interface elements. The NAppGUI DBind module implements and extends this concept
in C language, since it makes it possible to automate certain tasks on the structures
and objects of our application (Figure 15.19). Thanks to this we will avoid generating
redundant code that is problematic to maintain, providing a general interface for:

Creation, destruction and copying of objects.
Comparison of objects.

Serialization: Reading and writing in streams.
Import/export in different formats, such as JSON.

Synchronization with user interfaces.

15.9.1. Register data types

Use dbind to register structures.

Use dbind enum to register enumerations.

The first step to use data binding is to register in DBind the user-defined types (struct
and enum). The basic types are known in advance, since they are added automatically
when starting the program. We start from our simple data model (Listing 15.19):

220 Chapter 15 - Core library

struct Product Product
type_t type; type
String *code; code
String *desc; desc
Image *image; image
real32_t price; price

}

[Create] [Copy] [Export] [Streams] [GUI]

Figure 15.19: Automation of operations on data with DBind.

Listing 15.19: Data model based on the Product structure.

typedef enum type t
{

ekCPU,

ekGPU,

ekHDD,

ekSCD
} type t;

typedef struct product t
{
type_t type;
String *code;
String *desc;
Image *image;
real32 t price;
} Product;

We will add it to DBind when starting the application (Listing 15.20). This will
create a sort of “database” that will house the name, type and offset of the fields of each
structure (Figure 15.20). Thanks to this information it will be possible to manipulate
objects completely automatically and without the need to create additional code by the
programmer.

Listing 15.20: Registering the data model in (Listing 15.19).
dbind enum(type t, ekCPU, "");

dbind enum(type t, ekGPU, "");
dbind enum(type t, ekHDD, "");
dbind enum(type t, ekSCD, "");
dbind(Product, type t, type);
dbind (Product, String*, code);
dbind (Product, String*, desc);
dbind (Product, Image*, image);
dbind(Product, real32 t, price);

15.9 - Data binding 221

Figure 15.20: Internal tables cre-
ated by DBind when registering the
data model.

15.9.2. Type aliases

enum type_t

B

ekCpPU,
ekGPU,
ekHDD,
ekSCD

struct Product

{

b

type_t type;
String *code;
String *desc;
Image *image;
real32_t price;

o Use dbind alias to register alias (typedef).

type_t

name val

ekCPU 0

ekGPU 1

ekHDD 2

ekSCD 3

Product

offset |name type
0] type type_t
4 code String*
8 desc String*
12 image Image*
16 price real32_t

dbind () uses the type name of each field in the structure to locate it within its internal
record. Using unregistered types will result in a ekDBIND TYPE UNKNOWN error. For
example, in (Listing 15.21), DBind does not know that the type color t is actually a

uint32_t:

Listing 15.21: Misuse of unregistered types.

typedef uint32 t color t;
typedef struct product t
{

type t type;

String *code;

String *desc;

Image *image;

real32 t price;

color_t color;
} Product;

// ekDBIND TYPE UNKNOWN
dbind(Product, color t, color);

222 Chapter 15 - Core library

To support equivalent types declared using the C typedef, we will only have to add
them as ’alias’ in DBind (Listing 15.22):

Listing 15.22: Declaring a typedef via alias in DBind.

typedef uint32 t color t;
dbind alias(uint32 t, color t);

// ekDBIND OK 'color t' is a known type
dbind(Product, color t, color);

15.9.3. Creating objects
» Use dbind create to create objects.
o Use dbind destroy to destroy objects.

One of the first uses of DBind is the creation, initialization, copying and destruction
of objects without having to explicitly program constructors and destructors.
This operation can become cumbersome when there are nested objects or containers as
part of the main object. In (Listing 15.23) we have a simple example of constructing and
destroying an object of type Product without having explicitly defined functions for it.
When registered, DBind knows how to reserve memory and initialize each field according
to “Default values” (page 227).

Listing 15.23: Automatic construction and destruction.

Product *prod = dbind create (Product);
// 'prod' correctly initialized by default

dbind destroy (&prod, Product);
// 'prod' correctly destroyed including all its fields

15.9.4. Object initialization
o Use dbind init to initialize objects.
o Use dbind remove to free objects.

dbind create() and dbind destroy() act on the “Heap Segment” (page 168), that
is, they allocate and free the dynamic memory necessary for the object itself. But some-
times it is possible that objects reside in an automatically managed memory space, either
because they are housed in the “Stack Segment” (page 167) or in a container like Arrst or
Setst. In these cases we will use initializers and releasers that will work on the internal
fields of the object without worrying about the memory of the object itself (Listing 15.24).
Obviously, the internal fields of a structure initialized with dbind init () can reserve
dynamic memory that will be freed by dbind remove ().

15.9 - Data binding 223

Listing 15.24: Automatic initialization and release.

// Object in stack

Product prodl;

// Object in container

Product *prod2 = arrst new(arrst, Product);

dbind init (&prodl, Product);
dbind init(prod2, Product);
// 'prodl', 'prod2' correctly initialized by default

dbind remove (&prodl, Product);

dbind remove (prod2, Product);

// ONLY 'prodl', 'prod2' fields destroyed

// The object itself memory will be managed automatically
// Because lives in stack or container

15.9.5. Object copy

o Use dbind copy to copy objects.

Object duplication is also automated, allowing a “deep” and recursive copy of all fields
and nested objects, without the need to define any copy function (Listing 15.25).

Listing 15.25: Automatic object copy.

Product *nprod = dbind copy(prod, Product):;

dbind destroy(&nprod, Product);

15.9.6. Editing objects

Once an object of a registered type has been created, it can be edited and manipulated
like any C object since, in reality, it is still an instance of a struct type (Listing 15.26).

Listing 15.26: Editing objects managed with DBind.

Product *prodl = dbind create (Product);

Product prod2;

dbind init (&prod2, Product);

// 'prodl', 'prod2' are really struct instances

str upd(&prl->desc, "Another desc");
pr2.price = 100.23f;
bstd printf ("Product name: %s with price: %.2f\n", tc(pr2.desc), pr2.price);

dbind destroy(&prodl, Product);
dbind remove (&prod2, Product);

224 Chapter 15 - Core library

15.9.7. Basic types

As we already mentioned at the beginning, we only have to register the structures
and enumerations of our application. DBind already knows the basic types and strings
(string) in advance, so they will be accepted as field types in struct:

o Boolean: bool t.

o Integers: uint8 t, uintlé t, uint32 t, uint64 t, int8 t, intl6 t, int32 t,
inteée4d t.

o Real: real32 t, real64 t.
o Dynamic text strings: String.

Use of unregistered types will be ignored by dbind (). Use dbind__alias() if you want
to use equivalent basic types.

15.9.8. Nested objects

A registered object can be part of another registered object, using static or dynamic
memory reservation (Listing 15.27). In this case, the nested objects stockl and stock2
of type Stock will be initialized with their default values when creating the main object
using dbind create (Product).

Listing 15.27: Objects of type Stock nested in Product.

typedef struct stock t

{
uint32 t min units;
uint32 t max units;
uint32 t cur units;
String *location;
bool t required;

} Stock;

typedef struct product t
{

Stock stockl; // Static alloc
Stock *stock2; // Dynamic alloc
} Product;

// Stock struct to DBind
dbind(Stock, uint32 t, min units);
dbind(Stock, uint32 t, max units);
dbind(Stock, uint32 t, cur_ units);
dbind (Stock, String*, location);
dbind(Stock, bool t, required);

15.9 - Data binding 225

// Stock fields in Product
dbind (Product, Stock, stockl);
dbind (Product, Stock*, stock2);

Product *prod = dbind create (Product) ;

// 'stockl', 'stockZ2' instances correctly initialized

bstd printf ("Product locations: %s, %$s\n", tc(prod->stockl.location), tc(prod->
—» stock2->location));

dbind destroy (&prod, Product);

15.9.9. Binary objects
o Use dbind binary to declare binary types.

A binary (or opaque) object is one whose declaration is hidden, that is, we do not have
access to (or do not want to register in DBind) its struct type. These types of objects
will be handled as indivisible blocks of bytes, without going into details about the nature
or origin of their content. We have a clear example with the type Image, automatically
declared by NAppGUI. Thanks to this we can use images within our data model:

Listing 15.28: Using images (binary object) with DBind.

typedef struct product t
{

Image *image;
} Product;

dbind (Product, Image*, image);

Product *prod = dbind create (Product);
if (prod->image != NULL)
{

// Exists a default image

draw image (prod->image) ;

// product->image will be destroyed if exists.
dbind destroy (&prod, Product);

Si queramos registrar nuestros propios tipos binarios, deberemos proveer a DBind de
funciones para copiar, serializar y destruir objetos de dicho tipo (Listing 15.29):

Listing 15.29: Registro de nuestro tipo binario.

typedef mytype t MyType; // Definition is hidden

static MyType *mytype copy(const MyType *obj)
{

226 Chapter 15 - Core library

// Return a copy of 'obj'

static MyType *mytype read(Stream *stm)
{

// Read the object from stream data and return it

static void mytype write(Stream *stm, const MyType *obj)
{
// Write the object data into the stream

static void mytype destroy(MyType **obj)
{
// Destroy the object here

// Register 'MyType' objects in DBind
dbind binary (MyType, mytype copy, mytype read, mytype write, mytype destroy);

// Now we can use 'MyType' objects with DBind
typedef struct product t
{

MyType *mytype;
} Product;

dbind (Product, MyType*, mytype);

Product *prod = dbind create (Product) ;
if (prod->mytype != NULL)
{

// Exists a default 'MyType' object

// 'prod->mytype' will be destroyed if non-NULL.
dbind destroy(&prod, Product);

15.9.10. Using arrays

The containers of type ArrSt and ArrPt are also recognized by DBind and, therefore,
can be part of the fields in a registered structure (Listing 15.30) .

Listing 15.30: Using arrays with DBind.

typedef struct product t
{

ArrPt (Image) *images;
ArrSt (Stock) *stocks;

15.9 - Data binding 227

} Product;

dbind (Product, ArrPt (Image)*, images);
dbind (Product, ArrSt (Stock)*, stocks);

// Create an object with inner arrays
Product *prod = dbind_create(Product);

// Create an array of registered objects
ArrSt (Product) *products = dbind_create(ArrSt(Product));

// Will destroy 'images' and 'stocks' arrays and its elements.
dbind destroy (&prod, Product);

// Will destroy 'products' array and its elements.
dbindidestroy(&products, ArrSt (Product)) ;

An important fact, which we should not overlook, is that containers of type ArrSt can
only be used for “open” types, where their definition and, therefore, the memory that the
container need to reserve for each item is known. For binary or opaque types (String,
Image, MyType, etc.) we must use containers ArrpPt that contain pointers to objects.

15.9.11. Default values
o Use dbind default to set the default values of an object’s fields.

We have mentioned previously that, when we create a registered object, its fields are
initialized with the default values, which we show in defaultval.

Type Value
Booleans FALSE
Integers 0
Real 0.0
Enumerated The minimum value (it does not have to be 0).
String Empty string "", (not NULL).
Objects Default values for each field.
Objects (pointers) | Memory reservation and default values for each field.
Binaries NULL
Containers Container is created with 0 elements.

Table 15.2: Default values.

It is possible to change these values for each field of a (Listing 15.31) object. In addition

228 Chapter 15 - Core library

to default values for basic types, we can set “default nested objects” or “default containers”
for each new instance that is created or initialized with DBind.

Listing 15.31: Set default values.

// Defaults of basic types
dbind default (Product, type t, type, ekHDD);
dbind default (Product, real32 t, price, 100.0f);

// Defaults of strings

// NULL is allowed

dbind default (Product, String*, desc, "Empty-desc");
dbind default (Product, String*, desc, NULL);

// Defaults of binaries

// NULL is allowed

Image *empty icon = get image ("empty"):;

dbind default (Product, Image*, image, empty icon);
dbind default (Product, Image*, image, NULL);

dbind destroy(&empty icon, Image);

// Defaults of static nested objects

// NULL is NOT allowed

Stock *defstock = get default stock();

dbind default (Product, Stock, stockl, defstock);
dbind destroy(&defstock, Stock);

// Defaults of dynamic nested objects

// NULL is allowed

dbind default (Product, Stock, stock2, defstock);
dbind default (Product, Stock, stock2, NULL);

// Defaults of containers

// NULL is allowed

ArrSt (Stock) *defstocks = get 3 locations_stocks();

dbind default (Product, ArrSt(Stock)*, stocks, defstocks);
dbind destroy(&defstocks, ArrSt(Stock));

15.9.12. Numeric ranges
o Use dbind range to set a maximum and minimum on numeric values.
o Use dbind precision to set the precision to real values.
o Use dbind increment to set the value of discrete increments.

o Use dbind suffix to set a suffix that will be added when converting numbers to
text.

To conclude with the initialization options, DBind allows us to automatically filter and
limit the values related to numeric fields uint32 t, int8 t, real64 t,etc (Listing 15.32).

15.9 - Data binding 229

Internally, it will be responsible for validating the data every time values are read from
any data source (GUI, JSON, Streams, etc.).

Listing 15.32: Range and precision of the price value.

dbind range (Product, real32 t, price, .50f, 10000f);
dbind precision(Product, real32 t, price, .01f);
dbind increment (Product, real32 t, price, 5.f);
dbind suffix(Product, real32 t, price, "€");

15.9.13. Object compare with DBind
o Use dbind cmp to compare two objects.
» Use dbind equ to check if two objects are equal.

Performing a “deep” comparison of objects can involve a lot of work, especially on large
objects with nests or containers. DBind provides this function for any registered type
(Listing 15.33). See “Comparators and keys” (page 206).

Listing 15.33: Object compare with DBind.

static int i cmp(const Product *prl, const Product *pr2)

{
return dbind cmp(prl, pr2, Product);
}

ArrPt (Product) *products = create products();
arrpt sort (product, i cmp, Product);

const Product *prl = get productl();
const Product *pr2 = get productl();
if (dbind equ(prl, pr2, Product) == TRUE)
{

// 'prl' and 'pr2' are equals
}

The order relationship established by dbind cmp () is from lowest to highest, which
translates to:

o For numeric types it will return -1 if the first element is less, 1 if the first element is
greater and 0 if they are equal.

o For text strings, it will perform a character-by-character alphabetical comparison,
returning -1, 1 upon finding the first mismatch, or 0 if Both chains are totally the
same.

230 Chapter 15 - Core library

o For arrays, it will first compare the number of elements in each container, considering
“smaller” the one with the fewest elements. If this number matches, an element-by-
element comparison will be performed until the first “not equal” is found.

« For nested objects, it will perform a recursive field-by-field comparison in the order
they are declared in the struct. It will return 0 only if all fields are equal.

15.9.14. Serialization with DBind
» Use dbind read to read object from a stream.
o Use dbind write to write an object to a stream.

Another great advantage that DBind offers is the automatic serialization of registered
objects, knowing the detailed composition of each type of data. Therefore, it is possible
to access the I/O channels without having to explicitly program write and read functions,
as we did in “Array serialization” (page 205) (Listing 15.34) (Figure 15.21).

Listing 15.34: Object serialization with DBind.

ArrPt (Product) *products = dbind read(stream, ArrPt(Product));

dbind write(stream, products, ArrPt(Product)):;

struct Product
{ Product

S

type_t type; ¢’ type
String *code; - code
String *desc; desc

I\

Image *image; - image

real32_t price; o —— : -
s % price >

R RES

SIS

Figure 15.21: Reading/Writing objects using DBind.

15.9.15. Import and export to JSON

DBind provides a private API for external modules to access registry information and
take advantage of the full power of data binding. Omne of these modules is “JSON”
(page 424) (Figure 15.22) which allows to export (Listing 15.35) and import (Listing 15.36)
objects of registered types automatically without no additional effort. In (Listing 15.37)
we see a fragment of the generated JSON file.

Listing 15.35: Export to JSON with DBind.

ArrSt (Product) *products = dbind create (ArrSt (Product));

15.9 - Data binding 231

Stream *stream = stm to file("data.json", NULL);
json write(stream, products, NULL, ArrSt(Product)):;

Listing 15.36: Import from JSON with DBind.

Stream *stream = http dget ("http://mywebservice.com/dproducts.php", NULL, NULL)
— 7

ArrSt (Product) *products = json_read(stream, NULL, ArrSt(Product));

// 'products' is now a DBind-known object

dbind_destroy(&products, ArrSt (Product)) ;

Listing 15.37: JSON generated from ArrSt (Product).

"code":"i7-8700K",

"desc":"Intel BX80684178700K 8th Gen Core 17-8700K Processor",
"type":0,
"price":374.8899999999999863575794734060764312744140625,
"image":"\/9j\/4AAQSkZJIRgABAQ. .. .

"code":"G3900",

{
[
Product {
type 2 "code":"17-8700K",
code Oo.%&"desc“:"lntel BX8068...",
desc &= ¢’ 'type":0,
image 00<>C00"prlce":374'88999’
"i{mage":"\/93j\/4AAQSkZIR. ...
Sor o inage T\ [93\/4AA0

-
}

Figure 15.22: Data Binding in JSON script parsing.

15.9.16. Synchronization with graphical interfaces

And finally, the main use that has traditionally been given to data binding: The pos-
sibility of synchronizing the graphical interface with the objects that make up the data

232 Chapter 15 - Core library

model. This paradigm is known as MVVM (Model- View- ViewModel) (Figure 15.23) and
uses the Layout and Cell types to associate struct instances and fields respectively.
More information at “GUI Data binding” (page 396).

Product (=
| type
¢’| code Layout
&’| desc
image &
: ¢
price %
Code
%4 “ i7-8700K H
Description (/0
C/O Intel BX80684178700K 8th Gen Core
i7-8700K Processor
Type Price
#||®@cPu OepU OHDD Osep | | 37490 € ||| »

Figure 15.23: Automatic data synchronization and graphical interface.

15.10. Streams

A stream is a data flow that runs from a source to a destination. Think of a phone call.
We have an origin (the person who speaks), a destination (the person who listens) and a
channel (the line itself). In programming, the stream is the equivalent to the telephone line,
it is the pipe that joins the application with a data source or destination (Figure 15.24) and
through which binary information, bit sequences, run. As with any other communication
channel, the information is volatile, available for a very limited time. Once it reaches the
receiver, it disappears.

Figure 15.24: Streams connect the % @

process with the machine and the
world.

In essence, there are three elementary operations to perform when working with streams:
Create the channel, read data and write data.

o Use stm memory to create a read/write memory stream.

15.10 - Streams 233

o Use stm read r32 toread a float from the stream.
o Use stm write r32 to write a float to the stream.

» Use stm_close to close the channel and free up resources (destructor).

15.10.1. Stream Types

Actually, it is more correct to talk about types of extremes (origin and destination)
than of stream types. From the perspective of the programmer, a stream is an abstract
type that presents the same functionality regardless of the ends it connects. Therefore,
when talking about stream types we are referring to the type of constructor.

15.10.2. File stream
o Use stm from file to open a file and read from it.
o Use stm to file to create a file and write to it.

» Use stm append file to add content to an existing file.

In File streams (Figure 15.25), the source is the process memory and the destination is
a disk file. The opposite can also happen: that the source is the file and the destination
the memory, it will depend on how we create the channel. It will not be possible to
perform write operations on an open file for reading or vice versa (Listing 15.38). “F'iles
and directories” (page 183).

Figure 15.25: File streams allow @ @

communication with the file system.

Listing 15.38: Example of writing to a file.

Stream *stm = stm to file("C:\Users\user\john\out.txt", NULL);
if (stm != NULL)
{

stm writef (stm, "One ");

stm writef (stm, "Two ");

stm writef (stm, "Three");

stm writef (stm, ".");

stm close (&stm) ;

// 'out.txt' is closed = "One Two Three."

15.10.3. Socket stream

o Use stm socket to create a communication channel with a remote process.

234 Chapter 15 - Core library

A socket is a communication channel between two processes over the Internet (Fig-
ure 15.26). Unlike file streams, sockets allow bidirectional full-duplez) communication,
that is, both ends can send and receive information. The sequence of message exchange
between partners is determined by the protocol (Listing 15.39), being HTTP, FTP, SMTP
or LDAP some of the most used for Internet transmissions. See “Sockets” (page 185).

Figure 15.26: A socket stream
opens a communication channel over
the Internet.

Listing 15.39: Downloading a web page, using the HT'TP protocol.

uint32 t ip = bsocket url ip("www.myserver.com", NULL);
Socket *socket = bsocket connect(ip, 80, 0, NULL);
if (socket != NULL)
{
Stream *stm = stm socket (socket);
stm writef (stm, "GET /mypage.html HTTP/1.1\r\n");
stm_writef(stm, "Host: www.myserver.com\r\n");
stm writef (stm, "\r\n");
stm lines(line, stm)
bstd printf (line);
bstd printf ("\n");
stm next (line, stm)

// Socket will be closed too
stm close (&stm) ;

15.10.4. Block stream

» Use stm from block to read data from a memory block.

Block streams are used to read formatted data from a generic memory block (Fig-
ure 15.27) (Listing 15.40). This memory area is considered read-only and will not be
modified, so write operations will not be allowed in this type of stream. When the end of
the block is reached, the ekSTEND state will be activated.

Listing 15.40: Leer datos desde un bloque de memoria.

const byte t *data = ...
uint32 t size = ...

ArrPt (String) *lines = arrpt create(String);
Stream *stm = stm from block(data, size);
while (stm_state(stm) == ekSTOK)

{

String *line = str c(stm read line(stm));

arrpt append(lines, line);

15.10 - Streams

235

Figure 15.27: With block streams
we will read formatted data from
memory areas.

15.10.5. Memory stream

EDDDDD}

o Use stm memory to create a stream in memory.

» Use stm buffer to access the internal buffer.

o Use stm buffer size to get the size of the internal buffer.

Memory streams are read/write channels that allow implementing the producer/con-
sumer model (Figure 15.28). First, the information reaches the stream through write
operations and is stored in an internal memory buffer. Subsequently, said information can
be read by another function, thread or process. After each reading the information read
will disappear from the channel. The concept is similar to that of IPC-pipes, except that
there is no size limit for the buffer, but it will grow on demand. Read and write operations
can be done simultaneously depending on the established protocol.

Listing 15.41: Use of streams in memory (producer/consumer).

// Main thread

Stream *stm = stm memory(2048);
while (true)

{

UserEvent event;

if (event incomming (&event))

{

bmutex lock (mutex) ;

stm write u32(stm, event.code);
stm write u32(stm, event.userid);
str_write (stm, str event.name);

bmutex unlock (mutex) ;

if (event.last == TRUE)
break;

}

bmutex lock (mutex);
stm close(&stm);
bmutex unlock (mutex) ;

236 Chapter 15 - Core library

// Other thread
bool t next = TRUE;
while (next)

{

bmutex lock (mutex);
if (stm != NULL)
{
if (stm buffer size(stm) > 0)
{
UserEvent event;
event.code = stm write u32(stm);
event.userid = stm write u32(stm);
str event.name = str read(stm);

}
else
{
next = FALSE;
}
bmutex unlock (mutex) ;
bthread sleep (50);

{00000;
Bo Bo

Figure 15.28: Producer/consumer model implemented with memory

streams.

Although this type of stream supports read and write operations it is mot considered
full-duplex. The reading is done on previously written data, but cannot “answer” the

interlocutor. It is not a “conversation”.

15.10.6. Standard stream

e ksSTDIN: To read from the standard imput.
e ksTDOUT: To write in standard output.

e kSTDERR: To write in the error output.

15.10 - Streams 237

The “Standard I/O” (page 166) can be managed by streams using three predefined
objects (Figure 15.29) (Listing 15.42). These objects are created when the program starts
and will be automatically released when finished.

o.-.n.c.o.o L N > -
Figure 15.29: Access to standard j

I/O through streams.

Listing 15.42: Basic standard I/O Example.

real64 t value;

const char t *line;

value = stm read r64 (kSTDIN) ;
line = stm read line (kSTDIN)

stm printf (kSTDOUT, "Value $.4f", value);

15.10.7. Null stream
o Use kDEVNULL to write to a sink that will ignore all received data.

Sometimes it can be useful to have a “sink” that ignores all write operations (Fig-
ure 15.30) (Listing 15.43). Think of debugging tasks where we want to activate or deac-
tivate the output of information but deleting or commenting on the code is cumbersome.
The idea is similar to the Unix /dev/null.

o
Figure 15.30: With null streams ev- I | I
erything that is written will be ig-

nored.

Listing 15.43: Writing to a null stream.

#if defined _ ASSERTS
Stream *stm = kSTDOUT;
#telse

Stream *stm = kDEVNULL;

#endif

i large dump func(objl, stm);

// More debug functions
stm printf (stm, "More debug data...\n");

i other dump func(obj2, stm);

238 Chapter 15 - Core library

Cannot read from kDEVINULL.

15.10.8. Binary stream
» Use stm read u32 to read a 32-bit unsigned integer.
o Use stm write r64 to write a real 64bits (double).
o Use stm write bool to write a boolean.

Generic binary data always travels through a stream as bytes. How these data are
interpreted depends on the interlocutors and their communication protocol. But by em-
phasizing “binary data” we mean that numeric values are written to the channel as they
appear in the CPU registers using binary, two’s complement, or IEEE754 (Figure 15.31)
code. In multi-byte types we must take into account the “Byte order” (page 246). In
stream.h several functions are defined to read and write binary types.

‘ real64_t ‘ real32_t ‘ ’\ntWGft‘ uint32_t
J71els|al3l2/1]0/32/1]0l1]0|3/2|1|0].
Figure 15.31: Numbers in bi- »
CTol o[T+To]e] "
nary format. Hele e 01110111100000111000

15.10.9. Text stream
o Use stm printf to write text in a stream.
e Use stm read char to read a character from a stream.
o Use stm read line to read a text line from a stream.
o Use stm col to get the column number of the last character read.
o Use stm row to get the row number of the last character read.

Text streams are a particular case where the binary information is assumed to represent
Unicode character codes (codepoints) (Figure 15.32) (Listing 15.44). This means that the
content of the stream will be readable directly by a human, but it will require a post-
processing (parsing) in destination to interpret these texts and translate them into binary.
You do not have to do anything special when creating a stream to indicate that it is of
type text, you just have to use the appropriate functions.

Figure 15.32: In text streams
the information can be read di- ejujrijt 619[-18]4]3 oftf!fefH].
rectly.

Listing 15.44: Reading a text file using streams.

15.10 - Streams 239

Stream *stm = stm_ from file("/home/fran/Desktop/text.txt", NULL);
const char t *line = stm read line(stm);
while (line != NULL)
{
// Do something with 'line'
textview writef (text, line);
textview writef (text, "\n");

// Read next line
line = stm read line(stm);

}

stm close (&stm) ;

stm read line and other reading functions will always return the text in UTF8. But
if the data inside the stream were in another format, we must use stm set read utf, in
order to carry out the conversion correctly. See “UTF encodings” (page 161).

On the other hand, stm printf also receives the text in UTF8, but the receiver may
need it in another format. We will use stm set write utf to set the output encoding.
We will write in UTFS, but the channel will be sent in UTF16 or UTF32.

Streams do not have to be “pure” text or binary. They can combine both types of
representations.

15.10.10. Tokens
o Use stm read token to read a token.
o Use stm token lexeme to obtain the string associated with the last token read.
o Use stm read r64 tok toread a real64d t from text.
o Use stm token col to get the column of the last token.
o Use stm token row to get the row of the last token.

When reading from text streams, an interpretation (parsing) of the content is necessary
in order to transfer the data to memory variables (in binary). The first step is to break the
text into symbols (or words) called tokens. Internally, the streams incorporate a simple
lexical analyzer that recognizes the tokens of the C language, very common in countless
grammars and file formats (Figure 15.33). It is implemented as a finite state machine and
will greatly facilitate the processing of these text flows. In (Listing 15.45) we see the code
necessary to read one by one all the tokens from a .c file. We have the result of processing
the file (Listing 15.46) in (Listing 15.47).

Listing 15.45: Reading tokens from a file in C.

240 Chapter 15 - Core library

Tokens

ekTIDENT("a")

ekTINTEGER("45")
A= 45 + 123 A_Z "y
- ("+
Text Stream = ekTEQUALS("=")
LexScn

Figure 15.33: Decomposition of a

text into tokens

Stream *stm
token t token;

while

{

((token

switch

(token)

stm read token (lex

{

case ekTIDENT:

// It's

an IDENTIFIER

case ekTREAL:

// It's

a REAL NUMBER

ekTREAL("12.3")

stm from file("source.c", NULL);

)) != ekTEOF)

Listing 15.46: File source.c.

void func (int a)

{

int 1i;

char *str = "Hello";

i=54+ 2.5;
}

Listing 15.47: Lexical analysis of source.c.

Token Lexeme
ekTIDENT "void"
ekTIDENT "func"
ekTOPENPAR ("
ekTIDENT "int"
ekTIDENT "a"
ekTCLOSPAR "
ekTOPENCURL e
ekTIDENT "int"
ekTIDENT "iv
ekTSCOLON "y
ekTIDENT "char"

15.10 - Streams 241

ekTASTERK DS
ekTIDENT "str"
ekTEQUALS DT
ekTSTRING ""Hello™"
ekTSCOLON W g W
ekTIDENT 4|
ekTEQUALS T
ekTINTEGER DG
ekTPLUS e
ekTREAL 29 - ST
ekTSCOLON W g W
15.10.11. Identifiers

An identifier is an alphanumeric “word” that must begin with a letter or ' ' and

contains numbers, letters, or ' '. It is used to name variables, functions, reserved words,
etc. They do not allow spaces or symbols. (Listing 15.48) (Figure 15.34).

Listing 15.48: Correct and incorrect identifiers.

OK: while cos resSult a56B 06 t aG h9 12AcVb
NO: 045 ?er " 5G _tg(

Figure 15.34: Finite automata that _
recognizes an identifier. _

>
N N

Identifier

Certain identifiers can be reserved to act as language keywords. For example for,
while or if are C keywords and cannot be used for the naming of variables or functions.
Being general purpose, our scanner does not recognize any type of reserved word, but must
be expressly tagged after reading the token (Listing 15.49).

Listing 15.49: Recognizing the while keyword.

while ((token = stm read token(stm)) != ekTEOF)
{
if (token == ekTIDENT)
{
const char t *lex = stm token lexeme (stm, NULL);
if (str equ c(lex, "while") == TRUE)
token = ekTRESERVED;

242 Chapter 15 - Core library

15.10.12. Strings

A text string is a series of Unicode characters enclosed in quotation marks ("") (Fig-
ure 15.35). The parser recognizes C escape sequences to represent non-printable codes or
unavailable characters on the keyboard (Listing 15.50).

o Use stm token escapes to make escape sequences effective when reading strings.

Listing 15.50: Escape sequences accepted in e kKTSTRING.

\a 07
\b 08
\f 0cC
\n 0A
\r 0D
\t 09
\v 0B
AR 5C
\' 27
N 22
\? 3F
\nnn

\xhh
\Uhhhhhhhh
\uhhhh

Alert (Beep, Bell) (added in C89)
Backspace

Formfeed Page Break

Newline (Line Feed)

Carriage Return

Horizontal Tab

Vertical Tab

Backslash

Single quotation mark

Double quotation mark

Question mark (used to avoid trigraphs)
Octal number

Hexadecimal number

Unicode code point

Unicode code point

Figure 15.35: Finite automata that
recognizes a text string.

unicode

15.10.13. Numbers

In the case of numerical tokens the thing is complicated a bit due to the different
numerical bases and the exponential representation of real numbers (Figure 15.36). We
briefly summarize it, although it is common to many programming languages (C included).

o If the number starts with 0 it will be considered octal (base 8), therefore, the following
digits are limited to 0-7, eg: 043, 001, 0777.

« If the number starts with 0x will be considered hexadecimal (base 16) with digits
0-9 a-f A-F, eg: 0x4F, 0XAA5, Ox0lEAC.

o At the moment a decimal point appears '."' will be considered real number. A point
at starting is valid, eg: .56.

15.10 - Streams 243

o An integer or real number allows exponential notation with the character 'e' ('E"),

eg: 12.4e2, .56e3, led.

Figure 15.36: Finite automata that recognizes numbers.

15.10.14. Symbols

The symbols are single-character tokens that represent almost all US-ASCII punctu-
ation marks and are often used as operators, separators or limiters within grammars.

(Listing 15.51) (Figure 15.37).

Listing 15.51: Symbols recognized as tokens by LexScn.

<>, ;)1 {YrY+r-Fr=ss s 2]/ N0@

Plus
Minus

Asterisk

Figure 15.37: Finite automata that

recognizes some symbols. Equal

15.10.15. Comments

By default, C /*Ccomment */ or C++ //Comment are ignored by stm read token.

o Use stm token comments so that it returns ekTSLCOM or ekTMLCOM if it finds any.

o Use stm token spaces to return ekTSPACE when it finds blank spaces.

244 Chapter 15 - Core library

15.10.16. Stream advantages

Although it is possible to read or write directly to the I/O channels (“Memory” (page 167),
“Files and directories” (page 183), “Sockets” (page 185), “Standard 1/0” (page 166)), do
it through Stream objects has certain advantages. Therefore, we recommend using them
instead of low-level APIs for the following reasons:

15.10.17. Unify serialization

Streams offer a uniform interface, regardless of the origin and destination of the data
(Figure 15.38). For the object serialization, we just have to write a reader and a writer,
without worrying if the object will be saved to disk, transmitted over the Internet or stored
temporarily in memory (Listing 15.52).

Listing 15.52: (De)serialization of an object through streams.

typedef struct product t
{
type t type;
String *code;
String *description;
Image *image64;
real32 t price;
} Product;

void product write(Stream *stm, Product *product)
{
stm write enum(stm, product->type, type t);
str write(stm, product->code);
str write(stm, product->description);
image write(stm, product->image64);
stm write r32(stm, product->price);

}

void product read(Stream *stm, Product *product)
{
product->type = stm read enum(stm, type t);
product->code = str read(stm);
product->description = str read(stm);
product->image64 = image read(stm);
product->price = stm read r32(stm);

15.10.18. More elegance

The I/O channels only work with byte blocks. Streams implement high-level functions
for texts and binary types. This will make our code much more readable. (Listing 15.53).

Listing 15.53: Writing an object to disk directly or through a stream.

15.10 - Streams 245

Stream

\J Y
Figure 15.38: Through streams we >—
manage all I/O channels with the DDD

same interface.

void product write(File *file, Product *product)

{
uint32 t size = str len(product->description);
const char t *data = tc(product->description);
bfile write(file, (byte t*)&product->id, sizeof(uint32 t), NULL, NULL);
bfile write(file, (byte t¥*)é&product->price, sizeof(real64 t), NULL, NULL);
bfile write(file, (byte t*)&size, sizeof (uint32 t), NULL, NULL);
bfile write(file, (byte t*)data, size, NULL, NULL);

void product write(Stream *stream, Product *product)
{

stm write u32(stream, product->id);

stm write r64(stream, product->price);

str write(stream, product->description);

15.10.19. Higher productivity

Related to the previous one, streams can “parse” text strings directly. You can get
characters, words or lines without having to scan the entry character by character (List-
ing 15.54).

Listing 15.54: Read a line of text directly or through a stream.

String *getline(File *file)

{
/* Potentially unsafe. */
/* Risk of buffer overflow. */
char t buffer[MAXBUFF];
uint32 t i = 0;
char t c;

bfile read(file, (byte t*)&c, 1, NULL, NULL);
while (c != '\n'")
{

buffer[i] = c;

i+=1;

bfile read(file, (byte t*)&c, 1, NULL, NULL);

246 Chapter 15 - Core library

}

buffer[i] = '\0';
return str c(buffer);

}

String *getline(Stream *stream)

{
/* Totally safe. */
/* '"line' is managed by dynamic cache. */
const char t *line = stm read line(stream);
return str c(line);

15.10.20. Higher performance

File streams and socket streams implement an internal cache. This allows less access
to the channel with a higher volume of data, which means faster processing speed. (Fig-
ure 15.39).

» Use stm flush to clear the cache and dump the data in the channel.

O 253 W2

Figure 15.39: Streams implement cache memory, which increases performance.

15.10.21. Byte order

o Use stm set write endian to establish the endianness of the output channel. The
data will pass from endian CPU to Stream endian before being written.

o Use stm_set read endian to establish the endianness of the input channel. The
data will pass from Stream endian to CPU endian at the time of being read.

When reading or writing binary data from an I/O channel, special attention must be
paid to the order of the bytes in 16, 32 or 64 bit data types, which is known as endianness.
On litte endian machines, as is the case with the Intel x86/x64 family processors, the
lowest order byte will be located at the lowest memory address. In the case of the big
endian (Motorola 68000, PowerPC) it happens on the contrary, it will go in the highest.
For example, if we write a 32-bit integer in a file or socket from a little endian machine
and read it from a big endian, the data will be corrupted by altering the internal order
of bits (Figure 15.40). The stream objects automatically adjust the endianness in each

15.10 - Streams 247

read /write operation. Default is set ek LITEND, except in sockets that will be ekBIGEND for
being the accepted agreement for network communications. However, it can be changed if
necessary.

> =~

LitEnd BigEnd

Figure 15.40: We must take into account endianness when sharing
data between machines of different architecture.

Endianness does not influence “UTF-8” (page 162) text strings, but it does in the
“UTF-16" (page 161) and “UTF-32” (page 161).

15.10.22. Stream state
o Use stm state to know the current status of the channel.
o Use stm file err to get extended error information on disk streams.
o Use stm sock err to get extended error information in sockets.

o Use stm corrupt to mark a stream as ekSTCORRUPT. Sometimes it is the application
itself that detects that the data is not correct (eg out of range).

o Use stm bytes written to get the total number of bytes written to the stream.
» Use stm bytes readed to get the total number of bytes read from the stream.

A stream can be affected by two types of problems. On the one hand the data cor-
ruption that is evident when we read binary data from the stream (Listing 15.55). A
clear example would be to read a Boolean by stm read bool and get a value of 129 when
obviously this value should be 0 (TRUE) or 1 (FALSE). Typically, a stream becomes
corrupted due to lack of coordination between writer and reader and is usually due to a
programming error. This situation should be resolved by debugging and correcting the
serialization of objects or reviewing the data protocol. On the other hand, there may be
“physical” errors in the channel (file deleted, loss of Internet connection, permissions,
etc.). In both cases, the stream will be blocked and subsequent read or write operations
that we carry out on it will be ignored. We can also ask the total number of bytes read
and/or written in the channel, in case we need to know if there is information available
for reading.

Listing 15.55: Checking the stream status.

uint32 t nw = stm bytes written(stm);

248 Chapter 15 - Core library

uint32 t nr = stm bytes readed(stm);
if (nw - nr > 0)
{

if (stm state(stm) == ekSTOK)

{
uint32 t vl stm_read u32 (stm);
real32 t v2 = stm read r32(stm);

}

else

{

// Error in stream

}

else

{

// No data in stream

15.11. Regular expressions

Regular expressions define a text pattern that can be used to find or compare strings.
» Use regex create to create a regular expression.

o Use regex match to check if a string matches the pattern.

Listing 15.56: Using regular expressions.

RegEx *regex = regex create(".*.txt");
const char t *str[] = {
"fileOl.txt",

"imageOl.png",
"sunOl.jpg",
"films.txt",
"document.pdf"};

uint32 t i, n = sizeof (str) / sizeof (char t*);

for (i = 0; 1 < n; ++1i)
{
if (regex match(regex, str[i]) == TRUE)
bstd printf ("YES: %$s\n", str[i]);
else

bstd printf ("NO: %s\n", str([i]);

regex destroy (®ex);

15.11 - Regular expressions 249

Result of (Listing 15.56).

YES: fileOl.txt
NO: imageOl.png
NO: sun0Ol.]jpg
YES: films.txt
NO: document.pdf

15.11.1. Define patterns
We can build a regular expression from a text string, following these simple rules:

o A string pattern corresponds only to that same string.

"hello" --> {"hello"}
o A period '.' is equivalent to “any character”.
"h.1llo" --> {"hello", "htllo", "hillo", "h51lo", ...}

o A dash 'A-7' sets a range of characters, using the ASCII/Unicode code from both

ends.

"A-Zello" --> {"Aello", "Bello", "Cello", ..., "Zello"}
'"A-Z': (65-90) (ABCDEFGHIJKLMNOPQRSTUVWXYZ)

'0-9': (48-57) (0123456789)

'a-U': (225-250) (4&daa=xceééeiiiidnoddso+gun)

Like string objects, patterns are expressed in “UTF-8” (page 162), therefore the
entire Unicode set can be used to create reqular expressions.

"h[aéidu]lllo" --> {"hallo", "héllo", "hillo", "hdéllo", "htllo"}

o The asterisk '*' allows the last character to appear zero or more times.

"he*1lo" --> {"hllo", "hello", "heello", "heeello", "heeeello", ...}
"h.*11lo" --> {"hllo", "hello", "hallo", "hillo", "hasello", ...}
"hA-Z*11o" --> {"hllo", "hAllo", "hABllo", "hVFFRREAS1lo" }

--> {"hAQWEDllo", hAAABBRSllo", ...}
"FILE_O—9*.PNG" --> {"FILE .PNG", "FILE_O.PNG", "FILE_Ol.PNG" }

--> {"FILE 456.PNG", "FILE 112230.PNG",...}

o The parentheses ' (he*110) ' allow grouping a regular expression, so that it behaves
as a single character.

250 Chapter 15 - Core library

"[(hello) (bye)]" --> {"hello", "bye" }
"[(red) (blue) (1*)]" == {"red", "blue", "n’ "1", "11", "111", . }
" (hello) -=> {"", "hello", "hellohello", "hellohellohello", ... }
"(he*1llo)zz" --> {"hlloZz", "hellozZ", "heelloZz", "heeelloZzZz"™, ... }

o« For'.', "=, "[1', '"*', '()' tobeinterpreted as characters, use the backslash
T \ \l .
"\ (he*\-11lo\)" --> {"(he*-1lo)"}

Remember that for expressions inserted as constants in C code, the backslash character
is represented by a double slash "\\ (he\\ (*\\ (-11o\\ () ".

15.11.2. Regular languages and automata

Regular languages are those that are defined recursively using three basic operations
on the set of characters (or symbols) available. They can be described using the regular
expressions discussed above.

« Each character ’a’ is a regular language *A’.
o The union of two regular languages, is a regular language A B.
o The concatenation of two regular languages, is a regular language A - B.

o The closure of a regular language is a regular language A*. This is where recursion
comes in.

In this context the symbols are all Unicode characters. But you can define languages
based on other alphabets, including the binary {0, 1}.

To recognize whether or not a string belongs to a certain regular language, it is necessary
to build a Finite Automata based on the rules reflected in (Figure 15.41).

15.12. Events

An event is an action that occurs during the program execution, usually asynchronously
or unpredictably and on which a given object must be notified. In applications with a
graphical interface, many events are constantly occurring when the user interacts with the
different controls. However, they can also occur in console applications, for example, when
finish the writing of a file to disk or when downloading a page from Internet. In a system
of events two actors intervene: The sender, which has evidence when the action occurs
and the receiver who is notified that such action has occurred. To connect both ends we
must perform these simple steps (Listing 15.57) (Figure 15.42):

15.12 - Events 251

Figure 15.41: Construction of
finite automata to filter regular
expressions.

o Create a 1istener indicating the receiving object and the callback function to which
the sender should call.

o Said listener is assigned to the sender by the appropriate method. For example, the
Button type provide the method button OnClick to notify of a click.

e When the event occurs, the sender calls the callback function, indicating the receiving
object (parameter of 1istener) and detailed information about the event collected
in the object Event.

Listing 15.57: Callback function and button click event.

static void OnClick (AppCtrl *ctrl, Event *event)
{

// TODO: Response to click
}

void CreateButton (AppCtrl *ctrl)
{
Button *button = button push();
button text (button, "Ok");
button OnClick(button, listener(ctrl, OnClick, AppCtrl));

252 Chapter 15 - Core library

Button

v e
v, [oS
{9‘:} »

receiver
@ sender
Figure 15.42: OnClick OnClick

Event

event.

Events are used in bulk in GUI applications, but can also be useful in command line
applications. See for example hfile dir loop in “File operations” (page 252).

15.13. Keyboard buffer

o Use keybuf create to create the buffer.
o Use view keybuf to bind the buffer to any graphical view.

The operating system generates events asynchronously every time the user presses or
releases a key. We can capture such events using a callback function (see view OnDown),
but sometimes this is not enough. Let’s think about a video game where we must read the
state of a key in the update phase, which occurs synchronously. In these cases, the use of
a keyboard buffer (Figure 15.43) will be very useful, which simply saves the state of each
key based on the events that occur. This status can be read at any time during execution.

1 % & /) [7 ¢
\||2 3 5€ 5 0 !ulupu-
w—a W o| [
™ | | | | | l+]

=

Caps Lock [A
wel> [z [e VB N W "4>m SynCEvents

- fEk] e e

Async Events

A4

Figure 15.43: Access to key _ Keystate

status in synchronous events. KeyBuffer

15.14. File operations

» Use hfile dir create to create a directory and its predecessors.

o« Use hfile dir destroy to delete a directory with its contents.

15.14 - File operations 253

o Use hfile dir sync to synchronize the contents of two directories. Something
similar to Unix rsync.

o Use hfile dir loop to go deep through a directory (Listing 15.58).
» Use hfile buffer to load the contents of a file into memory.

Although in “Files and directories” (page 183) we already saw how to access the file
system at a low level, sometimes certain high-level operations are necessary on the data on
disk. The mere act of completely deleting a directory has many individual low-level oper-
ations associated with it. The core library, through <hfile.h> provides certain utilities
that can simplify our lives at certain times.

Listing 15.58: Using hfile__dir__loop to loop through a three-level directory.

typedef struct query t Query;

static void i OnEntry(Query *query, Event *e)

{

const EvFileDir *p = event params (e, EvFileDir);

// First level (year)
if (p->depth == 0)
{
// The entry is a directory
if (event type (e) == ekEENTRY)
{
bool t *enter = event result(e, bool t);
intl6é t year = str to il6(p->filename, 10, NULL);

// The loop enter in this subdir (depth 1)
if (i_process_year(query, year) == TRUE)
*enter = TRUE;
else
*enter = FALSE;

}
// Second level (month)
else if (p->depth == 1)
{
// The entry is a directory
if (event type(e) == ekEENTRY)
{
bool t *enter = event result(e, bool t);
uint8 t month = str to u8(p->filename, 10, NULL);

// The loop enter in this subdir (depth 2)
if (i process month(query, month) == TRUE)
*enter = TRUE;
else
*enter = FALSE;

254 Chapter 15 - Core library

}

}
// Third level (files)

else if (p->depth == 2)
{
// The entry is a file
if (event type(e) == ekEFILE)
i process file(query, p->pathname);

Query query = i init query(&query);

hfile dir loop("main path", listener (&query, i OnEntry, Query), TRUE, FALSE,

< NULL) ;

main_path

)

|
! | | |

2018 2019 2020 2021

[s) IS})) e
l 1 1

}

depth =1 l/_\®_\/ m |7\\|/_7 l/—\g/

o1]
Figure 15.44: Representation depth =2

of directory of (Listing 15.58). filel.txt file2.txt file3.txt filed.txt fileS.txt file6.txt

15.15. Resource packs

Resource packs are generated at compile time and used at run time by the applications.
More information in “Resources” (page 99).

« Use respack text to get text from a resource pack.
o Use image from resource to get an image from a resource pack.

o Use respack file to get a file from a resource pack.

o Use respack destroy to destroy a resource pack.

15.16. Dates

A series of functions are included within core to work with dates.
o Use date system to get the system date.
» Use date add seconds to increment a given date.

o Use date cmp to compare two dates.

15.17. Clocks

15.16 - Dates

255

Simple objects that allow us, in a comfortable way, to measure the time span between
two instants. They are also useful for launching events at regular time intervals (List-

ing 15.59).
» Use clock create to create a clock.
» Use clock reset to reset the clock.

o Use clock elapsed to measure elapsed time.

Listing 15.59: 25fps animation.

Clock *clock = clock_create(.04);
for (;;)

{

if (clock_frame(clock) == TRUE)

listener event (transition, ekGUI_ EVENT ANIMATION, NULL, params,

<~ NULL, wvoid, EvTransition, wvoid);

}
clock destroy(&clock);

256 Chapter 15 - Core library

CHAPTER

Geom2D library

16.1 Geom2D 257
16.2 2D Vectors 259
16.2.1 CW and CCW angles 260
16.2.2 Vector projection 260
16.3 2D Size 262
16.4 2D Rectangles 262
16.5 2D Transformations 263
16.5.1 Elementary transformations 263
16.5.2 Composition of transformations 264
16.5.3 Decomposition and inverse 267
16.6 2D Segments 268
16.7 2D Circles 269
16.8 2D Boxes 269
16.9 2D Oriented Boxes 269
16.10 2D Triangles 271
16.11 2D Polygons 272
16.11.1 Polygon center 273
16.11.2 Polygon decomposition 274
16.12 2D Collisions 275

16.1. Geom2D

We are facing a geometric calculation library in two dimensions. Geom2D allows work-
ing with primitives in the real plane: Points, vectors, transformations, curves and surfaces.

258 Chapter 16 - Geom2D library

It offers only mathematical functionality, that is, it does not define any type of represen-
tation or drawing operation. It only depends on “Core” (page 193) library (Figure 16.1),
so it can be used in both desktop applications and command line utilities. All types and
functions are defined in simple (float) and double precision, in addition to being able
to make use of C++ “Math templates” (page 53).

I back-end

|

Figure 16.1: Dependencies of
geom?2d. See “NAppGUI API”
(page 149).

All geometric elements are based on (x, y) coordinates in the plane. Geom2D does not
assume how these coordinates will be interpreted. That will depend on the reference system
defined by the application. The most used are the Cartesian and the screen (Figure 16.2),
although others systems could be used where appropriate (Figure 16.3).

(0,0) 3 X

<

Y - X
v (0,0) “H—+———+—+—+++++ >

Figure 16.2: Interpretation of the coordinate (3,2) on monitors (left)
and on the Cartesian plane (right).

by Y X x4
X Y
L5 v
$x X v v
Figure 16.3: Different 2D coordi-
v X
nate systems. Y Y X

16.2 - 2D Vectors 259

16.2. 2D Vectors

Vector (v2Df, v2Dd) is the most elementary geometric element. It represents a point,
a direction or displacement by its two components x and y (Figure 16.4).

Figure 16.4: A 2D vector represents a position or a displacement in
the plane.

The Vectorial Albegra defines a series of basic operations: Addition, negation, multipli-
cation by a scalar, module and normalization (Formula 16.1). The visual representation
of these operations is in (Figure 16.5).

i = a+b
= (a.x+bx,ay+by)
v = p2—pl
= (p2.x —pl.x,p2.y —pl.y)
—a = (—a.x,—a.y)
v = s-d

(
(s-a.x,s-a.y)

ld| = /a.x?+ a.y?
- (o)
jal * |al

Formula 16.1: Elementary vector albegra.

<5

o Use v2d addf to add two vectors.

» Use v2d subf to subtract two vectors.

e Use v2d mulf to multiply by a scalar.

o Use v2d lengthf to calculate the modulus of a vector.

» Use v2d normf to normalize a vector.

260 Chapter 16 - Geom2D library

a+b /;'

Figure 16.5: Geometric interpretation of basic operations with vec-
tors.

16.2.1. CW and CCW angles

The angle of rotation of a vector will always be expressed in radians and the positive
direction corresponds to the rotation from the X axis to the Y axis. Normally the
counterclockwise direction is associated as positive and the clockwise direction negative.
This is true in Cartesian coordinates but not in other types of reference systems, such as
images or monitors (Figure 16.6). We must bear this in mind to avoid confusion, something
that happens relatively frequently. The same criterion is applied when calculating the
perpendicular vector, differentiating between positive and negative.

o Use v2d anglef to get the angle between two vectors.
o Use v2d rotatef to apply a rotation to a vector.
o Use v2d perp posft to calculate the positive perpendicular vector.

To avoid confusion, remember that the positive direction is the one that rotates from the
X axis to the Y axis. It will be counterclockwise direction in Cartesian coordinates
and clockwise direction in screen coordinates.

16.2.2. Vector projection

Another operation used quite frequently in geometry is the projection of points onto a
vector. Intuitively, we can see it as the point on the vector closest to the original point and
that it will always be on the perpendicular line. We will calculate it with the dot product
(Formula 16.2) and its value (scalar) will be the distance from the origin to the projection
in the direction of the vector (Figure 16.7).

» Use v2d dotf to calculate the dot product of two vectors.

16.2 - 2D Vectors 261

Figure 16.6: Rotation of a vector in Cartesian and screen systems.

V.2 Pp.T+0Y Py

proyg(p) = |1-)»|
: 4-1+3-2
proj(1,2) = St =2
proj,(2,-2) = 04
proj(5,1) = 4.6
projs(=3,1) = —1.8

Formula 16.2: Projection of several points in a vector.

(43)
4.6
(1,2) 3

““ 0:4 2 L G.1)

1.8 N (2:2)

Figure 16.7: Geometric interpretation of projections.

If we are interested in the relative position between different projections, we can avoid
dividing by the vector’s modulus, which is more computationally efficient by not cal-
culating square roots.

262 Chapter 16 - Geom2D library

16.3. 2D Size

The s2Df, s2bd structure stores information about a measure or size in two dimensions
using its fields width and height.

o Use s2df to compose a measure through its elementary fields.

width

SZ Df height

Figure 16.8: Size2D.

16.4. 2D Rectangles

A rectangle (or frame) (R2Df, R2Dd) (Figure 16.9) is used to locate elements in user
interfaces or other 2D systems through a point of origin v2Df and a size s2Df. They can
also be used in clipping operations, when optimizing drawing tasks.

o Use r2d collidef to determine if two rectangles collide.
o Use r2d clipf to determine if a rectangle is visible within an area.

o Use r2d joinf to join the two rectangles.

Width
A
) i
frereea]
|
|

>~ Height

DL

Figure 16.9: Positioning GUI elements using rectangles.

16.5 - 2D Transformations 263

16.5. 2D Transformations

Affine transformations are a type of mathematical operation that allows coordinate
changes between different reference systems. For example in (Figure 16.10) (a) we con-
struct a polygon expressing the coordinates of its vertices in a Cartesian system: [(4,1),
(2,5), (-3,5), (-4,2), (0, -3)]. Now let’s imagine that we want to draw several instances of
our model on a plane, each with a different position, orientation and size (Figure 16.10)
(b). We would need to calculate the coordinates of the points of the polygon in the new
locations, in order to correctly draw the lines that delimit them.

Figure 16.10: Geometric model (a) Expressed in a Cartesian system. (b) After
applying transformations.

Vector Algebra gives us a powerful tool with which the relationship between two systems
can be expressed using six real numbers (Figure 16.11). The first four values correspond to
a 2x2 matrix with the coordinates of the vectors X=[1,0] and Y=[0,1] in the new reference
system. This matrix integrates a possible rotation and scaling of the axes. The last two
values indicate a displacement in the origin of coordinates. In (Formula 16.3) we have the
mathematical development to transform the point [4.1] to a new base rotated 25° with
respect to the origin and displaced 11 units on the X axis and -5 on the Y axis. Applying
the same operation to all points, we would transform the object.

16.5.1. Elementary transformations

In principle, any combination of values [i.x, i.y, j.x, j.y, p-X, p.y] would provide a valid
transformation, although if we do not choose them with certain criteria we will obtain
aberrations that are not very useful in practice. The most used transformations in graphic
and engineering applications are (Figure 16.12) (Figure 16.13) (Formula 16.4):

» Translation (a): Moves the origin of the object to another point.
» Rotation (b): Rotates the object on the origin of its local system.

o Scaling (c): Change the size. If sz < 1, reduce. sx > 1, increase. sz = 1, does not

264 Chapter 16 - Geom2D library

(-0.423,0.906)

(14.2,-2.4) K

Figure 16.11: Change of base. Relationship of a point in two different reference

systems.
x’ i x| [z p.x
o= +
Y >y JY| Y by
~ [o.906 —0.423] [4 e
~10.423 0.906 1 -5
_[32 RS
|26 -5

[14.2
2.4

Formula 16.3: Point [4,1] transformation.

vary. In non-uniform scales, sz and sy have different values, which will produce a
distortion in the aspect ratio.

o Identity (d): It is the null transformation. When applied, the vectors remain un-
changed.

16.5.2. Composition of transformations

It is possible to compose or accumulate transformations by matrix multiplication (For-
mula 16.5). The usual thing in 2d models will be to obtain the final location of an object
from the elementary transformations translation, rotation and scaling. The accumulation
is also useful for positioning elements in hierarchical structures, where the location of each
object depends directly on that of its upper node (parent).

o Use t2d movef to add a displacement to an existing transformation.

Figure 16.12:

affine transformations.

Classification of

16.5 - 2D Transformations

Affine Transformations

:Non ngs:

XX

()
X (d)

Figure 16.13: Geometric representation of elementary transformations. (a) Trans-
lation, (b) Rotation, (c) Scaling, (d) Identity.

Use t2d rotatef to add a rotation.

Use t2d scalef to add a scaling.

Use t2d multf to add a transformation.

Use t2d vmultf to apply a transformation to a vector.

Use t2d vmultnf to apply a transformation to several vectors.

Use kT2D IDENTE to reference the identity transformation.

265

Matrix multiplication is not commutative, but the order in which the operations are

266 Chapter 16 - Geom2D library

E4 1 0] [« p.T

/ - +

V] 0 1)1yl |py

E4 B [cos® —sind] [z n 0
v |sinf cosf | |y 0
E4 B sz 0] [n 0

vy |0 syl |y 0
Ed I RE: Lo

= o 1] |yl T o

Formula 16.4: Translation, Rotation, Scaling and Identity.

x’ 19.T Jq.x| | DT
[y’] B lid-y iy M * lpd.yl
1. = 11.X-12.Z + J1.2 - 12.Y
id.y = il.y-iz.x+j1.y~i2.y
Ja-x = 1.2 J2.x + Jj1.2 - J2.y
Jay = .y j2.x+J1y - J2uy
Pa-T = 1.7 P2.T + J1.7 - p2.y + p1.x
pa-y = 1.y -p2.x+J1.y - p2y +piy

Formula 16.5: Composition of two arbitrary transformations.

applied will affect the final result. For example in (Figure 16.14) (a), the origin has been
moved and then applied a rotation. In (Figure 16.14) (b) it has been done on the contrary,
first rotate and then move.

Listing 16.1: Acumulacién de transformaciones.

// (a) First move, then rotate
T2Df t2d;
t2d movef (&t2d, kT2D IDENTEf, 11, 0);

t2d_rotatef (st2d, &t2d, kBMATH PIf / 4);

// (b) First rotate, then move
T2Df t2d;

t2d rotatef (&t2d, kT2D IDENTE,
t2d movef (&t2d, &t2d, 11, 0);

kBMATH PIf / 4);

16.5 - 2D Transformations

% X\
+
- +
X /Cl/s/((:) @
(a)

(b)

/
()
/-\/‘ 45° X

Figure 16.14: Effect of the order of application of transformations.

16.5.3. Decomposition and inverse

267

Any chain of translations, rotations, and scales defines an affine reference frame that
can be expressed in terms of a single traslation, rotation, and scale (Figure 16.15). We can
“undo” this transformation and return to the origin through the inverse transformation

(Listing 16.2).
o Use t2d decomposef to get the components of a transformation.

o Use t2d inversef to get the inverse transformation.

10,1
move(10,-10) pos: (21.92, 7.78)

angle: -45°

move(11,0) scale: (1.5, 1)

rot(-90°)
scale(1.5,1)

rot(45°) X
>

Figure 16.15: Transformation chain and final system.

Listing 16.2: Components of a reference and inverse system.

T2Df t2d, inv, inv2;
V2Df pos, sc;
real32 t a;

// Transform sequence

t2d_rotatef (&t2d, kT2D IDENTf, kBMATH PIf / 4);
t2d movef (&t2d, &t2d, 11, 0);

t2d movef (&t2d, &t2d, 10, - 10);

t2d rotatef (&t2d, &t2d, - kBMATH PIf / 2);

268 Chapter 16 - Geom2D library

t2d scalef(&t2d, &t2d, 1.5f, 1);

// Transform components
t2d decomposef (&t2d, &pos, &a, &sc);

// Transform inverse
t2d inversef (&inv, &t2d);

// Inverse from components

t2d_scalef (&inv2, kT2D IDENTf, 1/sc.x, 1/sc.y);
t2d rotatef (&inv2, &inv2, -a);

t2d movef (&inv2, &inv2, -pos.xX, -pos.y);

// inv == inv2 ('inv' more numerical accurate)

16.6. 2D Segments

Segments are fragments of a line between two points p0 and pl (Figure 16.16). They
are the simplest geometric primitives, after vectors. We define the t parameter as the
normalized position within the segment. Values between 0 and 1 will correspond to internal
points of the segment, with the limits t=0 (p0) and t=1 (p1). Out of this range we will
have the points outside the segment, but within the line that contains it. For example t=2
would be the point after p1 located at a distance equal to the length of the segment.

o Use seg2d lengthf to get the length of the segment.

o Use seg2d close paramf to get the value of the parameter closest to a certain
point.

o Use seg2d evalf to get the point from the parameter.

o Use seg2d sqgdistf to get the distance (squared) between two segments.

p1
t=1
p0 t=0.5
t=0
IO1‘ p0
Figure 16.16: Segments in the t=1.=25 tI=1 t::O

plane.

16.7 - 2D Circles 269

16.7. 2D Circles

Circles allow us to group a set of points within the same container volume. Collision
detection will be performed optimally since it is the geometric test that requires the fewest
operations. Given a set of points, we can calculate the container circle in various ways
(Figure 16.17) depending on the precision and speed needed.

e Use cir2d from boxf to get the circle from a 2D box.
o Use cir2d minimumf to obtain the circle of minimum radius from a set of points.

o Use cir2d from pointsf to obtain the circle from the the set average. More bal-
anced option in terms of precision/performance.

(b)

Figure 16.17: Container circle: From BBox (a). Minimum radius

(b).

16.8. 2D Boxes

2D containers or (Bounding bozes) delimit the area of the plane occupied by different
geometric elements (Figure 16.18). They are useful in the collision detection or clipping
operations, which prevent non-visible figures from being drawn, improving overall perfor-
mance.

o Use box2d from pointsf to create a 2D box from a set of points.
o Use box2d addnf to change dimensions based on new points.

o Use box2d segmentsf to get the four segments that delimit the box.

16.9. 2D Oriented Boxes

Oriented Bounding Boxes are 2D boxes that can rotate about their center (Figure 16.19),
so they will no longer be aligned with axes. Here the collision detection is somewhat

270 Chapter 16 - Geom2D library

(maxX, maxy)
17 .
Y/
y; 1 -
v (A Dia
¢ t N N (maxX, maxy)
N
\\ II' (% -
L ~ ~ -
~ ~ . L] .
~ o
~. L]
. . L . .
(minX, minY) . o . .
>
(] []
(minX, minY)

Figure 16.18: 2D boxes as a container for other objects.

complicated compared to 2D Axis-Aligned boxes, in exchange for providing a better fit
against elongated objects that can rotate in the plane.

o Use obb2d from pointsf to create an oriented box from a set of points.

Use obb2d from linef to create an oriented box from a segment.
o Use obb2d transformf to apply a 2D transformation to the box.

o Use obb2d boxf to get the aligned box containing the oriented box.

Figure 16.19: 2D oriented boxes.

We can obtain relevant parameters of an arbitrary set of points from the covariance
matrix (Formula 16.6), which is geometrically represented by an ellipse rotated in the
plane and centered on the mean of the distribution (Figure 16.20). This analysis allows
obb2d from pointsf to calculate the 2D box associated with the distribution in a quite
acceptable way, without becoming the optimal solution that is much more expensive in

16.10 - 2D Triangles 271

computational terms.

Y o Ozx Ozxy
Oyz Oyy
1 r N
Oz = N Zl’f]—ﬂi
Li=1
1 r N
2 2
Oyy = N Zyi]_ﬂy
Li=1
1 r N
Ozy = N szyl] — My
Li=1
Oye = Oay
N
1
1 N
Hy = Nizzlyi

Formula 16.6: Calculation of the covariance matrix.

Figure 16.20: The covariance ma-
trix represents an ellipse rotated in
the plane.

Use oriented boxes (OBB2Df) for “elongated” point distributions. In rounded or square
cases the aligned box (Box2Df) can provide a volume with a smaller area.

16.10. 2D Triangles

Triangles are widely used in computational geometry, especially when performing cer-
tain calculations on polygons or surfaces. They are also the basis of most graphical APIs,
so on many occasions we will need to approximate objects using triangles. The centroid

272 Chapter 16 - Geom2D library

is the equilibrium point found at the intersection of the medians (Figure 16.21).

o Use tri2df to compose a triangle.

Use tri2d transformf to apply a transformation.
o Use tri2d centroidf to get the center of mass.

o Use tri2d areaf to calculate the area.

Figure 16.21: 2D triangles.

16.11. 2D Polygons

Polygons are widely versatile figures, since they allow us to define arbitrary regions
delimited by rectilinear segments. Geom2D supports so-called simple polygons, which
are those whose sides cannot intersect each other.

o Use pol2d createf to create a polygon from the path formed by its vertices.

o Use pol2d ccwf to get the direction of path rotation. See “CW and CCW angles”
(page 260).

o Use pol2d transformf to apply a transformation to the polygon.
o Use pol2d areaf to get the area.

o Use pol2d boxf to get the polygon boundaries.

We can classify the polygons into three large groups (Figure 16.22):

o Convex: The most “desired” from the point of view of calculation simplicity. They
are those where any segment that joins two interior points, is totally within the

polygon.

o Concave: Or not convex. The opposite of the above. It is one that has an interior
angle of more than 180 degrees.

16.11 - 2D Polygons 273

o Weakly: It is one that presents holes through “cut” segments where two vertices
are duplicated to allow access and return of each hole. It is an easy way to empty
the interior of regions without requiring multiple cycles. The calculation of areas
and collisions will take into account these cavities.

(a) (b) (c)

Figure 16.22: 2D polygons. (a) Convex, (b) Concave, (¢) Weak. All of them defined
counter-clockwise.

16.11.1. Polygon center

It is difficult to define a central point in a figure as irregular as a polygon can be.
Normally we will interpret as such the centroid or center of mass but, in non-convex
cases, this point can be located outside the polygon. In labeling tasks, it is necessary to
have a representative point that is within the figure. We consider the visual center to be
that point within the polygon located at a maximum distance from any edge (Figure 16.23).
In convex polygons it will coincide with the centroid.

o Use pol2d centroidf to get the centroid of the polygon.

o Use pol2d visual centerf to get the visual center of the polygon. It implements
an adaptation of the polylabel algorithm of the MapBox! project.

Figure 16.23: “Central” point
of a polygon. Line: Centroid, °
Fill: Visual or Label Center.

'https://github.com/mapbox/polylabel

https://github.com/mapbox/polylabel

274 Chapter 16 - Geom2D library

16.11.2. Polygon decomposition

Certain calculations or rendering tasks can be considerably optimized if we reduce
the complexity of the geometry to be treated. Decomposing a polygon is nothing more
than obtaining a list of simpler polygons whose union is equivalent to the original figure
(Figure 16.24). As an inverse operation, we would have the calculation of the convex hull,
which is obtaining the convex polygon that encloses a set of arbitrary points (Figure 16.25).

o Use pol2d trianglesf to get a list of the triangles that make up the polygon.

e Use pol2d convex partitionf to get a list of convex polygons equivalent to the
polygon.

o Use pol2d convex hullf to create a convex polygon that “wraps” a set of points.

Figure 16.24: Decomposition
of a polygon by triangulation or
convex components.

Figure 16.25: Convex hull of a set
of points.

16.12 - 2D Collisions 275

16.12. 2D Collisions

Collision detection is responsible for studying and developing algorithms that check if
two geometric objects intersect at some point. As the general case would be quite complex
to implement and inefficient to evaluate, a series of collision volumes (Figure 16.26) are
defined that will enclose the original sets and where the tests can be significantly simplified.
The use of these most elementary forms is usually known as broad phase collision detection
(Figure 16.27), since it seeks to detect “non-collision” as quickly as possible. In “Hello 2D
Collisions!” (page 721) you have an example application.

o Usecol2d poly obbf to detect the collision between an oriented box and a polygon.
o Use col2d tri trif to detect the collision between two triangles.

o Use col2d circle segmentf to detect the collision between a circle and a segment.

) / Q
Figure 16.26: 2D Collision Volumes: Point, Segment, Circle, Box,
Oriented Box, Triangle, and Polygon.

FALSE TRUE

Figure 16.27: Broad phase :

collision detection.

Col2D provides functions to check each pair of previously presented collision volumes.
Most of these methods use the Separation Axis Theorem (Figure 16.28). This theorem
indicates, in essence, that if it is possible to find a line where the projections of the vertices
do not intersect, then the figures do not intersect. In the specific case of convex polygons,
it is only necessary to evaluate n lines, where n is the number of sides of the polygon.

276 Chapter 16 - Geom2D library

b

Collide

Figure 16.28: Separation axis
theorem detecting a collision.

CHAPTER

Draw2D library

17.1 Draw2D
17.2 2D Contexts
17.2.1 Reference systems
17.2.2 Cartesian systems
17.2.3 Antialiasing
17.2.4 Retina displays
17.3 Drawing primitives
17.3.1 Line drawing
17.3.2 Figures and borders
17.3.3 Gradients
17.3.4 Gradient transformation
17.3.5 Gradients in lines
17.3.6 Gradient Limits
17.3.7 Drawing text
17.3.8 Drawing images
17.3.9 Default parameters
17.4 Geom2D Entities Drawing
17.5 Colors
17.5.1 HSV space
17.6 DPalettes
17.6.1 Predefined palette
17.7 Pixel Buffer
17.7.1 Pixel formats
17.7.2 Procedural images
17.7.3 Copy and conversion
17.8 Images
17.8.1 Load and view images

278
279
281
284
285
286
287
287
288
289
291
292
293
293
296
297
298
299
300
301
302
302
303
304
305
305
306

278 Chapter 17 - Draw2D library

17.8.2 Generate images 307
17.8.3 Pixel access 307
17.8.4 Save images: Codecs 308
17.9 Fonts 310
17.9.1 Create fonts 310
17.9.2 System font 312
17.9.3 Monospace font 312
17.9.4 Font style 313
17.9.5 Size and metrics 313
17.9.6 Size in points 314
17.9.7 Font stretch 315
17.9.8 Bitmap and Outline fonts 316
17.9.9 Unicode and glyphs 317

17.1. Draw2D

The Draw2D library integrates all the functionality necessary to create two dimensions
vector graphics. It depends directly on Geom2D (Figure 17.1) and, as we will see later,
drawing does not imply having a graphical user interface in the program. It is possible
to generate images using an internal memory buffer, without displaying the result in a
window.

o “2D Contexts” (page 279).

o “Drawing primitives” (page 287).

o “Colors” (page 299) and “Palettes” (page 301).

o “Pizel Buffer” (page 302) and “Images” (page 305).
« “Fonts” (page 310).

This library connects directly to the native technologies of each operating system:
GDI+ on Windows systems, Quartz2D on macOS and Cairo on Linux. In essence,
draw2d offers a common and light interface so that the code is portable, delegating the
final work in each of them. With this we guarantee three things:

o Efficiency: These APIs have been tested for years and are maintained by system
manufacturers.

o Presence: They are integrated as stardard in all computers, so it is not necessary to
install additional software.

17.2 - 2D Contexts 279

GDI+

-— — J

[

.
L
—— Quartz 2D ><

-— — J

I L Cairo

back-end

osbs

Figure 17.1: Dependencies of
draw2d. See “NAppGUI API”
(page 149).

o Performance: The programs are smaller since they do not require linking with special
routines for handling graphics, typography or images.

17.2. 2D Contexts

Vector graphics are composed of basic primitives such as lines, circles, text, etc, using
the painter’s algorithm (Figure 17.2): Incoming operations overlap existing ones. The
result is stored in an intermediate buffer known as canvas or surface. This drawing surface
is part of an object called context that also maintains certain parameters related to the
appearance of primitives: Colors, line attributes, reference system, gradients, etc..

Context Context
A a

Figure 17.2: Painter’s algorithm. New objects will overlap existing
ones.

One of the advantages of working with parametric shapes is that image scaling can
be done without loss of quality (Figure 17.3). This is because the conversion to pixels, a
process called rasterization (Figure 17.4), is done in real time and constantly adjusts to
the change of vectors. In bitmap images, an increase in size has associated a loss of quality.

280 Chapter 17 - Draw2D library

(e)
.3

5
. 3
Figure 17.3: Vector scaling and

bitmap scaling. Vector Bitmap

Figure 17.4: Rasterization of a cir-
cle.

Draw2D allows working with two types of 2D contexts (Figure 17.5).

« Window context. The destination will be an area within a user interface window
managed by a View control. This control maintains its own drawing context and
sends it “ready to use” through the EvDraw event (Listing 17.1).

Listing 17.1: Drawing in a window.

static void i OnDraw (App *app, Event *e)
{

const EvDraw *p = event_params(e, EvDraw) ;

draw _clear (p->ctx, color rgb (200, 200, 200));
draw fill color(p->ctx, color rgb(0, 128, 0));
draw_rect (p->ctx, ekFILL, 100, 100, 200, 100);
draw_fill color(p->ctx, color rgb(0, 0, 255));
draw circle(p->ctx, ekFILL, 450, 150, 75);

View *view = view create();
view size(view, s2df (600, 400));
view OnDraw(view, listener (app, i_OnDraw, App)):;

o Image context. Here the drawing commands will be directly dumped into memory
to subsequently obtain an image with the final result (Listing 17.2).

17.2 - 2D Contexts 281

Listing 17.2: Draw on an image.

static i draw(void)
{
Image *image = NULL;
DCtx *ctx = dctx bitmap (600, 400, ekRGBA32);

draw _clear (ctx, color rgb (200, 200, 200));
draw fill color(ctx, color rgb(0, 128, 0));
draw_rect (ctx, ekFILL, 100, 100, 200, 100);
draw_fill color(ctx, color rgb(0, 0, 255))
draw circle(ctx, ekFILL, 450, 150, 75);

’

image = dctx image (&ctx);
image to file(image, "drawing.png", NULL);
image destroy (&image) ;

o0=00
=
Figure 17.5: Window and image I 77777777777777777777777777777777777777

contexts.

As we can see, the drawing itself is done in the same way, the only thing that changes
is how we obtained the context (DCtx). This allows us to write generic graphic routines
without worrying about the destination of the final result. In the example Drawlmg'
you have a practical step-by-step development of the use of contexts. The images that
accompany the rest of the chapter have been obtained from this application.

Because it is not necessary to have a window to draw, Draw2d can be used in console
applications to compose or edit images in an automated way.

17.2.1. Reference systems

The drawing origin of coordinates is located in the upper left corner (Figure 17.6). The
positive X move to the left and the positive Y down. Units are measured in pixels (or
points in “Retina displays” (page 286)). For example, the command:

draw circle(ctx, ekSKFILL, 300, 200, 100);

'https://nappgui.com/en/howto/drawimg.html

https://nappgui.com/en/howto/drawimg.html

282 Chapter 17 - Draw2D library

will draw a circle of 100 pixel radius whose center is 300 pixels to the left and 200 pixels
down from the origin. This initial system is called identity since it has not yet been
manipulated, as we will see below.

(0,0) | 600

Hello Drafwings!

Figure 17.6: Identity reference system in 2D contexts.

Although the initial scale is in pizels, we must banish the idea that we are directly
manipulating pizels when drawing. Drawing contexts use floating point coordinates.
For example, drawing a line between the points (0.23, 1.432) and (-45.29, 12.6756)
is perfectly valid. Transformations and antialiasing may slightly alter the position or
thickness of certain lines. Nor should we expect “identical” pizel-level results when
migrating applications to different platforms, since each system uses its own rasteri-
zation algorithms. We must think that we are drawing on the real plane. To directly
manipulate the pizels of an image, see image pixels and image from pixels.

This initial reference system can be manipulated by “2D Transformations” (page 263).
The most common transformations in graphics are: Translations (Figure 17.7), Rotations
(Figure 17.8) and Scaling (Figure 17.9).

o draw matrixf will change the context reference system.

Listing 17.3: Coordinate origin translation 100 units in both directions.

T2Df t2d;

t2d movef (&t2d, kT2D IDENTf, 100, 100);
draw matrixf (ctx, &t2d);

i draw(...);

Listing 17.4: Coordinate origin rotation 15 degrees.

17.2 - 2D Contexts 283

\00,1 00
600

Hello Drawings!

Figure 17.7: Translation (List-
ing 17.3).

T2Df t2d;

t2dirotatef (&t2d, kT2D71DENTf, 15 * kBMATHiDEGZRADf) B
draw matrixf (ctx, &t2d);

i draw(...);

Figure 17.8: Rotation (List-
ing 17.4).

Listing 17.5: Scaling, size halving.

T2Df t2d;

t2d scalef(&t2d, kT2D IDENTf, .5f, .5f);
draw matrixf (ctx, &t2d);

i draw(...);

Figure 17.9: Scaling (Listing 17.5).

The transformations can be accumulated, but we must bear in mind that they are not
commutative operations, but that the order in which they are applied will influence the

284 Chapter 17 - Draw2D library

final result. For example in (Figure 17.10) we observe that the drawing has moved (100,
50) pixels, instead of (200, 100), because the translation is affected by previous scaling.
More details at “Composition of transformations” (page 264).

Listing 17.6: Composition of transformations.

T2Df t2d;

t2d scalef(&t2d, kT2D IDENTf, .5f, .5f);

t2d movef (&t2d, &t2d, 200, 100);

t2d_rotatef (&t2d, &t2d, 15 * kBMATH DEG2RADE);
draw matrixf (ctx, &t2d);

i draw(...);

Figure 17.10: Composition of transformations (Listing 17.6).

17.2.2. Cartesian systems

There is a dichotomy when drawing in 2D: On the one hand, traditionally desktop
systems and digital images place the origin of coordinates in the upper left corner with
the Y axis growing down (Figure 17.11). On the other hand, the Cartesian systems used
in geometry place it in the lower left corner, with Y growing up. This creates a dilemma
about whether one system is better than another.

0,0) X

Figure 17.11: 2D system on moni-
tors (left) and Cartesian (right). 0.0)

The answer is clearly no. Even in the same drawing, we may need to combine both
depending on the element we are treating. For texts and images, the screen system is more

17.2 - 2D Contexts 285

intuitive since it reproduces the paper or canvas of the physical world. For mathematical
functions, bar graphs, plans and other aspects related to the technical world, the Cartesian
is much more comfortable and natural.

o draw matrix cartesianf set the context reference system in Cartesian coordi-
nates. In (Figure 17.12) we have used a 6x4 unit Cartesian system mapped onto a
600x400 pixel window.

Listing 17.7: Drawing in Cartesian coordinates.

T2Df t2d;

draw_line color(ctx, color rgb(255, 0, 0));
draw line width(ctx, .03);

draw _fill color(ctx, color rgb(0, 0, 255));
t2d scalef (&t2d, kT2D IDENTf, 100, 100);
draw matrix cartesianf (ctx, &t2d);
draw_rect (ctx, ekSKFILL, 1.5f, .1f, 1, 2);
draw line color(ctx, color rgb(0, 128, 0));
draw line(ctx, 0, 0, 1.5f, 2.1f);

Figure 17.12: Cartesian coordi- 6
nates (Listing 17.7). ©0.0) | \ 1 1 1

17.2.3. Antialiasing

Given the discrete nature of monitors and digital images, a staggered effect (sawtooth)
is produced by transforming vector primitives to pixels (Figure 17.13). This effect becomes
less noticeable as the resolution of the image increases, but still the “pixelated” remains
patent. The antialiasing, is a technique that reduces this step effect by slightly varying
the colors of the pixels in the environment near the lines and contours (Figure 17.14).
With this, the human eye can be deceived by blurring the edges and generating images
of greater visual quality. In return we have the cost in the performance of applying
it, although for years that the calculations related to antialiasing are made directly in
hardware (Figure 17.15), so the impact will be minimal.

o draw antialias allows to activate or deactivate the antialiasing calculations.

286 Chapter 17 - Draw2D library

Drawings!

Figure 17.13: Antialiasing off.

Drawings!

Figure 17.14: Antialiasing on.

Figure 17.15: Orchid Fahrenheit
1280 (1992). One of the first cards
that incorporated 2d graphic acceler-
ation.

17.2.4. Retina displays

At the end of 2014 Apple introduced its news iMac with high resolution Retina Display
(5120x2880). Normally, these monitors work in scaled mode (2560x1440) allowing double
density pixels (Figure 17.16). Apple differentiates between points on the screen, which
are what really manipulates the application and physical pixels. Therefore, our 600x400
window will really have 1200x800 pixels on Retina computers, although the application
will still “see” only 600x400 points. The operating system converts transparently. In fact,
we don’t have to do anything to adapt our code, since it will work in the same way on
both normal iMac and those equipped with Retina monitors.

This double density will be used by the rasterizer to generate higher quality images by
having more pixels in the same screen area. In (Figure 17.17) and (Figure 17.18) we see
the extra quality that these models provide.

17.8 - Drawing primitives 287

Figure 17.16: Double density pixels Y Y
on Retina Display (right).

Drawings!

Figure 17.17: Normal screen (with
antialiasing).

Drawings!

Figure 17.18: Retina Display (with
antialiasing).

17.3. Drawing primitives

When drawing in 2D contexts we have a series of elementary shapes such as lines,
figures, text and images. In DrawHello? you have the source code of the application that
will accompany us throughout this section.

17.3.1. Line drawing

The most elementary operation is to draw a line between two points. In 2d contexts the
lines are solid objects and not a mere row of pixels. Let’s think we are using thick tip pens,
where the theoretical line will always remain in the center of the stroke (Figure 17.19). We
can change the shape of the endings (linecap), the joints (linejoin) and establish a pattern
for dashed lines.

?https://nappgui.com/en/howto/drawhello.html

https://nappgui.com/en/howto/drawhello.html

288 Chapter 17 - Draw2D library

e draw line will draw a line.

e draw polyline will draw several connected lines.

e draw arc will draw an arc.

o draw bezier will draw a Bézier curve of degree 3 (cubic).
e draw line color will set the line color.

e draw line width set the line width.

o draw line cap set the style of the ends.

o draw line join set the style of the unions.

e draw line dash set a dot pattern for dashed lines.

Figure 17.19: Different line styles. (a) ekLCFLAT. (b)
ekLCSQUARE. (c) ekLCROUND. (d) ekLJMITER. (e)
ekLJROUND. (f) ekLJBEVEL. The pattern: [5, 5, 10, 5], [1, 1],
2, 1], [L, 2], [5, 5, 10, 5], NULL.

17.3.2. Figures and borders

To draw figures or closed areas we have several commands. As we see in (Figure 17.20)
we can draw the outline of the figure, its interior or both. For the contour, the established
line style will be taken into account as we have seen in the previous section.

o draw rect for rectangles.
o draw rndrect for rectangles with rounded edges.

e draw circle for circles.

17.8 - Drawing primitives 289

o draw ellipse for ellipses.
e draw polygon for polygons.

o draw fill color set the area fill color.

Listing 17.8: Drawing of figures (outlines and/or fills).

draw_fill color(ctx, kCOLOR BLUE) ;

draw_line color(ctx, kCOLOR BLACK) ;

draw_rect (ctx, ekSTROKE, 10, 10, 110, 75);
draw_rndrect (ctx, ekFILL, 140, 10, 110, 75, 20);
draw _circle(ctx, ekSKFILL, 312, 50, 40);
draw_ellipse(ctx, ekFILLSK, 430, 50, 55, 37);

As we saw in “2D Contexts” (page 279), the order in which the operations are performed
matters. It is not the same to fill and then draw the outline as vice versa. The center of
the stroke will coincide with the theoretical contour of the figure.

[1O0O0
HEG®e

Figure 17.20: Stroke only -
ekSTROKE. Fill only

ekFILL. First stroke, then

fill ekSKFILL. First fill,

then stroke ekFILLSK

17.3.3. Gradients

Gradients allow regions to be filled using a gradient instead of a solid color (Fig-
ure 17.21). Several base colors and their relative position along a vector are defined
(Listing 17.9). The positions [0, 1] correspond to the extremes and the values within this
range to the possible intermediate stops. Each line perpendicular to the vector defines
a uniform color that will extend indefinitely until reaching the limits of the figure to be

filled.

o Use draw fill linear to activate the fill with gradients.

o Use draw fill color to return to solid color fill.

290

Figure 17.21:
ents. The color is interpolated

Chapter 17 - Draw2D library

Stop O

()
(0,400)

Linear gradi-

along a vector.

Stop 0.70

Stop 1

(600,400)

Listing 17.9: Definition of (Figure 17.21) gradients.

// (a) Gradient
color t color([4];

real32 t stopl[4] {0, .35f, .7f,
color[0] = color rgb(255, 0, 0);
color[1l] = color rgb(0, 255, 0);
color([2] = color rgb(0, 0, 255);
color([3] = color rgb(255, 0, 255);
draw_fill linear (ctx, color, stop,
// (b) Gradient

color t color[2];

real32 t stopl[2] {0, 1},
color[0] = color rgb(255, 0, 0);
color[1l] = color rgb(0, 0, 255);
draw _fill linear (ctx, color, stop,
// (c) Gradient

color t color([2];

real32 t stop[2] = {0, 1};
color[0] = color rgb(255, 0, 0);
color[l] = color rgb(0, 0, 255);
draw fill linear (ctx, color, stop,
// (d) Gradient

color t color[2];

real32 t stopl[2] {0, 1};
color[0] = color rgb(255, 0, 0);
color([l] = color rgb(0, 0, 255);
draw fill linear (ctx, color, stop,

1};

600,

400) ;

600,

0,

400) ;

600, 400);

17.8 - Drawing primitives 291

17.3.4. Gradient transformation

Since the gradient is defined by a vector, it is possible to set a transformation that
changes the way it is applied. This matrix is totally independent from the one applied to
drawing primitives draw matrixf, as we saw in “Reference systems” (page 281).

o Use draw fill matrix to set the gradient transformation. With this we can get
several effects:

« Global gradient: The gradient will be applied globally to the background, and the
figures will be cutouts of the same pattern (Figure 17.22). To do this we will set the
identity matrix as a gradient transformation (Listing 17.10). It is defined by default.

L O0O9
IRERI@I
[O0C9e
[O0®®

Listing 17.10: Gradient matrix for the whole drawing.

draw_fill linear (ctx, ¢, stop, 2, 0, 0, 600, 400);
draw fill matrix(ctx, kT2D IDENTf);
i draw_shapes(ctx);

Figure 17.22: Global gradient. The
continuity between figures is not lost.

o Local gradient: The vector is transferred to the origin of the figure or to a point
in its near surroundings (Figure 17.23). With this, we will be able to apply the
gradient locally and that only affects a specific figure. In (Listing 17.11) we have
slightly varied the transformation to fix the origin in a corner and not in the center
of the ellipse. This may vary depending on the desired effect.

Listing 17.11: Gradient matrix for a figure.

T2Df t2d;

t2d movef (&t2d, kT2D IDENTf, 250, 280);

t2d rotatef (&t2d, &t2d, - kBMATH PIf / 10);

draw matrixf (ctx, &t2d); // Geometry matrix
draw fill linear (ctx, ¢, stop, 2, 0, 0, 200, 100);
t2d movef (&t2d, &t2d, -100, -50);

draw_fill matrix(ctx, &t2d); // Gradient matrix
draw ellipse(ctx, ekSKFILL, 0, 0, 100, 50);

292 Chapter 17 - Draw2D library

=

In addition to region fill, gradients can also be applied to lines and contours (Fig-
ure 17.24) (Listing 17.12).

(-100,-50)
-

Figure 17.23: Local gradient. The
origin is placed in the figure.

17.3.5. Gradients in lines

o Use draw line fill to draw the lines with the current fill pattern.

o Use draw line color to return to solid color.

Figure 17.24: Drawing lines using
gradients.

Listing 17.12: Gradients in lines.

draw_fill linear(ctx, c¢, stop, 2, 0, 0, 600, 400);
draw fill matrix(ctx, kT2D IDENTf);

draw line fill (ctx);

draw _bezier (ctx, 30, 200, 140, 60, 440, 120, 570, 200);

17.8 - Drawing primitives 293

17.3.6. Gradient Limits

As we have said, the color fill will spread evenly and indefinitely along all the lines
perpendicular to the vector, but... What happens outside its limits? In (Listing 17.13)
(Figure 17.25) the gradient has been defined in x=[200, 400], this measure being lower
than the figure to be filled:

o Use draw fill wrap to define the behavior of the gradient out of bounds.
o ekFCLAMP the end value is used as a constant in the outer area.
e ekFTILE the color pattern is repeated.

e ekFFLIP the pattern is repeated, but reversing the order which prevents the loss of
continuity in color.

Listing 17.13: Uniform color outside the limits of the gradient (Figure 17.25) (a).

draw_fill linear(ctx, c¢, stop, 2, 200, 0, 400, 0);
draw_fill wrap(ctx, ekFCLAMP);
draw rect (ctx, ekFILLSK, 50, 25, 500, 100);

(200,0) (400,0)
(50,25) (550,25)

(@

(b)

Figure 17.25: Limit Behavior:
(a) ekFCLAMP, (b) ekFTILE, (c)
ekFFLIP.

()

17.3.7. Drawing text

Text rendering is the most important part of the user interface. In the old days, small
bitmaps were used with the image of each character, but in the early 90’s vector fonts
based on Bezier curves came into play. The large number of fonts, the immense set of
“Unicode” (page 159) characters and the possibility of scaling, rotating, or layout the text
in paragraphs was a great technical challenge in those years. Fortunately, all this casuistry
is largely solved by the native APIs of each operating system, which allows us to provide
a simplified interface to add text to our drawings..

» Use draw text to draw texts in 2D contexts.
o Use draw_text color to set the color of the text.

o Use draw font to set the font.

294 Chapter 17 - Draw2D library

o Use draw text width to set the maximum width of a block of text.
o Use draw_text trim to indicate how the text will be cut.

o Use draw_text align to set the alignment of a text block.

o Use draw text halign to set the internal alignment of the text.

o Use draw_text extents to get the size of a block of text.

To draw single-line texts, we just have to call the function, passing a UTF8 string
(Listing 17.14) (Figure 17.26). Previously, we can assign the font, color and alignment.

Listing 17.14: Dibujo de una linea de texto.

Font *font = font system(20, 0);

draw font (ctx, font);

draw_text color(ctx, kCOLOR BLUE);
draw_text align(ctx, ekLEFT, ekTOP);
draw_text (ctx, "Text [Kelpevo ", 25, 25);

TText X% Keipevo| Text X Keipevg [Text X Keigevo

fText X Keipevo| Text X% Keipevg [Text X2 Keiever

Text S Keipevol Text XA Keipevg [Text XA Keigevo

;e Tt)& Kzium.
Xe . g\io .
e S ke 9;‘*@\9 Text XA Keipevo,
Mevg <eft Text 34 Keipevo

Figure 17.26: Single-line
texts, with alignment and trans-

" Tex<tbt S22 =73 Kesipsesvo
formations.

If the string to be displayed has new lines (character "\n’) they will be taken into
account and the text will be shown in several lines (Listing 17.15) (Figure 17.27). We
can also obtain the measure in pixels of a block, useful to integrate the text with other
primitives.

Listing 17.15: Dibujo de textos con saltos de linea.

const char t *text = "Text new line\ldUn\T'poupnn xeipévou";
real32 t w, h;

draw_text (ctx, text, 25, 25);

draw_ text extents(ctx, text, -1, &w, &h);

If the text does not contain new lines, it will be drawn continuously expanding horizon-
tally. This may not be the most appropriate in long paragraphs, so we can set a maximum
width, forcing its drawing in several lines (Listing 17.16) (Figure 17.28).

Figure 17.27: Texts with a

17.8 - Drawing primitives

Text new line
SEFHRAT

[pappn KeWWévou

Text new line
EFHETT

pappn Kewévou

Text new line
NEFHRAT

Ipappn KeWWévou

Text new line
SCFIRAT

rpappn KeWwévou

Text new line
SCPHRTT

pappn Kewévou

Text new line
SRR

lpappn KeWwévou

Text new line
ST

Fpappn Kepévou

Text new line
MXEFHRTT

pappn Kepévou

Text new line
XFHIT

lpappn KeWpévou

\n’ character.

Listing 17.16: Maximum width and internal alignment in text blocks.

const char t *text = "Lorem ipsum dolor sit amet...consequat";
draw_text width(ctx, 200);

draw text halign(ctx, ekLEFT);

draw_text (ctx, text, 25, 25);

draw text extents(ctx, text, 200, &w, &h);

Lorem ipsum dolor sit amet,
consectetur adipiscing elit,
sed do eiusmod tempor
incididunt ut labore et dolore
magna aliqua. Ut enim ad
minim veniam, quis nostrud
Exercitatiun ullamco laboris

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
lex ea commodo consequat.

isi ut aliquip ex ea
ommodo consequat.

Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim veniam, quis nostrud

Figure 17.28: Text Exercitatiun ullamco laboris nisi ut aliquip ex ea commodo
paragraphs with width HIS=ES

limit. The maximum and

real width obtained with Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmo

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
Meniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

draw text extents are
u - commodo conseguat.

shown.

Finally, we can use draw_text path to treat the text like any other geometric region,
highlighting the border or filling with gradients. In this case draw text color will have
no effect and the values of draw fill color,draw £fill linear and draw line color

will be used (Listing 17.17) (Figure 17.29).

Listing 17.17: Text with dotted stroke and gradient fill.

color t c[2];

real32 t stop[2] = {0, 1};
real32 t dash[2] {1, 1};
c[0] = kCOLOR BLUE;

296 Chapter 17 - Draw2D library

cl[l] = kCOLOR_RED;

draw line dash(ctx, dash, 2);

draw_line color (ctx, kCOLOR GREEN) ;

draw_ text extents(ctx, "Gradient dashed text", -1, &w, &h);
draw fill linear(ctx, ¢, stop, 2, 25, 0, 25 + w, 0);

draw_text path(ctx, ekFILLSK, "Gradient dashed text", 25, 250);

Fill and Stoke text
Gradient fill text

Gradient dashed text
Figure 17.29: Combining fill Thﬁn Stf@k@ t@xt

and stroke.

latter to what is strictly necessary.

draw text is much faster than draw text path, so we must limit the use of the

17.3.8. Drawing images

Images generated procedurally or read from disk can be used as a drawing primitive
more (Listing 17.18) (Figure 17.30). As with text or other figures, the transformation of

the context will affect the geometry of the image.
o Use draw image to draw an image.

o Use draw_image frame to draw a sequence of an animation.

o Use draw image align to set the alignment of the image with respect to the inser-

tion point.

Listing 17.18: Translated and rotated image drawing.
const Image *image = image from resource(pack, IMAGE JPG);
T2Df t2d;

t2d movef (&t2d, kT2D IDENTf, 300, 200);
t2d rotatef (&t2d, &t2d, kBMATH PIf / 8);
draw_image align(ctx, ekCENTER, ekCENTER);
draw matrixf (ctx, &t2d);

draw image (ctx, image, 0, 0);

17.8 - Drawing primitives 297

Figure 17.30: Drawing images with alignment.

17.3.9. Default parameters

Each context maintains certain state parameters. At the beginning of the drawing,
either by the method onDraw or after creating the context with dctx bitmap the default
values are those shown in (Table 17.1):

Parameter Value Change with
Matrix Identity (0,0) Sup-Left corner, pixels. draw matrixf
Antialiasing TRUE draw antialias
LineColor kCOLOR BLACK draw line color
LineWidth 1 draw line width
Linecap ekLCFLAT draw line cap
Linejoin ekLJMITER draw line join
LineDash Sélido draw line dash
TextColor kCOLOR_BLACK draw_text color
FillColor kCOLOR_BLACK draw fill color
FillMatrix Identity (0,0) Sup-Left corner, pixels. | draw fill matrix
Font System default, regular size. draw_font
Text max width -1 draw text width

298 Chapter 17 - Draw2D library

Parameter Value Change with

Text vertical align ekLEFT | draw_text align

Text horizontal align | ekTOP | draw text align

Text internal align ekLEFT | draw text halign

Image vertical align | ekLEFT | draw image align

Image horizontal align | ekTOP | draw image align

Table 17.1: Default values in 2D contexts.

17.4. Geom2D Entities Drawing

In the previous section we have seen the basic primitives for drawing in 2D. However,
Draw2D has specialized functions for “Geom2D” (page 257) objects. These new func-
tions would be totally dispensable, since you could get the same result using draw rect,
draw polygon, etc. They are included as a mere shortcut, in addition to offering a version
of them based on “Math templates” (page 53), very useful when developing generic algo-
rithms in C++4. The line and fill properties will be those that are in effect at any given time
within the context, due to: draw line color, draw line width, draw fill color,
etc..

o Use draw_v2df to draw a point.

o Use draw_seg2df to draw a segment.

o Use draw r2df to draw a rectangle.

o Use draw cir2df to draw a circle.

o Use draw box2df to draw an aligned box.
o Use draw obb2df to draw an oriented box.
o Use draw tri2df to draw a triangle.

o Use draw pol2df to draw a polygon.

You can find a complete example of the use of 2D entities in Col2DHello (Figure 17.31).
In addition to drawing, this application shows other concepts related to graphics and
geometric calculation such as:

o Create 2D objects on demand.

o Click+Drag interactivity.

3https://nappgui.com/en/howto/col2dhello.html

https://nappgui.com/en/howto/col2dhello.html

17.5 - Colors 299

o Collision detection.

o Calculation of areas.

o Triangulation of polygons and decomposition into convex components.

e Calculation of the optimal circle that surrounds a set of points.

» Calculation of the oriented box (0BB2Df) that best represents a set of points.

o Calculation of the Convex Hull.

& 2D Collision Detection - m} X

| ekPOINT_CLOUD ~

New Shape
[Show Segment-Point distance &
A Show Polygon triangles

[IShow Convex partition .
Area: 7776.03

Selected Triangle
Angle:

A
Scale: // .
L .. /
7

Figure 17.31: Col2dHello application, which illustrates how to work with 2D geometry.

17.5. Colors

The colors in Draw2D are encoded using a 32-bit integer with the four RGBA channels
in Little-Endian: Red in byte 0, green in 1, blue in 2 and alpha (or transparency) in 3
(Figure 17.32). The alias color t is used as an equivalent to uint32 t. In the particular
case that byte 3 is equal to 0 (fully transparent), the first three bytes will not contain RGB
information, but an index with a special color.

o Use color rgba to create a color using its RGBA components.
o Use color get rgba to get the RGBA components.
o Use color html to translate an string into HTML format ("#RRGGBB").

o Use kCOLOR BLACK and others to access predefined basic colors.

300 Chapter 17 - Draw2D library

a>0 RGBA a=0 Indexed
Index
Figure 17.32: 32-bit RGBA value
representation. 32 1 0

17.5.1. HSV space

RGB representation is based on the addition of the three primary light colors. It is the
most widespread within the generation of computer images, especially when calculating
shading and reflections. It is also used in TV, monitors or projectors where each pixel
is obtained by combining the light of three emitters. However, it is very unintuitive for
human color editing. For example, given a color in RGB, it is very difficult to increase the
brightness or vary the tone (between red and orange, for example) by manipulating the
triplet (r, g, b). The HSV space (Hue, Saturation, Value) also called HSB (Brightness)
solves this problem, since the effect of altering this group of values will be highly predictable
(Figure 17.33).

o Use color hsbf to create an RGB color from its components H, S, B.

o Use color to hsbf to get the H, S, B components.

Figure 17.33: HSV space repre-
sented by an inverted cone. As V de-
creases, so will the number of colors
available.

o Hue: Continuous cyclical value between 0 and 1. Where 0=Red, 1/3=Green, 2/3
=Blue, 1=Red (Table 17.2).

e Saturation: It is equivalent to adding white paint to the base tone. When s=1 no
white is added (maximum saturation, pure color). But if s=0 we will have a pure
white, regardless of the tone.

o Brightness: It is equivalent to adding black paint to the HS combination. If B=1 no
black is added (maximum brightness). If B=0 we will have a pure black, regardless
of the hue and saturation.

RGB HSV
(0,0,0) | | | xcoror_BLACK | (7,7,0)

RGB HSV
(1,1,1) | []| xCOLOR _WHITE (7,0,1)
(1,0,0) | B kCOLOR RED (0,1,1)
(1,1,0) kCOLOR_YELLOW | (1/6,1,1
(0,1,0) | B | kcoLor GrReEN | (1/3,1,1
(0,1,1) kCOLOR_CYAN (1/2,

(0,0,1) | | kCOLOR BLUE (2/3,1,1
(1,0,1) | | | xcoror_MaGENTA | (5/6,1,1

Table 17.2: Equivalence RGB/HSV.

Unlike RGB, HSVs are not totally independent.

17.6 - Palettes

301

As we reduce the brightness, the

number of colors of the same tone will decrease until we reach B=0 where we will have pure
black regardless of H and S. On the other hand, if s=0 H will be overridden and we will
have the different shades of gray as B changes from 0 (black) to 1 (white).

17.6. Palettes

A palette is nothing more than an indexed list of colors (Figure 17.34), usually related
to “Pizel Buffer” (page 302). Its main utility is to save space in the images representation,
since each pixel is encoded by an index of 1, 2, 4 or 8 bits instead of the real color where
24 or 32 bits are necessary. For this reason, it is usual to have palettes of 2, 4, 16 or 256

colors.

» Use palette create to create a palette.

» Use palette colors to access the elements.

PixelBuffer
7:4:2:4:3:2:5:7:2
3:6:0:6:0:0:0:0:3
0:6:3:3:16:3:6:0:5
111141712141 112:17
0:1:7:3:0:0:1:0: 1<

Figure 17.34: Palette associated

with an indexed pixel buffer.

Palette

302 Chapter 17 - Draw2D library

17.6.1. Predefined palette

We have several predefined palettes both in color (Figure 17.35) and in grays (Fig-
ure 17.36). The RGBS palette has been created by combining 8 tones of red (3bits), 8
tones of green (3bits) and 4 tones of blue (2bits). This is so because the human eye
distinguishes much less the variation of blue than the other two colors.

o Use palette ega4 to create a predefined palette of 16 colors.
o Use palette rgb8 to create a 256 color palette.
o Use palette gray4 and similars to create a palette in grays.

o Use palette binary for a two-color palette.

low CGA2 high EGA4 RGB8
|
mo I
-
m1
Figure 17.35: Predefined color —
palettes. - .
Gray1 Gray2 Gray4 Gray8

Figure 17.36: Predefined gray
palettes.

17.7. Pixel Buffer

A pixel buffer (pPixbuf) is a memory area that represents a grid of color dots or pixels.
They allow direct access to information but are not optimized for drawing on the screen,
so we must create an Image object to view them. They are very efficient for procedural
generation or the application of filters, since reading or writing a value does not require
more than accessing its position within the buffer.

o Use pixbuf create to create a new pixel buffer.
o Use image pixels to get the pixels of an image.

o Use pixbuf width to get the width of the grid.

17.7 - Pixel Buffer 303

o Use pixbuf height to get the height of the grid.

All operations on pixel buffers are performed on the CPU. They are efficient to the
extent that we directly access memory, but they cannot be compared with alternatives
that use the GPU for digital image processing.

17.7.1. Pixel formats

The format refers to how the value of each pixel is encoded within the buffer (Table 17.3)

(Figure 17.37).

o Use pixbuf format to get the pixel format.

o Use pixbuf format bpp to get the number of bits wanted for each pixel.

Value Description
ekRGB24 True color +16 million simultaneous, 24 bits per pixel.
ekRGBA32 | True color with alpha channel (transparencies), 32 bits per pixel.
ekGRAYS 256 shades of gray, 8 bits per pixel.
ekINDEX1 Indexed, 1 bit per pixel.
ekINDEX2 Indexed, 2 bits per pixel.
ek INDEX4 Indexed, 4 bits per pixel.
ekINDEXS8 Indexed, 8 bits per pixel.

Figure 17.37: (a) True color,
(b) shades of gray, (c) indexed.

Table 17.3: Pixel formats.

px0 px1 px2 px3
(a) X B R B R B R B

px0 px1 px2 px3 px4 px5 px6 px7 px8 px9 px10 px11
wlc|elc|e]s|s]c|s]s|s]c]s].,

px1 px3 px5 px7 px9 px11 px13 px15 px17 px19 px21 px23 Palette

JHHHHHHEHHHEHNEP

True Color Indexed
i 714127473727 5171 24+
316i016i0i0i0i0i3
0i6i3i3i6(3:6i0.5 !
ORITIEIEITIKIEI]
017300101-—|_.

304 Chapter 17 - Draw2D library

17.7.2. Procedural images

One way to “fill” buffers is through algorithms that calculate the value of each pixel.
A clear example is found in the representation of fractal sets (Figure 17.38), an area of
mathematics dedicated to the study of certain dynamic systems. In “Fractals” (page 471)
you have the complete application.

o Use pixbuf data to get a pointer to the contents of the buffer.
o Use pixbuf set to write the value of a pixel.

o Use pixbuf get to read the value of a pixel.

Figure 17.38: Julia set.
Pixel-pixel generated image
using fractal algorithms.

While pixbuf set and pixbuf get allow safe pixel manipulation, it may sometimes
be necessary to get a little extra in terms of performance. In (Listing 17.19) we have some
macros for direct access to the memory area returned by pixbuf data. Use them with
great care and knowing what you are doing, since they do not have error control methods,
so segmentation failures are likely if they are not used correctly.

Listing 17.19: Quick macros for manipulating a buffer type ekINDEX1 (1 bit per pixel).
#define pixbuf getl(data, x, y, w)\
(uint32_t) ((datal ((y)*(w)+(x))/8] >> (byte t) (((y)*(w)+(x))%8)) & 1)

#define pixbuf setl(data, x, y, w, v)\

{\
byte t * ob = data + (((y)*(w))+(x))/8;\
byte t _op = (byte t) ((((y)*(w))+(x))%8);\
* ob &= ~(1 << _ op);\

*_ob = ((v) << __op)i\

17.8 - Images 305

17.7.3. Copy and conversion

During the digital processing of an image, we may have to chain several operations, so
it will be useful to be able to make copies of the buffers or format conversions.

o Use pixbuf copy to make a copy.

o Use pixbuf convert to convert to another format (Table 17.4).

Source Destiny | Observations
RGB24 | RGB32 | Alpha channel is added with the value 255
RGB32 | RGB24 | Alpha channel is removed with possible loss of information.

RGB(A) Gray | RGB channels are weighted at a ratio of 77/255, 148/255,
30/255. Alpha channel is lost.

Gray RGB(A) | RGB channels (gray, gray, gray) are duplicated. Alpha channel
to 255.

RGB(A) | Indexed | The smallest distance between each pixel and the palette is
calculated. Possible loss of information.

Indexed | RGB(A) | The palette will be used to obtain each RGBA value.

Indexed | Indexed | If the destination has a lower number of bits, out = in % bpp
will be applied with possible loss of information.

Gray Indexed | The Gray8 format will be considered indexed for all purposes.

Indexed Gray The Gray8 format will be considered indexed for all purposes.

Table 17.4: Conversion between formats.

17.8. Images

There is a close relationship between pixel buffers and images. Although the firsts
contain “raw” color information, the latter are objects directly linked to the graphical API
of each system, which allows them to be drawn in 2d contexts or viewed in a window
(Figure 17.39).

Gdiplus: :Bitmap

e
{) .
' Image =- NSBitmapImageRep ><
Figure 17.39: Image objects &

have a direct link to graphics GdkPixbuf
APIs, while Pixbuf do not.

306 Chapter 17 - Draw2D library

The structure of a digital image, also called bitmap or raster graphics, is the same as
that of a buffer pixel. We have a discrete grid of color dots characterized by its resolu-
tion (width, height) and depth, which is the amount of bits needed to encode each pixel
(Figure 17.40). bitmap images work best for taking snapshots of the real world, where
it is practically impossible to describe the scene using geometric primitives, as we saw in
“Drawing primitives” (page 287). On the other hand, as it is composed of discrete points,
it does not behave well in the face of changes in size where it will suffer a loss of quality.

Figure 17.40: On the left an
image of 64x64 pixels and 16 col-
ors. Right 256x256 pixels and
16 million colors.

17.8.1. Load and view images

In most cases, the only thing we will need to know about images will be how to read
them from disk or other data source and then display them on the screen as part of the
user interface (Listing 17.20) (Figure 17.41). We consider that the images are stored in
one of the standard formats: JPG, PNG, BMP or GIF.

Listing 17.20: Loading and viewing images.

Image *img = image from file("lenna.jpg", NULL);
Image *icon = image from resource (pack, ekCANCEL) ;

imageview image (view, img);
button image (button, icon);

n|lf|
=

—Image*
Figure 17.41: Integration read draw

of images in the user inter-
face. ;

o Use image from file to load an image from disk.

o Use image from data to create an image from a memory buffer.

17.8 - Images 307

« Use image from resource to get a picture of a resource package.

o Use image read to create an image from “Streams” (page 232).

« In the demo Urllmg* you have an example of how to download them from a Web

server.

Once the image object is loaded in memory, we have several ways to view it:

» Use draw image to draw an image in a 2d context.

o Use imageview image to assign an image to a view.

o Use button image to assign an image to a button.

o Use popup add elem to assign a text and icon to a drop-down list.

17.8.2. Generate images

As we saw in “2D Contexts” (page 279), if necessary we can create our own images from
drawing commands to later display them in the interface (Figure 17.42) or save them to

disk.

o Use dctx image to create an image from a 2d context.

) Drawing on an image

Window context: 600x400

Hello Drawings!

Image context:) 600x400 () 300x200 ® 150100 O T5x50

17.8.3. Pixel access

Figure 17.42: Image generated by drawing commands.

Images are immutable objects optimized for recurring on-screen drawing, so certain
licenses are allowed, both in the internal organization of color information and in the
management of possible copies. For this reason it is not possible to directly manipulate
the pixels, but we must access them using a “Pizel Buffer” (page 302).

o Use image from pixels to create an image from the color information.

“https://nappgui.com/en/howto/urlimg.html

https://nappgui.com/en/howto/urlimg.html

308

Chapter 17 - Draw2D library

Use image from pixbuf to create an image from a pixel buffer.
Use image pixels to get a buffer with the pixels of the image.
Use image width to get the width.

Use image height to get the height.

Use image format to get the pixel format.

Apple technical documentation: “Treat NSImage and its image representations as
immutable objects. The goal of NSImage is to provide an efficient way to display images
on the target canvas. Avoid manipulating the data of an image representation directly,
especially if there are alternatives to manipulating the data, such as compositing the
image and some other content into a new image object.”

The pixel buffers allow us to optimally manipulate the content of the image. To
view the result or store it in any of the supported formats, we must create a new image
(Figure 17.43).

Source GUI

PixelBuffer New Image

b5

Algorithms

Figure 17.43: Image editing process.

17.8.4. Save images: Codecs

One of the biggest problems of digital images is the large amount of memory they need.
An image of only 1024x768 pixels and 32 bits of color needs 3 megabytes of memory.
It may not seem like much, but at the end of the 80s this was a great handicap since
memory was very expensive and transmissions were very slow. This is why several coding
(compression) systems were devised that reduced the amount of memory needed and that
were consolidated with the rise of the Internet (Figure 17.44).

o Use image get codec to get the codec associated with the image.

17.8 - Images 309

o Use image codec to change the codec associated with the image.
o Use image to file to save it to disk.

o Use image write to write it in a Stream.

Figure 17.44: Image formats sup- m m

ported by NAppGUI.

Draw2D does not natively support other formats than those mentioned. If necessary,
you will have to find a way to create a Pixbuf from the specific data of your format,
in order to integrate these images into the user interface.

o JPEG: Joint Photographic Fxperts Group is a format with a very good compres-
sion rate based on the Fourier Transform. Ideal for capturing real-world snapshots,
although it will detract some quality from the original capture (lossy compression).

o PNG: Portable Network Graphics emerged in response to legal problems with the
GIF format. Supports lossless LZ77/Deflate compression and indexed pixel formats.
Ideal for computer generated diagrams, graphics or images.

o GIF: Graphics Interchange Format uses the proprietary compression algorithm
LZW, although the patent expired in 2003. It has survived PNG because it can
include animations in a single file, something that neither of the two previous for-
mats supports.

« BMP: BitMaP. Windows native format widely surpassed by the other three. Al-
though it supports a special type of compression called Run-Length encoding, the
truth is that most files are saved uncompressed. BMP files take up much more
space, for this reason very little is used on the Internet and almost nothing on non-
Windows machines. It is supported by almost all programs and systems because it
is very simple an fast to interpret.

To be able to display on the screen, the image must be decompressed (de-encoded), a
process that is performed automatically when reading the image. When saving it to disk
or sending it over the network, the opposite process is performed, compressed or encoded
using the algorithm associated with it (Table 17.5), but it can be changed.

Constructor Codec

image from file | The original codec.

image from data | The original codec.

310 Chapter 17 - Draw2D library

Constructor Codec

image from resource The original codec.

image from pixels Transparencies? Yes:ekPNG No:ekJPG.

dctx image ekPNG.

Table 17.5: Default image codecs.

Generally, GDI+, NSImage or GdkPixbuf support for codec settings is quite limited.
For example, it is not possible to generate indexed PNG files, which is very useful when
reducing the size of images for the web. If the application requires more control over
the export, we will have no choice but to use libpng, libjpeg or any other third-party
solution.

17.9. Fonts

Fonts are graphic objects (files) that contain the characters and symbols that we see
on a monitor. We remember that a “Unicode” (page 159) string only stores the code of
the characters (codepoints) without any information about how they will be drawn. The
graphic associated with a character is known as a glyph and, in a font file, there are as
many glyphs as codepoints can represent the typography. The pairing between codepoints
and their corresponding glyphs is carried out by the graphics subsystem of the operating
system (Listing 17.21) (Figure 17.45).

Listing 17.21: Drawing of a text string.

Font *font = font create("Comic Sans MS" 28, 0);
draw_ font (ctx, font);

draw_text (ctx, "Hello World", 200, 250);

font destroy(&font);

17.9.1. Create fonts

When displaying texts in graphical interfaces it is necessary to establish a typography,
otherwise the system would not know how to render it. There will always be a font defined
by default, but we can change it when customizing the appearance of our texts.

« Use font create to create a new font.
o Use font family to get the font typeface.
» Use draw font to set the font in 2D contexts.

o Use label font to change the font associated with a Label control.

17.9 - Fonts 311

Unicode (codepoints)
CEIIEI DGO
(72,101,108,108,111,32,87,111,114,108\00)| RGN

Font (glyphs >‘ Hello World

) |

“Comic Sans MS” 28px

Figure 17.45: Text representation: codepoints + glyphs.

The most representative characteristic of a font’s design is the family to which it belongs
(font family or typeface) (Figure 17.46). Each computer has a series of families installed
that do not have to coincide with those incorporated in another machine. This is an
important fact to take into account since, for the sake of portability, we should not assume
that a certain font family will be present on all the machines that run the program.
Sentences of the type:

Font *font = font create("Comic Sans MS", 28, 0);

will not be completely portable, since we are not sure that the Comic Sans MS font is
installed on all computers.

o Use font installed families to get the list of all families installed on the ma-
chine.

Hello World!
ello World!
Hello World!
swe s mieer o HE@ LLO WO L !

lies.

312 Chapter 17 - Draw2D library

17.9.2. System font
» Use font system to create a font with the default family.
« Use font regular size to get the font size of the interface.

There is always a default font associated with the window environment and that, in
a certain way, gives it part of its personality. Using this font guarantees the correct
integration of our program in all the systems where it is executed, making our code totally
portable (Figure 17.47). Controls such as Button or Label have the system font associated
with a regular size by default. The best known are:

« Segoe UI: Windows Vista, 7, 8, 10, 11.

o Tahoma: Windows XP.

« San Francisco: Mac OSX El Capitan and later.

« Helvetica Neue: Mac OSX Yosemite.

¢ Lucida Grande: Mac OSX Mavericks, Mountain Lion, Lion, Snow Leopard.
e Ubuntu: Linux Ubuntu.

o Piboto: Linux Raspbian.

o Cantarell: Kali Linux.

Q Hello, C++! - X o Hello, World!
Hello!, I'm a label Hello!, I'm a label
i Click Me! | Click Me!
0" Hello,World
Hello!, I'm a label Hello!, I'm a label
Click Me! (Click Me!)

Figure 17.47: Using system font.

17.9.3. Monospace font

In addition to the system font we have another monospaced font available by default
(Figure 17.48). These fonts imitate old typewriters, where all the characters occupy the
same space. They are usually used for technical documents or source code files.

o Use font monospace to create a generic monospace font.

o Use font is monospace to check if a font is monospace.

17.9 - Fonts 8183

o Use font installed monospace to get all installed monospace fonts.

| - Proportional
ke ity wnd monoaos (et MIONO SPACE

width) font.

In general, graphics APIs do not offer a monospace font by default. NAppGUI will
select the most appropriate one in each case by searching among the installed fonts:

o« Windows: Consolas, Courier New.
« macOS: SF Mono, Menlo, Monaco, Andale Mono, Courier New.
¢ Linux: Ubuntu Mono, DejaVu Sans Mono, Courier New.

Starting with macOS Catalina, Cocoa does offer a monospace system font.

However, you can register a default monospace family for the entire application using
draw2d preferred monospace. Any call to font monospace will give priority to this
user option.

17.9.4. Font style
o Use font style to get the style.

In addition to the family, we will have certain properties (style) that will also influence
its appearance. They are grouped in the style parameter of the constructor, combining
the values of fstyle t (Figure 17.49).

e ekFBOLD. Bold.
e ekFITALIC. Italic.
e ekFUNDERLINE. Underlined.

e ekFSTRIKEOUT. Strikethrough.

17.9.5. Size and metrics
« Use font size to get the font size.
» Use font height to get the line size.
» Use font ascent to obtain the measurement above the baseline.

o Use font descent to get the measurement below the baseline.

314 Chapter 17 - Draw2D library

Hello Normal!
Hello Bold!
Hello [talic!
Hello Underline!

Figure 17.49: Text style with the | Ie ” e § tFIlEe Ql ltl

same family.

o Use font leading to get the line margin.
« Use font extents to get the size of a text.

Although the font size (size) is the only metric that we can configure when creating
a font, there are different associated measurements that can be useful when working with
vector graphics (Figure 17.50). The most used will be the line height (height), in general,
somewhat larger than the font size since it includes a small vertical margin (leading). You
can use the constant ekFCELL in style to indicate that size refers to line height instead
of letter height.

I l baseline
{

Figure 17.50: Text metrics with a given font.

17.9.6. Size in points

By default, the font size is expressed in pixels, but it can be changed by adding
ekFPOINTS to the style parameter. This unit is related to printed sources on paper.
Here the concept of DPI (dots per inch) appears, which indicates the number of isolated
ink droplets that a printing device can emit per metric inch. In typography the criterion
of 72 DPI is established, therefore, the size of a point is approximately 0.35mm. This
way it is easy to calculate the font size from the points: 12pt=4.2mm, 36pt=12.7mm or
72pt=25.4mm (1 inch). This is the unit used in word processors, which already work
based on a print page size. The problem arises when we want to represent fonts expressed

17.9 - Fonts 815

in points on a screen, since there is no exact correspondence between pixels and millime-
ters. The final pixel size depends on the resolution and the physical size of the monitor. A
conversion agreement is required between pixels and inches, which gives rise to the term
PPI (pizels per inch). Traditionally, Windows systems are set at 96 PPI while on Apple
iMacs it is 72 PPI. This causes fonts expressed in points to be 33% larger in Windows
(Figure 17.51). Furthermore, in the Microsoft system it is possible to configure the PPI
by the user, which adds more uncertainty about the final size of the texts on the screen.

i Tutorial § - X [] Tutorial 8

Font sizes (point) v Font sizes (point) -

Small Font Size

SmatFont S22
Medium Font Size Medium Font Size

Large Font Size Large Font Size
12pt Font Size 12pt Font Size

20pt Font Size 20pt Font Size

36pt Font Size 36pt Font Size
. 54pt Font Size
54pt Font Size

. /72pt Font Size
/2pt Font Size

T |
]| A

Figure 17.51: The ekFPOINTS unit is not recommended for screens.

17.9.7. Font stretch
o Use font with width to change the average width of the character.
o Use font with xscale to change the x scaling of the text.
» Use font width to get the half width of the character.

o Use font xscale to get scaling in x.

In general, the average character width is determined by the font size and we should
almost never need to change (Figure 17.52). But sometimes it can be useful to “stretch”
or “collapse” the text while leaving its height intact. Let’s think, for example, about the
emulation of terminals where each cell must occupy a certain width.

We consider average width to be the size in pixels of the string [A-Z][a-z][0-9]
divided by 62. Obviously, in monospaced fonts, the average width will correspond to the
width of any character. Scaling in X is a value related to the width, but more intuitive
when creating the font.

316 Chapter 17 - Draw2D library

Font system regular
Font system regular

Fant sy regler

Font monospace regular A o y il
Font monospace regular . - R -
i Hcks Pagebl ke including versions of Lorem lpsum,
Font system regular

Font system regular

Fort e
onospace regular
Font monospace regular

Font system regular

Font system regular

Fort gsiem gl
Font monospace regular

Font monospace regular

Font system regular

Font system regular

Fart ysem gl

Font monospace regular

Font monospace regular

Font system requll Font system | fo sl Font monespace Font monos fntmg

Figure 17.52: Effect of changing font width on drawing contexts
and GUI elements.

17.9.8. Bitmap and Outline fonts

In early computers, fonts were created as raster graphics Bitmap Fonts (Figure 17.53).
Each character fit into a cell of fixed size where those pixels that composed it were marked.
The biggest problem is that they don’t scale well. As we make the text on the screen larger,
the jagged effect of the pixels becomes evident.

Figure 17.53: Bitmap fonts.

In 1982 Adobe launched the PostScript format that included what were known as
Outline Fonts (Figure 17.54). This format contains a geometric description of each symbol

17.9 - Fonts 817

based on lines and Bezier curves. In this way, the pixelated effect of the bitmap is avoided,
since when the character is scaled, the pixels that make it up are re-computed in a process
known as rasterization. At the end of the 80’s Apple launched the TrueType format
and sold a license to Microsoft that incorporated it in Windows 3.1, opening the door to
the mass market for vector fonts. Nowadays all systems work with scalable fonts, with
TrueType and OpenType being the clearest representatives.

- ya N\
/ -
= / \
A Y
SYSTEMS INCORPORATED { { f *

\ \/ /
(" N VY~
“ //’ ~ N\
. N0\ /
Figure 17.54: Outline fonts, POStSC"Pt { \\ AN /
on which the TrueType and \\ \““)/A\ \
AN

OpenType formats are based.

17.9.9. Unicode and glyphs

Unicode is a very extensive table. In version 11 (June 2018) there are 137,374 codepoints
registered and this number grows with each new revision of the standard. If the application
requires special symbols (above BMP-Basic Multilingual Plane) we must make sure that
the selected fonts contain glyphs for them. To see the relationship between codepoints
and glyphs we can use the BabelMap (Figure 17.55) application, and within it the Font
Analysis option. Starting from a Unicode block, it will show those installed fonts that
include glyphs for that range. In macOS we have a similar application called Character
Viewer and in Ubuntu another called Character Map.

Font Analysis X

" List Al Unicode Blocks Covered by this Font & List Al Forts that Coverthis Unicode Block

= [Inscriptional Parthian [30 characters] |

copy | Copy Al Charscters | Fomt nfo_ | copy | Copy Font Coverage |

Sample Text

30 oI N X9r_ NI on A3 NsoH 3T DN
Figure 17.55: BabelMap Font
Analysis provides us with information
about the glyphs included in each

font.

318 Chapter 17 - Draw2D library

CHAPTER

Gui library

18.1 Gui 322
18.1.1 Declarative composition 323
18.1.2 Anatomy of a window. 324
18.1.3 GUI Events 325

18.2 GuiControl 328

18.3 Label 329
18.3.1 Multiline label 329
18.3.2 Label in forms 330
18.3.3 Dynamic labels 330

18.4 Button 332
18.4.1 RadioGroup 333
18.4.2 Button shortcuts 334
18.4.3 Inner padding 335

18.5 PopUp 336

18.6 Edit 336
18.6.1 Validate texts 336
18.6.2 Filter texts 337
18.6.3 Text selection 339
18.6.4 Clipboard operations 340

18.7 Combo 340

18.8 ListBox 341

18.9 UpDown 341

18.10 Slider 343

18.11 Progress 343

18.12 View 344

18.12.1 Draw in views 345

320 Chapter 18 - Gui library

18.12.2 Scrolling views 345
18.12.3 Drawing overlays 347
18.12.4 Using the mouse 348
18.12.5 Using the keyboard 349
18.13 TextView 349
18.13.1 Character format 350
18.13.2 Paragraph format 351
18.13.3 Document format 352
18.13.4 Apply format 352
18.13.5 Filter inserted text 352
18.13.6 Select text 353
18.13.7 Clipboard 354
18.13.8 Text wrapping 354
18.14 WebView 354
18.14.1 WebView dependencies 354
18.14.2 WebView on Windows 355
18.14.3 WebView on macOS 356
18.14.4 WebView on Linux 356
18.14.5 Disable WebView 356
18.15 ImageView 357
18.16 TableView 358
18.16.1 Data connection 358
18.16.2 Data cache 361
18.16.3 Multiple selection 362
18.16.4 Table navigation 362
18.16.5 Configure columns 363
18.16.6 Notifications in tables 364
18.16.7 Table appearance 365
18.17 SplitView 365
18.17.1 Add controls 367
18.17.2 Positioning the divider 367
18.17.3 Divider minimum size 369
18.18 Layout 369
18.18.1 Natural sizing 370
18.18.2 Margins and format 372
18.18.3 Alignment 372
18.18.4 Sub-layouts 374

18.18.5 Cell expansion 375

18.18.6 Dynamic interfaces
18.18.7 Replacing panels
18.18.8 Dynamic layouts
18.18.9 Tabstops

18.19 Cell

18.20 Panel
18.20.1 Multi-layout panel

18.20.2 Understanding panel sizing

18.21 Window
18.21.1 Window size
18.21.2 Closing the window
18.21.3 Modal windows
18.21.4 Overlay windows
18.21.5 Keyboard focus
18.21.6 Focus change
18.21.7 Focus protocol

18.21.8 Tablist without cycles

18.21.9 Default button
18.21.10Keyboard shortcuts
18.22 GUI Data binding
18.22.1 Basic type binding
18.22.2 Limits and ranges
18.22.3 Nested structures

18.22.4 Notifications and calculated fields

18.23 Menu
18.23.1 Menu bar

18.23.2 macOS particularities

18.23.3 PopUp menu

18.23.4 Historical perspective

18.24 Menultem
18.25 Common dialogs

18.1 - Gui

375
376
377
379
380
381
382
382
387
387
388
390
391
393
393
394
394
395
395
396
397
400
401
405
407
407
407
409
410
410
411

321

322 Chapter 18 - Gui library

@ | win32] ==
b (><

draw2d
2 command
line

Figure 18.1: Dependencies of Gui. See “NAppGUI API” (page 149).

18.1. Gui

The Gui library allows you to create graphical user interfaces in a simple and intuitive
way. Only available for desktop applications for obvious reasons (Figure 18.1), unlike the
rest of libraries that can also be used in command line applications.

Like “Draw2D” (page 278) and “Osbs” (page 172) Gui relies on the APIs of each
operating system. In addition to the advantages already mentioned in these two cases,
native access to interface elements will cause our programs to be fully integrated in the
desktop and according to the visual theme present in each machine (Figure 18.2).

[GUI Library

Win32 Cocoa GTK+3
GDI+ Quartz2D Cairo

Blogous

© Datahas been downloaded correctly.

Figure 18.2: The interfaces created with Gui will adapt to the style of each window
environment.

18.1.1.

Declarative composition

18.1 - Gui 323

The Gui library moves away from the concept of treating windows (or dialog boxes)
as an external resource of the program. On the contrary, these are created directly from
the source code avoiding layout by visual editors (Figure 18.3). We must bear in mind
that window managers use different fonts and templates, so specifying specific positions
and sizes for the elements will not be portable between platforms (Figure 18.4). On the
contrary, in Gui the controls are located in a virtual grid called Layout, which will calculate
its location and final size at runtime and depending on the platform (Figure 18.5).

Figure 18.3: Resource ed-
itors are not good allies to
create complex dynamic in-
terfaces. Even less if we want

to carry them between plat-
forms.

Figure 18.4: Using fixed dimensions
for controls will not adapt well when
migrating the program.

Figure 18.5: The Layout calculates
the position and size of the compo-

DeEYVHE O E =

Scroll View

[JON) Window LEeTs0 = =]
scroller Knobs _ Default Style B
Button Button o 8ar Position Above Content [
— Check | Table View Cell Table View Ce :Z‘;"‘om B
Check tomatic Elasticity B
+ tomatic Elasticity B
i Predominant Axis Scrolling
remt]y -
Item 1 B 10° 10 C
itom 1 B o o Horizontal Vertical
Behavior 3 Copy On Scroll
Show Horizontal Scroller
Show Vertical Scroller
@ Automatically Hide Scroller
(59,15) v/ (59,15) X (59,15) %
. Menrakl O
SubPanel SubPan SubPanel
Push Button Push Button
(101,24) J (101,24) x (101,24) x
Main Panel
Subpanel EditBox
Push Button '
(59,15) (66,16) (7017)
[o :
SubPanel Subpanel Subpanel
Push Button Push Button
(101,24) / (114,22) f/ (115,29) /

nents at runtime.

In addition, another relevant fact is that interfaces are living objects subject to constant
changes. A clear example is the translations, which alter the location of the elements due to
the new dimension of the text (Figure 18.6). Gui will adapt to these events automatically,
recalculating positions to maintain a consistent layout.

324 Chapter 18 - Gui library

O Products - X
File Mavigate View Server Language Help
— o Select language
E= English ~
E= English A
Code [0/0] = 5”9 ° i
Product Code el L
* Portuguese
Description 0N talian
Product Description B Vietnamese v
Username
Password
Type Price
CPU (IGRU (JHDD (CSCD Product Price | - ZDLogn

|@ Waiting for legin... |

Figure 18.6: The windows automatically adapt to runtime changes.

18.1.2. Anatomy of a window.

In (Figure 18.7) we have the main parts of a window. Controls are the final elements
with which the user interacts to enter data or launch actions. The views are rectangular
regions of relatively large size where information is represented by text and graphics, being

able to respond to keyboard or mouse events. Finally, all these elements will be grouped
into panels and will be layout by layouts.

Window Panel
O Products _ <
File Navigate View Server Language Help
PP O © [re

Layout (] ab
\ Code e =
Moo] Bian Mgy

Description_ brian@nappgui.com

Intel CPU BXB0662G3900 Celeron
63900 2.80Ghz 2M 1151 2C/2T
Skylake Retail

Type
©cpu105pu[OHDD

Il

1012 Control

Osco

| &DLogout |

) Data has been downloaded correctly.

Figure 18.7: Notable parts in an interface window.

o “GuiControl” (page 328). Different types of controls and views.
o “Layout” (page 369). Virtual and invisible grid where the controls will be located.

o “Window” (page 387). Main window with title bar and frame.

18.1 - Gui 325

o “Menu” (page 407). Drop-down list with options.
o “Menultem” (page 410). Each of the menu items.

18.1.3. GUI Events

Desktop applications are event driven, which means that they are continually waiting
for the user to perform some action on the interface: Press a button, drag a slider, write
a text, etc. When this occurs, the window manager detects the event and notifies the
application (Figure 18.8), which must provide an event handler with the code to execute.
For example in (Listing 18.1) we define a handler to respond to the press of a button.
Obviously, if there is no associated handler, the application will ignore the event.

o Use event params to obtain the parameters associated with the event. Each type
of event has its own parameters. See (Table 18.1).

o Use event result to write the response to the event. Very few events require
sending a response.

App *app

i OnClick()
Figure 18.8: Notification of an
event through the handler.

Listing 18.1: Assign a handler for the push of a button.

static void i OnClick(App *app, Event *e)
{
const EvButton *p = event params (e, EvButton);
if (p->state == ekGUI ON)
create new file(app);

}

Button *button = button check();
button OnClick(button, listener (app, i OnClick, App));

Sometimes it may be necessary to fire an event while the application is in “standby
mode”, without processing any other pending events. This occurs when we want to launch
a secondary or modal window as a consequence of another event, for example, the pressing
of a button. It is advisable, to avoid blocking or unwanted artifacts, to let the first event

326 Chapter 18 - Gui library

conclude and schedule the response for a later time, where the application has no pending

tasks.

o Use gui OnIdle to raise an event when there are no other pending tasks.

Listing 18.2: Launching a modal window after clicking a button.

static void i OnIdle (App *app, Event *e)

{

window modal (app->modal window, app->main_ window) ;

static void i OnClick(App *app, Event *e)

{

// The modal window will be launched after
// the OnClick event is totally processed.

gui OnIdle (listener (app,

i OnIdle, App)):;

Event Handler Parameters Response
Click in label label OnClick EvText -

Click on button button OnClick EvButton -
Selection in PopUp popup_OnSelect EvButton -

A mouse button was pressed listbox_OnDown EvMouse bool t
Selection in ListBox listbox OnSelect | EvButton -
Keystroke or paste edit OnFilter EvText EvTextFilter
End of edit in Edit edit OnChange EvText bool t
Edit has received or lost keyboard edit OnFocus bool t -

focus N N

Key press on Combo combo OnFilter EvText EvTextFilter
End of editing in Combo combo_OnChange EvText bool t
Slider movement slider OnMoved EvSlider -

Click on UpDown updown OnClick EvButton -

Draw the contents of a view view OnDraw EvDraw -

Draw the overlay of a view view OnOverlay EvDraw -

The size of a view has changed view OnSize EvSize -

The mouse enters the area of a view view OnEnter EvMouse -

18.1 - Gui 327
Event Handler Parameters Response
The mouse leaves the area of a view view OnExit - -
The mouse moves over a view view OnMove EvMouse -
A mouse button was pressed view OnDown EvMouse -
A mouse button has been released view OnUp EvMouse -
Click on a view view OnClick EvMouse -
Dragging on a view view OnDrag EvMouse -
Mouse wheel on a view view OnWheel Eviitheel -
Press key on a view view OnKeyDown EvKey -
Release key on a view view OnKeyUp EvKey -
View has received or lost keyboard view OnFocus bool t -
focus
View resing keyboard focus view OnResignFocus - bool t
View accepts keyboard focus view OnAcceptFocus - bool t
The scroll bars are being manipu- view OnScroll EvScroll real32 t
lated. - -
Keystroke or paste textview OnFilter EvText EvTextFilter
TextView has received or lost key- | textview OnFocus bool t -
board focus - -
WebView has received or lost key- webview OnFocus bool t -
board focus - -
Close a window window OnClose EvWinClose bool t
Window moving around the desk window OnMoved EvPos -
Window is re-dimensioning window OnResize EvSize -
Click on an item menu menuitem OnClick EvMenu -
Color change comwin color color t -

Inactivity

gui OnIdle

Table 18.1:

List of all interface events.

328 Chapter 18 - Gui library

18.2. GuiControl

GuiControl is the virtual base class where common functionality is defined for all the
controls and views that we use to create the user interfaces (Figure 18.9).

o Use guicontrol button and others to do dynamic casting between types.

o Use guicontrol to convert derived types.

s
3 &0 En &3 &

I

Figure 18.9: Controls and views.

o “Label” (page 329). Small blocks of descriptive text.

« “Button” (page 332). Push buttons, check boxes or radio.

o “PopUp” (page 336). Button with drop-down list.

o “Edit” (page 336). Text edit box.

o “Combo” (page 340). Edit box with drop-down list.

o “ListBox” (page 341). List box.

o “UpDown” (page 341). Increment and decrement buttons.

o “Slider” (page 343). Sliding bar.

o “Progress” (page 343). Progress bar.

o “View” (page 344). Generic view where you can freely draw.
o “TextView” (page 349). View to show and edit texts in multiple formats.
o “WebView” (page 354). View to display Web content.

o “ImageView” (page 357). View to display images.

o “TableView” (page 358). Table view to display information in rows and columns.

18.3 - Label 329

o “SplitView” (page 365). View divided into two resizable parts.

o “Panel” (page 381). Sub-window within the main one with its own controls.

18.3. Label

Label controls are used to insert small blocks of text into windows and forms. They
are of uniform format, that is, the font and color attributes will be applied to the entire
text. In most cases the content will be limited to a single line, although it is possible to
show blocks that extend in several lines. The control size will be adjusted to the text it
contains (Figure 18.10). In “Hello Label!” (page 550) you have an example of use.

o Use label create to create a text control.
o Use label text to set the text.

o Use label font to set the font.

Matural

Hello.

Hello, I'm a Label.

Helle, I'm a Label, longer than first.

Helle, I'm a Label, longer than first and longer than second.

Helle, I'm a Label, longer than first, longer than secend and longer than third.

Helle, I'm a Label, longer than first, longer than secend, lenger than third and longer than fourth.

Figure 18.10: Label controls.

18.3.1. Multiline label
o Use label multiline to expand the text in several lines.
o Use label min width to establish the width of the text.

In the case that the column of Layout has a width smaller than the text, some dots
(ellipse) will be displayed at the clipping point (Figure 18.11), except in multi-line labels,
which will expand vertically to accommodate all text (Figure 18.12).

300px [

Hello.

Hello, I'm a Label.

Helle, I'm a Label, longer than first.

Hella, I'm a Label, longer than first and lenger than sec...
Hello, I'm a Label, longer than first, longer than second...

Figure 18.11: Text adjustment by Helle, I'm a Label, longer than first, longer than second...

reducing the width of the control.

330 Chapter 18 - Gui library

300px ~

Hellz,

Hello, I'm a Label.

Hellz, I'm a Lakel, longer than first,

Hellz, I'm a Lakel, longer than first and lenger than

second.

Hell, I'm a Label, longer than first, longer than second
Figure 18.12: Multi-line labels will . and lenger than third.
expand vertically to accommodate all Hella, I'm a Label, Iongerthar.'l first, longer than second,
text. longer than third and longer than fourth.

Multiline labels are also sensitive to new line characters (’\n’) included in the text.

18.3.2. Label in forms

In (Figure 18.13) we have an example of the use of Label in forms. If necessary, we can
make the texts sensitive to the mouse by varying their style and colors (Figure 18.14).

o Use label style over to change the font style.
» Use label color over to change text color.
» Use label bgcolor over to change background color.

o Use label OnClick to respond to a click on the text.

Armanda Callister

Uzer Mame

Passwaord:

City: | Galway - Ireland

|
|
Address: | 35, Tuam Road |
|
|

Phone: | +35654333000

Age: . 25|% Height (cm): 175 |2

Please fill in all the information on the form, We will use
this data to send commercial mail at all hours, not caring
much if it bothers you or not.

Figure 18.13: Using simple and
multiline Label in forms.

18.3.3. Dynamic labels

o Use label size text to set the text to which the control will be sized.

o Use label align to set the internal alignment of the text.

18.3 - Label 331

Mouse sensitive label
Mouse sensitive label
Mouse sensitive label
Mouse sensitiye label
Figure 18.14: Label controls sensi- y l"&)‘
tive to the mouse. Mouse sensitive label

The usual thing will be that the text of a Label control is constant, but sometimes we
will need to change it to, for example, display status information. In the case of changing
the text once the window has been sized, it is possible that the control does not have enough
space to accommodate the new text, cutting off and introducing ellipses (Figure 18.15).

&) Hello, World! — * &) Hello, World! — *

Hello!, I'm a label Hello!, I'm a bi...

Click Me! £ Click Me! d

Button click (0)

Figure 18.15: Label control does not have enough space to accommodate the new text.

To avoid this, we can set an alt text large enough for all possible values. The label
control will use this text to calculate its size (Figure 18.16).

label size text (label, "Hello, I'm a bigger label");

&) Hello, World! — * &) Hello, World! — *

Hell!, I'm a label Hello!, I'm a bigger label

Click Me! Click Me!

Button click (0)

Figure 18.16: Label control properly sized.

Another way to solve this problem is to expand the cell where the Label is housed, with
the ekJUSTIFY option, occupying the entire width of the layout column (Figure 18.17).

332 Chapter 18 - Gui library

// (0, 0) is the cell coords
layout label (layout, label, 0, 0);
layout _halign(layout, 0, 0, ekJUSTIFY);

&) Hello, World! — X & Hello, World! — X

Hello!, I'm a label Hellg!, I'm a bigger label

Click Me! Click Me!
. | |

Button click (0)

Figure 18.17: Label control expanded to the full width of the column.

In the case that the control is wider than the text itself, we can control the internal
alignment with label align.

18.4. Button

The buttons are another classic element in graphic interfaces, where we distinguish
four types: the push button, checkbox, radiobutton and flat button typical of toolbars
(Figure 18.18) . In “Hello Button!” (page 553) you have an example of use.

» Use button push to create a push button.

o Use button check to create a check box.

o Use button check3 to create a box with three states.

» Use button radio to create a radio button.

« Use button flat to create a flat button.

o Use button flatgle to create a flat button with status.
e Use button text to assign text.

o Use button OnClick to respond to clic.

In addition to capturing the event and notifying the application, the checkboxr and flatgle
maintain a state (pressed/check or released/uncheck).

o Use button stateto set the button status.

» Use button get state to get the status of the button.

18.4 - Button 333

.:.“+x

« Enable 3D Render

Q700

[+] Enable 3D Render [W]Enable Preview Settings

= Enable Preview Settings

@Wireframe Liﬂﬂ * Wireframe v Lines
O Shaded [Meshes Shaded Meshes
8 EE:'“'C :'f'a;mals Realistic Materials
- | ts
4 9 « Lights
s Retry Cancel Ok i
Figure 18.18: Buttons on different platforms.
18.4.1. RadioGroup

Special mention is required of the radio buttons, which only make sense when they
appear in a group, since they are used to select a single option within a set. Groups are
formed at the Layout level, that is, all radiobuttons of the same layout will be considered
from the same group, where only one of them can be selected. If we need several sub-
groups, we must create several sub-layout, as shown (Figure 18.19) (Listing 18.3). When
capturing the event, the field indexfrom EvButton will indicate the index of the button
that has been pressed.

Group 1 - Layout (2, 4)

Group 1
Layout (1, 4)

Group 2
Layout (1, 4)

O One

O Five

O One

O Five

O Two

O six

@ Two

O Six

O Three

@ Seven

O Three

@ Seven

O Four

O Eight

O Four

O Eight

Figure 18.19: Radio groups linked to different layouts.

Listing 18.3: Radio button groups.

’

Button *buttonl = button radio
Button *button2 = button radio
Button *button3 = button radio
Button *button4 = button radio
Button *button5 = button radio
Button *button6 = button radio
Button *button7 = button_ radio
Button *button8 = button radio
button text (buttonl, "One");

button text (button2, "Two");

button text (button3, "Three");
button text (button4, "Four");

’

’

)
)
)
D&
),
)
)
)

’

’

(
(
(
(
(
(
(
(

334 Chapter 18 - Gui library

button text (buttonb5, "Five");
button text (button6, "Six");

button text (button?7, "Seven");
button text (button8, "Eight");

// One group - One layout
Layout *layout = layout create(2,
layout button(layout, buttonl, 0
layout button(layout, button2, 0
layout button(layout, button3, 0
layout button(layout, button4, O,
(1
(1
(1
(1

~e Ne e

o e

~.

layout button(layout, button5,
layout button (layout, buttoné,
layout button(layout, button7,
layout button (layout, button$,

~.

~.

W NP O WNRE OB
~

~e

// Two groups - Two sub-layouts
Layout *layoutl = layout create(2
Layout *layout2 = layout create(1l
Layout *layout3 = layout create(1l
layout button (layout2, buttonl, 0
layout button (layout2, button2, 0
layout button(layout2, button3, O,
0
0
0
0
0

Ne Ne Ne N

P

layout button (layout2, buttoni4,

~.

(

(

(
layout button (layout3, button5,
layout button(layout3, buttoné,
(
(
(
(

~e N

~.

layout button (layout3, button7,
layout button (layout3, button8,
layout layout (layout, layoutl, O,
layout layout (layout, layout2, 1,

~

~.

~.

~
o O
~ = W N O WNRF O D

~.

18.4.2. Button shortcuts

It is possible to define a keyboard shortcut equivalent to click the button with the mouse.
To do this, when assigning the button text, we will prepend an ampersand (’&’) to the
character we want to use as a shortcut (Figure 18.20). This character will be underlined
and the button will be activated when you press ALT+Char (+Char on macOS). To
display the ’&’ character, instead of using it as a mark, use "&&’.

ALT+D (+D) button shortcut.

button text (button, "Enable 3&D Render");

In “Default button” (page 395) you have more information about the special shortcut
related to the [RETURN] key.

In Linuz/GTK, the underlining of the shortcuts occurs when you press ALT, unlike
Windows/macOS, which are always visible.

18.4 - Button 835

Enable 3&D Render Enable && Preview Settings

Figure 18.20: Button short-

cuts.

18.4.3. Inner padding

HAa/ /00

Enable 3D Render @ Enable & Preview Settings

© Wireframe B Lines

(O Shaded (] Meshes
(O Realistic () Materials
OV-Ray Lights

Retry Cancel Ok

o Use button hpadding to set the horizontal padding.

o Use button vpadding to set the vertical padding.

e Use button min width to set the minimum width.

When we talk about push buttons and flat buttons, there is an inner padding between
the button content (text/image) and the outer border (Figure 18.21). These paddings
are set automatically, depending on each system or windowing environment, although
sometimes it may be necessary to customize them.

Figure 18.21:
buttons.

Inner padding on

Vertical padding

Button with default padding

Button with zero padding
Button with high padding

Herizental padding
Default padding
ZLero padding
High padding
Min Width
Expand

Flat padding
Default padding Zerc padding High padding

336 Chapter 18 - Gui library

18.5. PopUp

PopUps are buttons that have a drop-down menu associated with them (Figure 18.22).
Apparently they look like pushbuttons that when pressed show a list of options. In “Hello
PopUp and Combo!” (page 557) you have an example of use.

o Use popup_create to create a popup.
o Use popup add elem to add an item to the list.

o Use popup_OnSelect to respond to the selection.

Language: (EE English “ Language: 3 English ; Language: EH Tiéng Viét -
E&! English)
Color: == Espafiol Color: Red B cColor: B clue -
EN Portugues Biue
B Green
B3 Tiéng Viét @ vellow
B Poccim Black
« PEE .White

Figure 18.22: PopUps on Windows, macOS and Linux.

18.6. Edit

EditBox are small text boxes with editing capabilities. Like the Label they are of
uniform format: The typeface and colors will affect the entire text (Figure 18.23). They
are usually used to edit fields in forms, normally restricted to a single line, although
they can also be extended to several of them. To edit texts with multiple attributes use
TextView. In “Hello Edit and UpDown!” (page 560) you have an example of use.

o Use edit create to create an edit box.
e Use edit multiline to create a multi-line editing box.
o Use edit passmode to hide the text of the control.

o Use edit phtext to set a placeholder.

18.6.1. Validate texts
» Use edit OnChange to validate the text.

Depending on the value we are editing, it may be necessary to validate the entered
text. Just before losing keyboard focus, the control will receive an OnChange event, for
which we can provide a specialized handler (Listing 18.6.1) (Figure 18.24). If the text is

18.6 - Edit 337

User Name: |Amanda|CaIIister User Name: Amanda Callister

Address: | 35, Tuam Road Address: 35, Tuam Road

|
|

City: | Galway - Ireland | City: Galway - Ireland
|

Phone: | +35654333000 Phone: +36 654 333 000
Age: : Height (crm): : Age: 25 T Height (cm): 175 2
Please fill in all the information on the form, We will use e T] e T e bt e r e s (o o e

this data to send commercial mail at all hours, not caring
much if it bothers you or not,

will use this data to send commercial mail at all
hours, not caring much if it bothers you or not.

Figure 18.23: Edition boxes on different platforms.

not valid, said handler must return FALSE, thus preventing the focus from changing to the
next control, remaining in the editbox and forcing the user to correct it.

static void i OnChange (App *app, Event *e)
{
const EvText *p = event params (e, EvText);
if (is _valid text (app, p->text) == FALSE)
{
// Force the focus remain in editbox
bool t *r = event result(e, bool t);
*r = FALSE;

}

edit OnChange (edit, listener (app, i OnChange, App)):

Intel i7-8700K ‘ Intel BX80684178700K
8th Gen Core i7-8700K

Processor

Figure 18.24: The OnChange event
is called just before the control loses
focus.

For example, in “Hello Edit and UpDown!” (page 560) activating the Field validations
check will show a modal window within the OnChange event allowing you to validate or
reject the text (Figure 18.25).

It will not be possible to move keyboard focus to another control while the text is invalid.

18.6.2. Filter texts

o Use edit OnFilter to detect and correct each user keystroke.

338 Chapter 18 - Gui library

User Mame: | Armanda Callister

e & Data validation = *
Ad

| Do you want to validate the text 'Amanda
Cit Callister' of the EditBox '0DD0022B2D874F02"?

Ph The focus will be moved to the
'0000022B2D875190" control using the

Ag TAB_KEY' action.

[} Mo

T«
Figure 18.25: Validation of text this caring

much if it bothers you or not,

BETTT 1T T

fields using modal windows.

In case we want to implement more elaborate filters, which correct the text while it
is written, we will use the edit onFilter event (Figure 18.26). We have an example in
“Hello TextSel and Clipboard!” (page 567). We will receive, through the EvText structure,
a copy of the current text (EvText::text), the position of the cursor (EvText::cpos)
and the number of characters added or removed (EvText::1len). From here, if the text
must be modified, we must obtain the result structure EvTextFilter, setting its apply
field to TRUE. In EvTextFilter: :text we must copy the new text and, in EvTextFilter
: :cpos, the new position of the cursor. For example, in (Listing 18.4) only the inserted
characters are converted to uppercase, leaving the rest of the text intact.

EvTextFilter
\ l 2 14

(2
.
V12N’ EvText oo

- o
@ OnFilter()
Figure 18.26: The OnFilter event
is called after each key or paste.

Listing 18.4: Filter that transforms the inserted characters into uppercase letters.

static void i OnFilter (SelData *data, Event *e)
{
const EvText *p = event params (e, EvText);
cassert no null (data);

J*
* Convert the inserted text in caps.
* p->text the control current text (const).

18.6 - Edit 339

* r->text the new filterd text.
* p->cpos current caret position.
* r->apply = TRUE means the editbox text has to be updated.
* p->len number of chars inserted at left of caret (to caps).
* We are working with UTF8-Strings. Sequential access.
274
if (button get state(data->caps) == ekGUI ON && p->len > 0)

{

EvTextFilter *r = event result (e, EvTextFilter);
const char_t *src = p->text;
char t *dest = r->text;
uint32 t cp = unicode_to_u32(src, ekUTF8);
uint32 t pos = 0;
while (cp != 0)
{
uint32 t offset = 0;
if (pos >= p->cpos - p->len && pos < p->Cpos)
{
if (cp >= 'a' && cp <= 'z'")
cp —-= 32;
}
offset = unicode to char (cp, dest, ekUTF8);
dest += offset;
src = unicode next (src, ekUTFS8);
cp = unicode to u32(src, ekUTF8);
pos += 1;

*dest = 0;
r->cpos = p->Cpos;
r->apply = TRUE;

textview printf(data->info_text, "Edit: Pos %d Len %d\n", p->cpos, p->len);
textview scroll caret(data->info text);

}

edit OnFilter(edit, listener(data, i OnFilter, SelData));

18.6.3. Text selection

o Use edit select to select text.

o Use edit autoselect to automatically select all text whenever the control receives
keyboard focus.

It is possible through code to change the text selection (Figure 18.27) and the position
of the cursor (caret), using this logic.

o If start == -1 and end == 0, all text is deselected, leaving the caret in its current

340 Chapter 18 - Gui library

EditBox
ThE e EditBox contral

TextView

This iz another text in the
TextView control

Figure 18.27: Text selection (2, 20). R ¥ 2 () Caps

position.

o If start == -1 and end == -1, all text is deselected, moving the caret to the end
of the text.

o If start == 0 and end == -1 all the text is selected, moving the caret to the end
of the text.

o If start > 0 and end == -1 is selected until the end, moving the caret to the end
of the text.

o If start == end the caret is moved to the position, deselecting all text.

18.6.4. Clipboard operations

As they are native components, the Edit controls support typical clipboard operations:
Copy, Paste, Cut, etc., as well as their keyboard shortcuts. However, it can be useful to
access these operations from the program code, allowing, for example, the text selected in
the control to be copied to the clipboard.

o Use edit copy to copy the selected text to the clipboard.
o Use edit cut to cut the selected text, copying it to the clipboard.

o Use edit paste to paste the clipboard text at the caret position.

18.7. Combo

ComboBox are text editing boxes with drop-down list (Figure 18.28). Therefore, they
will work in the same way as Edit controls on which methods for the management of the
list are added. In “Hello PopUp and Combo!” (page 557) you have an example of use.

o Use combo create to create a combo.

Search:

Folder:

18.8 - ListBoxr 341

Use combo text to set edit text.
Use combo color to set the text color.
Use combo bgcolor to set the background color.

Use combo add elem to add an item to the list.

¢ | Disk /| Search: Disk search: [Dick -

fusrfinclude w Folder: I|’|_|sr,"ir1|c||_.|||:|.54 Folder: | fusrfinclude -

fusr/include ~

— fhome/fran/Deskto
. el P

fete/htmlflog.txt W fusrfinclude
fmntfvolume

fetc/htmiflog.txt

Figure 18.28: Combos on Windows, macOS and Linux.

18.8. ListBox

The ListBox are controls that display a series of elements as a list (Figure 18.29),
(Figure 18.30), (Figure 18.31). Depending on how it is configured, we can select one or

more

elements or view checkbozes to check them. The control enables scroll bars when

necessary and allows keyboard navigation. In “Hello ListBox!” (page 582) you have an
example of use.

Use listbox create to create a list control.

Use listbox add elem to add an element.

Use listbox multisel to enable the multiple selection.
Use listbox checkbox to enable the checkboxes.

Use listbox OnSelect to respond to the selection.

18.9. UpDown

UpDown are two-part horizontally divided button controls (Figure 18.32). Each part

has a

small arrow printed and is normally used to make discrete increases in numerical

values associated with controls Edit.

Use updown create to create an updown button.

Use updown 0OnClick to respond to keystrokes.

342 Chapter 18 - Gui library

Simple ListBox With Images Checks and Multiselect
Itern 1 | | ZZ Spain ~| [BF sales presentatiol A
ltem 2 B0 ltaly [B Balance 2017
ltem 3 E& United Kingdom | The Last of Us &n
:E:mg B3 Vietnam] B2 Pheone list
ltem & == Russia [B2 Customer databa
ftem 7 EM Portugal LD1@] Myfirstbook
item 8 * lapan [@ Letterto April
ltern 9 H Disk [@ | Cookbook Recipe
Item 10 2 Edit [] & Deg playing pian
ltem 11 Folder < Hollidays 2019
ttem 12 (&) Restore [= Amanda's partv
Item 13 v [O) conren v | € >

Figure 18.29: ListBox controls in Windows.

Simple ListBox With Images Checks and Multiselect

tem 1 == Spain Sales presentatic

ltem 2 W ltaly Balance 2017
tem 3 € United Kingdom The Last of Us Al
tem 4 = Vietnam

— R '
ussia Customer databz
#) Portugal

[« WETED w My first book
= Disk W Letter to April
=

Phone list

* Edit # Cookbook Recip¢
¥ Folder B Dog playing pian

~ . [ECTUN] e

Figure 18.30: ListBox controls in macOS.

simple ListBox with Images Checks and Multiselect

Item 1 [sales presentat
Item 2 11 Italy + # Balance 2017
£ United Kingdom BF| The Last of Us 2

Item 4 B Vietnam
== RUssia 2 Customer datal
EN Portugal
s Japan @ Letter to April
H pisk @' cookbook Recif
Edit = Dog playing piai
Folder < Hollidays 2019

Figure 18.31: ListBox controls in Linux.

18.10 - Slider 343

Age: 25| Height (cm): 175)2

~

= Height {em): 175 2

Figure 18.32: UpDown on Win- Age: 25 : Height (cm): 175 :
dows, macOS and Linux.

18.10. Slider

Sliders are normally used to edit continuous and bounded numerical values (Fig-
ure 18.33). As the control moves, OnMoved events occur that return a value between
0 and 1. In “Hello Slider and Progress!” (page 585) you have an example of use.

» Use slider create to create a horizontal slider.
» Use slider vertical to create a vertical slider.

o Use slider OnMoved to respond to scrolling.

slider

Shder »

Figure 18.33: Sliders on Windows,
macOS and Linux.

18.11. Progress

Progress bars are passive controls that show the remaining time to complete a certain
task (Figure 18.34). As time passes we must update the control. The undefined state
will show an animation without indicating status, which will be useful when we cannot

determine the required time.
o Use progress create to create a progress bar.
o Use progress undefined to set the bar as undefined.

o Use progress value to update the progress of the task.

344 Chapter 18 - Gui library

Progress Bar

F
Progress Undefined

Progress Bar

Progress Undefined

Progress Bar
RR—

Progress Undefined

Figure 18.34: ProgressBar on Win-
L

dows, macOS and Linux.

18.12. View

The View controls or custom views (Figure 18.35) are blank areas within the window
that allow us to implement our own components. We will have total freedom to draw and
capture the mouse or keyboard events that allow us to interact with it.

e Use view create to create a view.
« Use view data to set a data object.
o Use view get data to get this object.

o Use view size to set the default size. See “Natural sizing” (page 370).

Q) Die Simulator - O X
Language == English v
Face Five v
Padding '
Corner '

\ View

(custom drawing)
Figure 18.35: Custom view

control.

18.12 - View 845

18.12.1. Draw in views

The contents of the drawing area will need to be refreshed on certain occasions. Either
because the operating system must update a previously overlapping part, or because the
drawing itself has changed (animations, user actions, etc.). When the time comes, the win-
dow manager will launch an OnDraw event that the application must capture to implement
the drawing commands that allow the content to be recreated.

o Use view OnDraw to set the drawing handler.
» Use view update to force an area update.

The onDraw event handler will receive a drawing context, on which the different “Draw-
ing primitives” (page 287) (Listing 18.5) can be applied.

Listing 18.5: Basic drawing in custom views.

static void i OnDraw (App *app, Event *e)
{

const EvDraw *p = event params(e, EvDraw);

draw_clear (p->ctx, kCOLOR RED) ;

draw line width(p->ctx, 10.f);,

draw line color(p->ctx, kCOLOR GREEN) ;

draw_rect (p->ctx, ekSTROKE, 0, 0, p->width, p->height);
}

view OnDraw(view, listener (app, i_OnDraw, App));

In “Die” (page 447) you have a simple example application that implements drawing
custom views. It represents the figure of a die, allowing us to edit certain parameters of
the drawing. This interaction will launch a series of events that will require the redrawing
of our figure. The entire cycle can be summarized in these steps (Figure 18.36):

« Some event occurs that requires updating the content of the view.

o The application calls the view update method to notify that the view must be
updated.

o At the appropriate moment, the system will send an OnDraw event with a DCtx
context ready to draw.

The operating system can launch OnDraw events at any time without previously calling
view update.

18.12.2. Scrolling views

It is possible that the “scene” to be rendered is much larger than the control itself, so
it will show only a small fragment of it (Figure 18.37). In these cases we will say that the

346 Chapter 18 - Gui library

k <—view_update()

OnDraw()
\®

view is a viewport of the scene. We can manage it in two ways:

— o .o
a4

Figure 18.36: Refresh cycle of a
custom view.

width height
height :

View (viewport)

Figure 18.37: Scene and view
(viewport).

o Use draw matrixf at the beginning of OnDraw to indicate the transformation that
integrates the displacement, zoom and possible rotation of the viewport with respect
to the scene. All of this must be managed by the application and we do not have to
do anything special, except call view update every time it is necessary to refresh.

o Use scroll bars that allow the user to move freely through the content. In this case,
managing the view is a bit more complicated. This is what we must take into account:

o Use view scroll or o view custom to create the view.

o Use view content size to indicate the measurements of the scene, so that
the bars are sized correctly.

o Use view scroll x, view scroll vy if we want to move the scroll bars from
the code.

o Use view viewport to get the position and dimensions of the visible area.
o Use view OnScroll to detect when the user manipulates the scroll bars.

Something important to keep in mind is to avoid drawing non-visible elements, espe-
cially in very large scenes or with a multitude of objects. The operating system will send

18.12 - View 847

successive OnDraw () events as the user manipulates the scrollbars, indicating the view-
port parameters in the EvDraw structure. In “DrawBig” (page 775) you have an example
application that shows how to correctly manage this type of cases.

It is possible that the dimensions of the viewport received in OnDraw are somewhat
larger than the size of the control. This is because certain window managers force you
to draw in certain non-visible areas close to the edges, in order to avoid flickering
when scrolling very quickly.

18.12.3. Drawing overlays
o Use view OnOverlay to draw overlays.

An overlay is a graphic layer that is drawn on top of the main content dumped by the
OnDraw event. It uses the coordinate system of the vView control where the coordinate (0,0)
corresponds to the top-left border (Figure 18.38) (Listing 18.6). Therefore, the overlays
remain fixed, regardless of the movement of the scroll bars. They are useful for drawing
markers or information that we do not want to be displaced. They can also be used in
views without scroll bars.

C) Big drawing area
Goto column: 50| Goto row: 50| Margin:

Real draw cols: [30 - 62], rows: [414 - 420]

1 52 53 54 33 36
414 414 414 414 414 414 414
50 51 52 53 54 55 56
415 415 415 415 415 415 415
Figure 18.38: Overlay
drawing. Animation at | S| 2 g || de || are | | 4ns
https://nappgui.com/img/qui/overlay. gif.

Listing 18.6: Code to generate the overlay.

static void i OnOverlay (App *app, Event *e)
{

const EvDraw *p = event params (e, EvDraw);
cassert no null (app) ;
if (app->overlay == TRUE)

{
draw_fill color(p->ctx, kCOLOR BLACK) ;
draw_text color(p->ctx, kCOLOR WHITE);
draw_rect (p->ctx, ekFILL, 5, 5, 80, 20);
draw_text (p->ctx, "OVERLAY", 5, 5);

348 Chapter 18 - Gui library

view OnOverlay(view, listener (app, i OnOverlay, App)):

18.12.4. Using the mouse

In order to interact with the control, it is necessary to define handlers for the different
mouse events (Listing 18.7), (Figure 18.39). The operating system will notify the user’s
actions so that the application can launch the relevant actions. It is not necessary to use
all of them, only the essential ones in each case.

Listing 18.7: Response to mouse events.

static void i OnMove (App *app, Event *e)

{
const EvMouse *p = event params (e, Event);
do_something onmouse moved (app, p->xX, pP->Y);

}

view OnMove (view, listener (app, i_OnMove, App));

< 1 -—
OnExit - — OnEnter

OnMove

Figure 18.39: View position events.

o Use view OnEnter to know when the cursor enters the view.

o Use view OnExit to know when the cursor leaves the view.

o Use view OnMove to know when the cursor is moving through the view.
o Use view OnDown to know when a button is pressed within the view.

» Use view OnUp to know when a button is released inside the view.

o Use view OnClick to identify a click (Fast Up + Down).

o Use view OnDrag to move the cursor with a pressed button.

o Use view OnWheel to use the mouse wheel.

If the view uses scroll bars, the cursor (x,y) position passed to EvMouse in each event,
refers to the global coordinates of the scene, taking into account the displacement. In
views without scroll bars, they are the control local coordinates. The local coordinates
of the viewport are in (lz,ly).

18.13 - TextView 349

18.12.5. Using the keyboard

When a view receives “Keyboard focus” (page 393), all keystrokes will be directed to it,
so we must implement the appropriate handlers.

o Use view OnKeyDown to detect when a key is pressed.
o Uses view OnKeyUp to detect when a key is released.

« Use view OnFocus to notify the application whenever the view receives (or loses)
keyboard focus. In (Figure 18.40), the view changes the color of the active cell when
it has focus.

o Use view OnResignFocus to prevent the view from losing keyboard focus.

o Use view OnAcceptFocus to prevent the view from getting keyboard focus.

Focus OnFocus

Goto column: HY | Gotoro Goto celumn: 50 | Gotoro

Real draw cols: [19 - 36], rows: [48 - 60] Real draw cals: [19 - 36], rows: [48 - 60]

23 24 25 26 23 24 25 26
52 52 52 52 52 52 52 52
23 24 25 26 23 24 25 26
53 53 53 53 53 53 53 53

Figure 18.40: View without keyboard focus (left) and with it (right).

If a view does not need to use the keyboard, make sure it cannot receive focus when
you press [TAB] “Tabstops” (page 379). It also implements view OnAcceptFocus to
prevent it from getting focus when you click on it.

In the KeyDown and KeyUp events a vkey t will be received with the value of the pressed
key. In (Figure 18.41) and (Figure 18.42) the correspondence of these codes is shown. In
“Synchronous applications” (page 419) we may need to know if a key is pressed or not
during the update cycle (synchronous) where we do not have access to the OnkeybDown and
OnKeyUp events (asynchronous). This can be done by assigning the view a keyboard buffer
using view keybuf, which will capture the events associated with each key and allow us
to consult its status at any time in a comfortable way.

18.13. TextView

TextView are views designed to work with rich text blocks (Figure 18.43), where fonts,
sizes and colors can be combined. The text can be edited directly or by code using the

350 Chapter 18 - Gui library

ekKEY A - ekKEY Z ekKEY GRAVE
EKKEY 1 - ekKEY © ekKEY_QuEsT “K(F1 FLUS ekKEY EXCLAN

:

ekKEY_BSLASH

a 1 n . $ % & / () =) ¢ ﬁKEY_BACK
ekkey TaB |°_\1 |12 @[3 #/4 ~|5 €/6|~(7 |8 |9 |0 |[* |i| [Backspace
= =@ W [E [R [T [Y Ju [I o [p [~ [+ Enter| ekKEY RETUR
ekKEY_CAPS ™ € L+ <
\Caps Lock | A S D F G H J K L N h (o
ekKEY LSHIFT £ A } ekKEY RSHIF
—_ |shift > V4 X |[C |V B N M 0 g _ [shift /
ekKEY LCTRL G < » . - 4} ekKEY RCTRI
Ct 23 Alt ekKEY_ SPACE Alt Gr }’(";’; Menu | Ctrl —
ekKEY GTL! ekKEY{LWIN ekKEY LALTekKEY COMMA ekKEY RALT ekKE\YiRWIN ekKEY MENU
ekKEY PERIOD

okKEY MINUS eKKEY TILDE ekKEY LCURLY ekKEY RCURLY

Figure 18.41: Keyboard codes.

EY F1| [ekKEY INSERT B ekKEY_NUMO
Y o - ekKEY NUM9
SR |COELILE SRPOREI || < KKEY NUMLOCK

ekKEY_END ekKEY_NUMDIV
ekKEY_ESCAPE ekKEY_PAGEUP - : ekKEY_NUMMULT

ekKEY_PAGEDOW S P e || ekKEY NUMMINUS
— LTI o B ET ekKEY_NUMADD

ekKEY_LEFT ‘ ekKEY NUMRET
ekKEY RIGH ekKEY NUMDECIMAL

Figure 18.42: Keyboard Extended Codes.

functions provided by the SDK. In “Hello TextView!” (page 587) you have an example of
use.

» Use textview create to create a text view.

o Use textview printf to add text in the format of printf.

o Use textview cpos printf to insert text into the cursor position.
o Use textview clear to erase all text.

o Use textview editable to allow editing the text.

18.13.1. Character format

One of the advantages of rich text over plain text is the ability to combine different
character formats within the same paragraph (Figure 18.44). Changes will be applied to
new text added to the control.

Use textview family to set the font.

18.13 - TextView 351

What is Lorem lpsum?

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has
been the [industry's standard] dummy text ever since the 15005, when an unknown printer
took a galley of type and scrambled it to make a type specimen book. It has survived not only
five centuries, but also the leap into electronic typesetting, remaining essentially
unchanged.l

What is Lorem |[psum?

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem

I[psum hasbeenthe [industry's standard] dummy text ever since-the-
45005, when an unknown printer took a galley of type and scrambled it to make a type
specimen book. If has survived not only five centuries, but also the leap into electronic
typesetting, remaining essentially unchanged |

Figure 18.43: Plain text and rich text.

Use textview fsize to set the character size.
Use textview fstyle to set the style.
Use textview color to set the text color.

Use textview bgcolor to set the background color of the text.

Figure 18.44: Typical Character
Format Controls. Font

18.13.2. Paragraph format

You can also set attributes per paragraph (Figure 18.45). The new line character '\n'
is considered the closing or end of the paragraph.

Use textview halign to set to paragraph alignment.
Use textview lspacing to set line spacing (line spacing).

Use textview bfspace to indicate the vertical space before the paragraph.

352

Chapter 18 - Gui library

Use textview afspace to indicate the vertical space after the paragraph.

'!:'.E = :: - *E -
== = = =
= === =1
Figure 18.45: Typical controls for
Paragraph

paragraph formatting.

18.13.3. Document format

Finally we have several attributes that affect the entire document or control.

Use textview units to set the text units.

Use textview pgcolor to set the background color of the control (page).

18.13.4. Apply format

The format functions that we have just presented do not modify, by themselves, the
appearance of the existing text in the control. They establish the default properties that
will be applied below, according to the following criteria. In “Hello TextEditor!” (page 575)
you have an example of use (Figure 18.46).

Use textview apply all to apply attributes to the entire text.

Use textview apply select to apply the attributes to the selected text. If there
is no selected text, they will be established for the new text inserted in the position
of the cursor.

When we use textview printf or textview writef, the text will be added at
the end of the control, using the established default attributes. In this way we can
compose texts sequentially, altering the attributes to apply to each new string.

When we use textview cpos printf or textview cpos writef, the format will
be that of the character prior to the current position of the cursor (not the default
format).

In the same way, when the user edits the text directly, the format will be that of the
character prior to the current position of the cursor. Except when writing the first
character, which will take the format of the following (if any) or the default format.

18.13.5. Filter inserted text

o Use textview OnFilter to filter texts.

18.13 - TextView 353

&) NAppGUI GUI Basics - x
Labels single line Font family Fontsize Fontstyle Font color Back color
Labels multi line Segoe Ul v 15 . BBold Blue | Default v
Labels mouse sensitive [Blirake

[_] Underline
Buttens [Strikeout
Poplp Combo
ListBoxes Hello, thiswwwweeedsddinsinsins writing... insinsis a
Form text..addaddaddaddadd

Text select

Text editor
Sliders

Vertical padding
Tabstops
TextViews

linserttext ! Addtet Applyformat Allted Selected text

Figure 18.46: Apply the text format.

Every time the user inserts new text in the control, through pulsations or clipboard
operations, an event will be sent that we can capture if necessary. In “Hello TextSel
and Clipboard!” (page 567) you have an example. We will receive, through the EvText,
a copy of the inserted text (EvText::text), the position of the cursor (EvText::cpos
) and the number of inserted characters (EvText::1len). From here, if the text must be
modified, we must obtain the result structure EvTextFilter, setting TRUE its apply field.
In EvTextFilter::text we must copy the new text and, in EvTextFilter: :cpos, the
new position of the cursor.

18.13.6. Select text
o Use textview select to select text.
o Use textview del select to delete the selected text.

It is possible through code to change the text selection and the position of the cursor
(caret), using this logic.

o If start == -1 and end == 0, all text is deselected, leaving the caret in its current
position.

o If start == -1 and end == -1, all text is deselected, moving the caret to the end
of the text.

o If start == 0 and end == -1 all the text is selected, moving the caret to the end
of the text.

o If start > 0 and end == -1 is selected until the end, moving the caret to the end
of the text.

o If start == end the caret is moved to the position, deselecting all text.

354 Chapter 18 - Gui library

18.13.7. Clipboard
o Use textview copy to copy the selected text to the clipboard.
o Use textview cut to cut the selected text, copying it to the clipboard.

o Use textview paste to paste the clipboard text at the caret position.

18.13.8. Text wrapping
o Use textview wrap to turn text wrapping on/off.

By default, the control automatically adjusts the width of the text, cutting lines when
necessary. This can be avoided by passing wrap=FALSE, where each line will occupy its
natural width and a horizontal scroll bar will appear to scroll the text (Figure 18.47).

TextView

This is ancther text in the TextView
control, wider than the control.

Figure 18.47: Text
wrapping. Animation in - % 26

https://nappgui.com/img/qui/textview__wrc - Select Tt [{EIESESIEE

18.14. WebView

A WebView control will allow us to embed Web content in our application. It will
behave in the same way as other view controls such as View or TextView in terms of
layout or resizing, displaying a fully functional browser in its client area (Figure 18.48).
In “Hello WebView!” (page 685) you have an example application.

o Use webview create to create a webview.
o Use webview navigate to display the content of a URL.
o Use webview back to go to the previous page.

o Use webview forward to go to the next page.

18.14.1. WebView dependencies

WebView depends on native technologies in each operating system: Edge:WebView2
on Windows, WebKit2 on GTK/Linux and WKWebView on macOS (Figure 18.49).

r
QO Hello WebView

Tabs

TUTORIAL

18.14 - WebView 355

DEMOS APl DOWNLOAD BUILDS DEVOPS

O WebTab 1
) Web Tab 2
GoTo NAppGUI is an SDK to develop software projects, that work on any desktop platform |
NAppGUl (Windows, macOS or Linux), using the C programming language (Figure 1). C++ is allowed,
Goagl
V:UDTQUZE but not indispensable. We can write a complete program using only ANSI-C.
Facebook
Instagram
Tuitter C program]
<Back || > Forward [NAppGUI SDK]

| Win32 Cocoa GTK+3

GDI+ | Quartz2zD Cairo

TR Bl o

LYe———

Figure 18.48: Application that integrates a WebView.

The NAppGUI build system will be in charge of managing the dependencies for us auto-
matically. However, you must take these points into account before using this control in

your applications successfully.

Figure 18.49: Native WebView de-
pendencies.

18.14.2. WebView on Windows

« They have been obtained from this NuGet package!.

. 1.
WebView2 .-
WKWebView ><
WebKit2 A

et

In the prj/depend/web/win folder are the WebView2 headers and static libraries.

There are problems when compiling in Debug mode from VS2017 and VS2015. How-

ever, in Release mode, applications work without problem using these versions of

Visual Studio. More information here?.

Visual Studio 2013 and earlier do not support compilation of WebView2.

'https://www.nuget.org/packages/Microsoft.Web.WebView?
?https://github.com/MicrosoftEdge/WebView2Feedback/issues/2614

https://www.nuget.org/packages/Microsoft.Web.WebView2
https://github.com/MicrosoftEdge/WebView2Feedback/issues/2614

356 Chapter 18 - Gui library

o« MinGW does not support the compilation of WebView2.

o It is recommended to use VS2019 or VS2022 to generate applications with Web-
View2.

e WebView2 only works on Windows 10 and Windows 11.

18.14.3. WebView on macOS

You don’t have to do anything special to compile the WebView on macOS. CMake will
automatically link to WebKit.framework. At the moment, this support is available for
macOS 10.10 Yosemite and later, as WKWebView is not present in previous distributions.

18.14.4. WebView on Linux

We will need to install the WebKit2 development libraries on our system so that CMake
can enable Web support in NAppGUI.

Installing WebKit2 on Ubuntu.

sudo apt-get install libwebkit2gtk-4.l1-dev // Ubuntu 24
sudo apt-get install libwebkit2gtk-4.l1-dev // Ubuntu 22
sudo apt-get install libwebkit2gtk-4.0-dev // Ubuntu 20
sudo apt-get install libwebkit2gtk-4.0-dev // Ubuntu 18
sudo apt-get install libwebkit2gtk-4.0-dev // Ubuntu 16
sudo apt-get install libwebkit2gtk-3.0-dev // Ubuntu 14

WebKit2 support is not available on Ubuntu 12 and earlier.

18.14.5. Disable WebView

If the NAppGUI CMake script does not detect the native libraries required by the
WebView control on your system, it will disable it. You can also do this explicitly using
this CMake parameter.

cmake -DNAPPGUI WEB=NO -S . -B build

By disabling Web support, applications that make use of the Wwebview control will
compile and be able to run. The difference is that they will not display Web content in
the control, just an empty area (Figure 18.50).

Disabling Web support will not generate compilation or link errors in applications that
use the Web View.

18.15 - ImageView 357

-
Q) Hello WebView

Tabs
©ileb Tab 1
() Web Tab 2
GoTo
NAppGUI
Google
YouTube
Facebook
Instagram
Twitter

<Back > Forward

Figure 18.50: Application with Web support disabled.

18.15. ImageView

ImageView are specialized views in visualizing images and GIF animations.

briz
eleron
126727 !!
1014
Price
Figure 18.51: ImageView in a ()5CD 46.00 £ =
panel. =

« Use imageview create to create an image control.

o Use imageview image to set the image that the control will display.

o Use imageview scale to set the image adjustment mode.

358 Chapter 18 - Gui library

18.16. TableView

TableViews are data views that display tabulated information arranged in rows and
columns (Figure 18.52), (Figure 18.53), (Figure 18.54). The control enables scroll bars
and allows keyboard navigation. In “Hello TableView!” (page 590) you have an example
of use.

o Use tableview create to create a table view.
o Use tableview new column text to add a column.

o Use tableview size to set the default size.

Mame Address Cit_\:r\ Age Value =
Marne 0 Adress 0 City 0 0 10,50
Mame 1 Adress 1 City 1 1 11.50
Mame 2 Adress 2 City 2 2 12.50
Mame 3 Adress 3 City 3 3 13.50
Marne 4 Adress 4 City 4 4 1450

‘ Mame 5 Adress 5 City 5 5 1550
Marne & Adress & City &] 16.50
Marne 7 Adress 7 City 7 7 17.50
Marne 8 Adress 8 City 8 2 18.50
Mame 9 Adress 9 City 9 9 19.50
Mame 10 Adress 10 City 10 10 20,50
Mame 11 Adress 11 City 11 1 21.50
Mame 12 Adress 12 City 12 12 2250 ™
< >

Figure 18.52: TableView control in Windows.

18.16.1. Data connection

Let’s think that a table can contain thousands of records and these can change at
any time from different data sources (disk, network, DBMS, etc). For this reason, the
TableView will not maintain any internal cache. It has been designed with the aim
of making a quick visualization of the data, but without going into their management.
Ultimately, it is the application that must provide this information in a fluid manner.

o Use tableview OnData to bind the table to the data source.
« Use tableview update to force an update of the table data.

When a table needs to draw its contents, in response to an OnDraw event, it will first
ask the application for the total number of records via a ekGUI EVENT TBL NROWS noti-

Name 0
Name 1
Name 2
Name 3
Name 4
Name 5
Name &
Name 7
Name 8
Name 9
Name 10
Name 11
Name 12
Name 13
Mame 14

Mame

Mame 0
Mame 1
Name 2
Mame 3

Mame 5
Name 6
Mame 7
Mame 8
Name 9
Mame 10

Adress 0
Adress 1
Adress 2
Adress 3
Adress 4
Adress 5
Adress 6
Adress 7
Adress B
Adress 9
Adress 10
Adress 11
Adress 12
Adress 13
Adress 14

City 0
City 1
City 2
City 3
City 4
Cit'f 5
City 6
Cit'g," 7
City 8
City 9
City 10
City 1
City 12
City 13
City 14

Age 0
Age 1
Age 2
Age 3
Age 4
Age 5
Age 6
Age 7
Age 8
Age 9
Age 10
Age 1

Age 12
Age 13
Age 14

18.16 - TableView 359

Position 0
Position 1
Position 2
Position 3
Position 4
Position 5
Position 6
Position 7
Position 8
Position 9
Position 10
Position 11
Position 12
Position 13
Position 14

Figure 18.53: TableView control in macOS.

Address City Age Value |
Adress 0 City 0 0 10.50
Adress 1 City 1 1 11.50
Adress 2 City 2 2 12.50
Adress 3 City 3 13.50
Nomes —lparesn Giya | Al a0
Adress 5 City 5 5 15.50
Adress 6 City 6 6 16.50
Adress 7 City 7 7 17.50
Adress 8 City 8 8 18.50
Adress 9 City 9 9 19.50
Adress 10 Cit... 10 20.50
Adress 11 Cit__. 11 ?1.50

MName 11

Figure 18.54: TableView control in Linux.

fication. With this it can calculate the size of the document and configure the scroll bars
(Figure 18.55). Subsequently, it will launch successive ekGUI EVENT TBL CELL events,
where it will ask the application for the content of each cell (Figure 18.56). All these re-
quests will be made through the callback function set in tableview OnData (Listing 18.8).

TableView will only ask for the content of the visible part at any time.

360 Chapter 18 - Gui library

1843
TableView
0 O
1 —b
2
TBL_NROWS
Figure 18.55: Ask for the number 122‘?
of rows in the data set. 1842 App
‘John'’
TableView r////}/’——~____—————§\\\\
546 4::’*"
547 >
548 John
. 549 TBL_CELL(1,548)
Figure 18.56: Request for the data 550
of a cell. App

Listing 18.8: Data connection example.

static void i OnTableData (App *app, Event *e)
{

uint32 t etype = event type(e);

unref (app) ;

switch (etype) {

case ekGUI_EVENT TBL NROWS:

{
uint32 t *n = event result(e, uint32 t);
*n = app_num_ rows (app) ;
break;

case ekGUI_EVENT TBL CELL:

{
const EvTbPos *pos = event params (e, EvTbPos);
EvTbCell *cell = event result (e, EvTbCell);

switch (pos->col) {

case 0:
cell->text = app text columnO (app, pos->row);
break;

case 1:
cell->text = app_ text columnl (app, pos->row);
break;

case 2:
cell->text = app_text column2 (app, pos->row);
break;

18.16 - TableView 361

break;

}

TableView *table = tableview create();
tableview OnData(table, listener(app, i _OnTableData, App)):;
tableview update (table);

18.16.2. Data cache

As we have already commented, at each instant the table will only show a small portion
of the data set. In order to supply this data in the fastest possible way, the application can
keep a cache with those that will be displayed next. To do this, before starting to draw the
view, the table will send an ekGUI EVENT TBL BEGIN type event where it will indicate
the range of rows and columns that need updating (Figure 18.57). This event will precede
any ekGUI EVENT TBL CELL seen in the previous section. In the same way, once all the
visible cells have been updated, the ekGUI EVENT TBL END event will be sent, where the
application will be able to free the resources in the cache (Listing 18.9).

TableView m
546
547 - o o SELECT(546,550,4,7) /\b
= sisoin 3 =
4 5 6 7 - F
App

Figure 18.57: Use of data cache.

Listing 18.9: Example of using data cache.

static void i OnTableData (App *app, Event *e)
{

uint32 t etype = event type(e);

unref (app) ;

switch (etype) {

case ekGUI_EVENT TBL NROWS:

{
uint32 t *n = event result(e, uint32 t);
*n = app_num_rows (app) ;
break;

362 Chapter 18 - Gui library

case ekGUI EVENT TBL BEGIN:
{
const EvTbRect *rect = event params (e, EvTbRect);
app->cache = app fill cache (app, rect->strow, rect->edrow, rect->stcol,
<~ rect->edcol);
break;

case ekGUI EVENT TBL CELL:
{
const EvTbPos *pos = event params (e, EvTbPos);
EvTbCell *cell = event result (e, EvTbCell);
cell->text = app get cache(app->cache, pos->row, pos->col);
break;

case ekGUI EVENT TBL END:
app_delete cache (app->cache) ;
break;

TableView *table = tableview create();
tableview OnData (table, listener(app, i OnTableData, App)):
tableview update (table);

18.16.3. Multiple selection

When we navigate through a Tableview we can activate the multiple selection, which
will allow us to mark more than one row of the table (Figure 18.58).

o Use tableview multisel to turn multiselect on or off.
o Use tableview selected to get the selected rows.

o Use tableview select to select a set of rows.

o Use tableview deselect to deselect.

o Use tableview deselect all to uncheck all rows.

» Use tableview OnSelect to receive an event when the selection changes.

18.16.4. Table navigation

Navigating a TableView works the same as other similar controls, such as the file
explorer. We can use the keyboard when the table has focus. It will also respond to mouse
events to select rows and move scroll bars.

o Use tableview focus row to move keyboard focus to a row.

18.16 - TableView 363

Mame Address Cit;r\ Age Value *
Mame 0 Adress 0 City 0 0 10.50
‘ Mame 1 Adress 1 City 1 1 11.50
Marne 2 Adress 2 City 2 2 1250
Marne 3 Adress 3 City 3 3 13.50
Marne 4 Adress 4 City 4 4 14.50
Marne 5 Adress 5 City 5 5 15.50
Marne & Adress B City &] 16.50
Mame 7 Adress 7 City 7 T 17.50
Mame 2 Adress 8 City 8 8 18.50
Mame 9 Adress 9 City 9 9 19.50
Mame 10 Adress 10 City 10 10 20.50
Marne 11 Adress 11 City 11 1 21.50
Mame 12 Adress 12 City 12 12 2250 ™
£ >

Figure 18.58: TableView with multiple selection.

Use tableview get focus row to get the row that has keyboard focus.

Use tableview hkey scroll to set horizontal scrolling.

[UP]/[DOWN] to move row by row.

[LEFT]/[RIGHT] to scroll horizontally.

[PAGEUP]/ [PAGEDOWN] advance or reverse a page.

[HOME] goes to the beginning of the table.

[END] goes to the end of the table.

[CTRL] +click multiple selection with the mouse.

[SHIFT]+[UP]/[DOWN] multiple selection with the keyboard.

In multiple selection, an automatic de-selection of the rows will occur whenever
we click releasing [CTRL] or press any navigation key releasing [SHIFT]. If we want to
navigate without losing the previous selection, we must activate the preserve flag in

tableview multisel.

18.16.5. Configure columns

We have different options to configure the interaction with the different columns of the

table:

364 Chapter 18 - Gui library

o Use tableview header title to set the title of a column.

accepted including '\n' characters (Figure 18.60).

» Use tableview header align to set the alignment of a column header.

Multiple lines are

o Use tableview header resizable to allow or disallow column resizing.

o Use tableview column width to set the width of a column.
o Use tableview column limits to set limits on the width.

o Use tableview column resizable to allow the column to be stretched or col-

lapsed.

o Use tableview column freeze to freeze columns (Figure 18.59).

MName Address 31 Extra Data 2 2
Mame 0 Adress 0 10 Extra Data 20
Mame 1 Adress 1 11 Extra Data 2 1
Mame 2 Adress 2 12 Extra Data 2 2
Mame 3 Adress 3 13 Extra Data 2 3
MName 4 Adress 4 14 Extra Data 2 4
Mame 3 Adress 5 13 Extra Data 2 3
MName & Adress & 16 Extra Data 2 6
Mame 7 Adress 7 17 Extra Data 2 7
Mame & Adress 8 18 Extra Data 2 8
Mame 9 Adress 9 19 Extra Data 2 9
Mame 10 Adress 10 110 Extra Data 2 10
MName 11 Adress 11 11 Extra Data 2 11
MName 12 Adress 12 112 Extra Data 2 12 hd
£
Figure 18.59: Columns 0 and 1 frozen. Animation in
https://nappgui.com/img/qui/tableview_ freeze.gif.
Mame Address Extra Extra
Data 2 Data 3
Mame 0 Adress 0 Extra Data 2 0 Extra Data
Mame 1 Adress 1 Extra Data 2 1 Extra Data
Figurc 18.60: Header with Mame 2 Adress 2 Extra Data 2 2 Extra Data
. . Mame 3 Adress 3 Extra Data 2 3 Extra Data
multiple lines. Name 4 Adrece 4 Futra Mata 7 4 Fvtra Mata

18.16.6. Notifications in tables

We have different events to capture actions that the user could perform on the (List-

ing 18.10) table.

o Use tableview header clickable to allow clicking on the header.

o Use tableview OnRowClick to notify the click on a row.

18.17 - Split View

o Use tableview OnHeaderClick to notify the click on the header.

Listing 18.10: Notifications

365

static void i OnRowClick (App *app, Event *e)

{
const EvTbRow *p = event params (e, EvRow);
on _row click(app, p->row, p->sel);

}

static void i OnHeaderClick (App *app, Event *e)

{
const EvButton *p = event params (e, EvButton);
on_header click(app, p->index);

}

tableview OnRowClick(table, listener(app, i OnRowClick, App)):;
tableview OnHeaderClick(table, listener (app, i _OnRowClick, App));

18.16.7. Table appearance

There are different options to change the appearance of the table.

Use tableview font to change the font.
Use tableview header visible to show or hide the header.

Use tableview scroll visible to show or hide the scroll bars.

Use tableview grid to show or hide the inner lines (Figure 18.61), (Figure 18.62).

Use tableview header height to force the header height.

Use tableview row height to force the row height.

18.17. SplitView

The splitview are views divided into two parts, where in each of them we place another
child view or panel. The divider line is draggable, which allows to resize parts, distributing
the total control size between both descendants. In “Hello Split View!” (page 596) you have
an example of use (Listing 18.11), (Figure 18.63).

Use splitview horizontal to create a up/down view.

Use splitview vertical to create a left/right view.

Listing 18.11: Two SplitView with several associated controls.

SplitView *splitl = splitview vertical();
SplitView *split2 = splitview horizontal();

366 Chapter 18 - Gui library

Name Address Cit; Age Value
Mame 0 Adress 0 City 0 0 10.50
Mame 1 Adress 1 City 1 1 11.50
Mame 2 Adress 2 City 2 2 12.50
Mame 3 Adress 3 City 3 3 13.50
Mame 4 Adress 4 City 4 4 14.50
Name 3 Adress 3 City 5 3 15.50
| Name b Adress & City & 6 16.50
Name 7 Adress 7 City 7 7 17.50
MName 8 Adress 8 City 8 a 18.50
MName 9 Adress 9 City & 9 19.50
Mame 10 Adress 10 City 10 10 20.50
Mame 11 Adress 11 City 11 1 21.50
Mame 12 Adress 12 City 12 12 22.50 v
2._.___11 Aaeo_an o 1n 2n m)
Figure 18.61: TableView with no interior lines.
MName Address Cit; Age Value
Mame 0 Adress 0 City 0 0 10.50
Name 1 Adress 1 City 1 1 11.50
Name 2 Adress 2 City 2 2 12.50
Mame 3 Adress 3 City 3 3 13.50
Mame 4 Adress 4 City 4 4 14.50
MName 3 Adress 5 City 5 5 15.50
‘ Name 6 Adress & City 6 6 16.50
Mame 7 Adress 7 City 7 T 17.50
Mame 8 Adress 8 City 8 a 18.50
Mame 9 Adress 9 City & 9 19.50
MName 10 Adress 10 City 10 10 20.50
Name 11 Adress 11 City 11 1 21.50
Mame 12 Adress 12 City 12 12 2250 ¥
< >

Figure 18.62: TableView with interior lines.

Panel *panel = i left panel();

View *view = view create();
TextView *text = textview create();
view size(view, s2df (400,
s2df (400, 200));
splitview panel (splitl, panel);
splitview view(split2, view, FALSE);

textview size (text,

splitview textview(split2,

200));

text, FALSE);

splitview splitview(splitl, split2);

18.17 - SplitView 367

Value 00 | Edit here value 00
Value 01 | Edit here value 01
Value 02 | Edit here value 02
Value 03 | Edit here value 03
Value 04 | Edit here value 04
Value 05 | Edit here value 03
Value 06 | Edit here value 06
Value 07 | Edit here value 07

Value 08 | Edit here value 08 Lorem Ipsum is simply dummy text of the printing and

Value 09 | Edit here value 09 typesetting industry. Lorem Ipsum has been the
industry's standard dummy text ever since the 1588s,
Value 10 | Edit here value 10| |when an unknown printer took a galley of type and
. scrambled it to make a type specimen book. It has
Value 11 | Edit here value 11 survived not only five centuries, but also the leap into
Value 12 | Edit here value 12 electronic typ?sett%ng, remaining.essentially unchanged.
It was popularised in the 19685 with the release of
Value 13 | Edit here value 13 Letraset sheets containing Lorem Ipsum passages, and
- more recently with desktop publishing software like
Value 14 | Edit here value 14 Aldus PageMaker including versions of Lorem Ipsum.

Value 15 | Edit here value 15
Value 16 | Edit here value 16

Figure 18.63: SplitView controls.

18.17.1. Add controls

We have several functions to add content to the Splitview. The first call will place
the view or panel on the left or upper side. The second call will make it on the right or
bottom side. Successive calls will generate an error, since each view supports a maximum
of two descendants.

o Use splitview view to add a view.

o Use splitview textview to add a text view.

o Use splitview webview to add a web view.

o Use splitview tableview to add a table.

o Use splitview splitview to add a nested SplitView (Figure 18.64).

o Use splitview panel to add a panel.

18.17.2. Positioning the divider
o Use splitview pos to set the divider position.
o Use splitview get pos to get the divider position.

The initial position of the divider, as well as the size of the Splitview will be calculated
according to the “Natural sizing” (page 370) of children controls (Figure 18.65).

368 Chapter 18 - Gui library

$

Panel

Value 00 | Edit here value 00

Value 01 | Edit here value 01
Value 02 | Edit here value 02
Value 03 | Edit here value 03
Value 04 | Edit here value 04
Value 05 | Edit here value 05
Value 06 [Edit here value 05 Coren Tpsun 55 sty dumny text of the printing and
Value 07 | Edit here value 07 type i i try. Lorem Ipsum has been the

Value 08 | Edit here value 08

Figure 18.64: Nested Value 09 | Edit here value 09
SplitView.
170px (computed) 400px
Value 00 | Edit here value 00
Value 01 | Edit here value 01|
Value 02 | Edit here value 02|
Value 03 | Edit here value 03 é
Value 04 | Edit here value 04 8
Value 05 | Edit here value 05 N
o Value 06 | Edit here value 06
% Value 07 | Edit here value 07
Q- [Velue 08 | Edit here value 08 Lorem Ipsum is simply dummy text of the printing and
E Value 09 | Edit here value 09 typesetting industry. Lorem Ipsum has been the
(] - Mindustry's standard dummy text ever since the 15@@s,
“ | Value10 | Edit herevalue 10| Nwhen an unknown printer took a galley of type and
5 scrambled it to make a type specimen book. It has =<
Value 11 | Editherevalue 11) < - iyed not only five centuries, but also the leap into o
Value 12 | Edit here value 12| [|electronic typesetting, remaining essentially unchanged. o
It was popularised in the 196@s with the release of o
Value 13 | Edit here value 13 Letraset sheets containing Lorem Ipsum passages, and (o]
= more recently with desktop publishing software like
Value 14 | Edit herevaluEM’ Aldus PageMaker including versions of Lorem Ipsum.
Value 15 | Edit here value 15
Figure 18.65: Divider default Value 16 | Edit here value 16
position in (Listing 18.11). Div: 0.425 (computed)

The divider will have different behaviors when the size of SplitVview changes, depend-
ing on the parameter split mode t of splitview pos:

o ekSPLIT NORMAL: The position of the divider will always remain constant with
respect to the size of the Splitview. That is, a 0.3 value means that the left view
will always occupy 1/3 of the total size and right 2/3. To do this, indicate a value
between 0 and 1 in the pos parameter.

o ekspPLIT FIXEDO: The size changes of the splitview will always leave the left /up-
per child with a constant size.

o ekspLIT FIXEDIL: The right/lower child will maintain its size.

The divider proportional or fized value will change if the user drags it with the mouse,
but the mode will not change.

18.18 - Layout 369

18.17.3. Divider minimum size
o Use splitview minsizeO to set the minimum size of the left /upper child.
o Use splitview visibleO to completely hide the left /upper child.

It is possible that the children controls impose minimal size restrictions that prevent
the divisor from moving beyond these limits. However, it is possible to establish minimums
from the splitview itself. It is also possible to completely hide one of the descendants. In
this case, the divider bar will disappear, using the entire Splitview space for the visible
descendant.

18.18. Layout

A Layout is a virtual and transparent grid always linked with a Panel which serves to
locate the different interface elements (Figure 18.66). Its inner cells have the ability to be
automatically sized according to their content, which results in great portability because
it is not necessary to indicate specific coordinates or sizes for the controls. To illustrate
the concept, we will slightly simplify the code of “Hello Edit and UpDown!” (page 560)
(Listing 18.12), whose result we can see in (Figure 18.67).

o Use layout create to create a new layout.

o Use layout label and similars to place controls in the different cells.

Layout (2, 4)

(0,0) (1,0)
Label D CheckBox

©, 1 i 1,1

O RadioButton
(0,2) - (1,2)

@ RadioButton2
Figure 18.66: A layout is used to T3
Button a .3

locate controls in the panel area. 1

Listing 18.12: Layout with two columns and five rows.

Layout *layout = layout create(2, 5);
Label *labell = label create();
Label *label2 = label create();
Label *label3 = label create();
Label *label4 = label create();
Label *label5 = label create();
Edit *editl = edit create();

Edit *edit2 = edit create();

Edit *edit3 = edit create();

Edit *edit4 = edit create();

Edit *edit5 = edit create();
label text(labell, "User Name:");

370 Chapter 18 - Gui library

label_text(labelZ, "Password:") ;
label text(label3, "Address:");
label text (label4, "City:");

label text(label5, "Phone:");

edit text(editl, "Amanda Callister");
edit text(edit2, "aQwe56nhjJk");

edit text(edit3, "35, Tuam Road");
edit text (edit4, "Galway - Ireland");
edit text(edit5, "+35 654 333 000");
edit passmode (edit2, TRUE);
layout label (layout, labell, 0, 0)
layout label (layout, label2, 0, 1)
layout label (layout, label3, 0, 2);
layout label (layout, labeld4, 0, 3)
layout label (layout, label5, 0, 4)
layout edit(layout, editl, 1,
layout edit(layout, edit2,
layout edit (layout, edit3,
layout edit(layout, edit4,
layout edit(layout, edit5,

S WP oS S

User Mame:| Amanda Callister

PESSWI:Ird: FESEEEEEEEE
Address: 35, Tuam Road

City: Galway - Ireland
Figure 18.67: Result of (List-
ing 18.12). Phone: +35 654 333 000

18.18.1. Natural sizing

The result of (Figure 18.67), although it is not very aesthetic, it is what we call natural
sizing which is the default layout applied depending on the content of the cells. In
(Table 18.2) we have the default measurements of each control. The column width is
fixed to that of the widest element and the height of the rows is calculated in the same
way. The final size of the layout will be the sum of the measures of both columns and
TOWS.

Control Width Heigh

Label (single line) Adjusted to text. Adjusted to fo
Label (multi line) label min width. It expands until the whole text i
Button (push) Adjusted to text or button min width. According to ther
Button (check/radio) Adjusted to text + icon. Adjusted to 1

18.18 - Layout 371

Control

Width

Height

Button (flat)

Adjusted to icon.

Adjusted to icon.

PopUp

Adjusted to the longest text.

According to the theme of the

Edit (single line)

100 Units (px) or edit min width.

According to the theme of the

Edit (multi line)

100 Units (px) or edit min width.

2 visible lines or edit min hei

Combo 100 Units (px). According to the theme of the
ListBox 128 px or listbox size. 128 px or listbox size.
UpDown According to the theme of the OS. According to the theme of the ¢

slider (horizontal)

100 Units (px) or slider min width.

According to the theme of the

Slider (vertical)

According to the theme of the OS.

100 Units (px) or slider min w

Progress 100 Units (px) or progress min width. According to the theme of the ¢
View 128 px or view size. 128 px or view size.
TextView 256 px or textview size. 144 px or textview size.
WebView 256 px or webview size. 144 px or webview size.
ImageView 64 px or imageview size (¥). 64 px or imageview size (*
TableView 256 px or tableview size. 128 px or tableview size.
SplitView Natural size. Natural size.

Panel Natural size. Natural size.

panel (with scroll)

256 px or panel size.

256 px or panel size.

Table 18.2: Natural dimensioning of controls.

(*) In the case of TmageView, if the scaling ekGUT SCALE ADJUST is applied, the natural
sizing of the control will be adjusted to the size of the image containing at any time.

The margins and constants applied to the controls are those necessary to comply with
the human guidelines of each window manager. This means that a PushButton with the
text "Hello" will not have the same dimensions in WindowsXP as in macOS Mavericks

or Ubuntu 16.

Empty cells will be 0-sized and will not affect the composition.

372 Chapter 18 - Gui library

18.18.2. Margins and format

The natural sizing we have just seen adjusts the panel to the minimum size necessary to
correctly house all the controls, but it is not always aesthetic. We can shape it by adding
margins or forcing a given size for rows and columns (Listing 18.13) (Figure 18.68).

o Use layout hsize to force the width of a column.

o Use layout vsize to force the height of a row.

o Use layout hmargin to establish an inter-column margin.
o Use layout vmargin to establish an inter-row margin.

o Use layout margin to set a margin at the edge of the layout.

Listing 18.13: Applying format to (Listing 18.12).

layout hsize(layout, 1, 235);

layout hmargin(layout, 0, 5);
layout vmargin (layout, 0, 5);
layout vmargin (layout, 1, 5);
layout vmargin(layout, 2, 5);
layout vmargin (layout, 3, 5);

layout margin(layout, 10);

Uszer Mame: | Amanda Callister

Password: |

City: | Galway - Ireland

Figure 18.68: Result of (List-

|
|
Address: | 35, Tuam Road |
|
ing 18.13). |

Phone: | +35654 333000

18.18.3. Alignment

It is usual for the width of a control to be less than the width of the column that contains
it, either because a fixed width has been forced or because there are wider elements in the
same column. In these cases, we can indicate the horizontal or vertical alignment of
the control with respect to the cell (Figure 18.69). In (Table 18.3) you have the default
alignments.

« Use layout halign to change the horizontal alignment of a cell.

o Use layout valign to change the vertical alignment of a cell.

Figure 18.69:
ment.

18.18 - Layout

Column 1

: Column 0 :

EekLEFT i

i ekRIGHT !

i ekCENTER i

i ekJUSTIFY i

Horizontal align- ! !

Control Horizontal Vertical
Label ekLEFT ekCENTER
Button (push) ekJUSTIFY | ekCENTER
Button (others) ekLEFT ekCENTER
PopUp ekJUSTIFY | ekCENTER

Edit ekJUSTIFY ekTOP
Edit (multiline) ekJUSTIFY | ekJUSTIFY
Combo ekJUSTIFY | ekCENTER
ListBox ekJUSTIFY | ekJUSTIFY
UpDown ekJUSTIFY | ekJUSTIFY
Slider (horizontal) | ekJUSTIFY | ekCENTER
Slider (vertical) ekCENTER | ekJUSTIFY
Progress ekJUSTIFY ekCENTER
View ekJUSTIFY | ekJUSTIFY
TextView ekJUSTIFY | ekJUSTIFY
ImageView ekJUSTIFY | ekJUSTIFY
TableView ekJUSTIFY | ekJUSTIFY
SplitView ekJUSTIFY | ekJUSTIFY

373

374 Chapter 18 - Gui library

Control Horizontal Vertical

Layout (sublayout) | ekJUSTIFY | ekJUSTIEFY

Panel ekJUSTIFY | ekJUSTIFY

Table 18.3: Default alignment of controls.

18.18.4. Sub-layouts

Consider now the panel of (Figure 18.70). It is not difficult to realize that this arrange-
ment does not fit in any way in a rectangular grid, so it is time to use sublayouts. In
addition to individual controls, a cell also supports another layout, so we can divide the
original panel into as many parts as necessary until the desired layout is achieved. The
main layout will size each sublayout recursively and integrate it into the final composition.
In “Hello Sublayout!” (page 624) you have the code that generates this example.

o Use layout layout to assign a complete layout to a cell in another layout.

Helle!, I'm a label. Option 1 ~
Push Button |
[] Check Button UpDown 2
v —
Clear
Select 1 Select 2 Select 3 Select 4 Select 5 Select &

Figure 18.70: Complex panel composition.

In this case we have applied the philosophy of divide and conquer, to ensure that
each part fits into an individual grid (Figure 18.71). Each sublayout has been coded in an
independent function to give greater consistency to the code, applying margins and format
individually within each of them (Listing 18.14).

Listing 18.14: Sublayout integration (partial).

static Layout *i main layout (void)

{
Layout *layoutl = layout create(l, 2);
Layout *layout2 i top_ layout():;
Layout *layout3 = i bottom layout();
layout layout (layoutl, layoutz, 0, 0);
layout layout (layoutl, layout3, 0, 1);
layout margin(layoutl, 5);
layout vmargin(layoutl, 0, 5);
return layoutl;

18.18 - Layout 375

l l l l l

=== main_layout = [eft_|ayout
== top_layout m |eft_grid_layout
=== hHottom_layout === pdown_layout

Figure 18.71: Sublayouts needed to compose the (Figure 18.70) panel.

18.18.5. Cell expansion

On certain occasions, the size of a layout is forced by external conditions. This happens
when we have a sublayout in a cell with ekJUSTIFY alignment (internal expansion) or when
the user changes the size of a resizable window (external expansion). This will produce
an “pixel excess” between the natural sizing and the actual cell size (Figure 18.72). This
situation is resolved by distributing the pixel surplus equally among all the sublayout
columns, which in turn, will be recursively expanding until they reach an empty cell or an
individual control. We can change this equitable distribution through these functions:

o Use layout hexpand to expand a single cell and leave the rest with its default size.
o Use layout hexpand?2 to expand two cells indicating the growth rate of each.

o Use layout hexpand3 to expand three cells.

The vertical expansion works exactly the same, distributing the excess space between
the rows of the layout.

18.18.6. Dynamic interfaces

In most cases, especially in simple applications, the user interface will remain unchanged
throughout the execution, regardless of possible re-sizing. That is, a layout is generated,
the necessary controls are placed in it and linked to the main window through a panel.
In more complex applications, part of the interface may need to change at run time,
ensuring that these changes maintain the consistency of the initial design in terms of
sizes, margins, and placement of elements. NAppGUI provides three mechanisms for
implementing changes at runtime.

376 Chapter 18 - Gui library

; ekJUSTIFY
: Natural sizecell
FAAAAAAAAAAAE
B b
: Sublayout
' Expanded cell
' 7 7 7 i
— — — —
B/4 B/4 B/4 B/4

Figure 18.72: When the size of the sublayout is given by external
conditions, the excess of pixels is equally distributed between the
columns (horizontal expansion) and rows (vertical expansion).

o “Multi-layout panel” (page 498).
o “Replacing panels” (page 376).
o “Dynamic layouts” (page 377).

It is important to remember that, after each change, we must update the window so
that the composer recomputes and updates the view. This is done using the functions:
layout update, panel update or window update. The three calls are equivalent.

18.18.7. Replacing panels
o Use layout panel replace to change a panel at runtime.

This functionality allows us to replace an existing, and possibly visible, panel with
another generated at runtime. The change will be associated with a re-composition of the
window that will be carried out automatically and transparently for the programmer. This
is precisely what the “Hello GUI!” (page 550) application does as we select elements from
the side ListBox (Listing 18.15) (Figure 18.73).

Listing 18.15: Creating and changing a panel at runtime.

static void i set panel (App *app, const uint32 t index)
{
Panel *panel = NULL;
switch (index) {
/* ..t/
case 5:
panel = listboxes();
break;
case 6:
panel = form basic();

18.18 - Layout 377

break;
VAN V4
}

layout panel replace (app->layout, panel, 1, 0);

Fixed part
-
© NAppGUIEUI Basics = X
Labels single line Simple ListBox With Images Checks and Multiselect
Labels multi line Item 1 == Spain () B Sales presentatic
Labels mouse sensitive Item 2 1 1 italy (O BF Balance 2017
Buttons tem 3 15 United Kingdom () B The Last of Us A
tem 4 B2 Vietnam [B3 Phone list
F— == Russia () B2 Customer datab
Sliders M Portugal (O @) My first book
Vertical padding * Japan O @ Letter to April
Tabstops M pisk (O @ Cookbook Recip
TextViews 2 Edit M P i i
TableView —
SplitViews
4
& NAppGUI GUI Basics — X
Labels single !me User Name: | Amanda Callister
Labels multi line
Labels mouse sensitive Password: | seeeeeeeees Re p | ace d
Buttons Address: 35, Tuam Road
PopUp Combo . Panel
City: Galway - Ireland
Phone: +35 654 333 000
Age: 25| Height (cm): 175 [
Vertical padding = =)
Tabstops Please fill in all the information on the form. We will use
. this data to send commercial mail at all hours, not caring
TextViews e
much if it bothers you or not.
TableView
SplitViews

Figure 18.73: Effect of replacing a panel.

It is only possible to replace one panel with another. It is not possible to do this with
other types of controls.

The existing panel and its internal elements will be completely destroyed, making it
impossible to recover them again.

18.18.8. Dynamic layouts
o Use layout ncols to get the number of columns in a layout.
« Use layout nrows to get the number of rows in a layout.

o Use layout insert col to insert a new column into a layout.

378 Chapter 18 - Gui library

o Use layout insert row to insert a new row into a layout.

» Use layout remove col to remove a column from a layout.

o Use layout remove row to remove a row from a layout.

By dynamic layout we understand the possibility of adding or deleting rows and
columns to an existing layout linked to a panel. As with panel replace, modifying a layout
involves re-computing the interface and updating the window content. In “Hello dynamic
Layout!” (page 633) you have an example of use. Inserting a row or column will create a
series of empty cells of zero size, which will have no visual impact on the window (nothing
will apparently change). It will be when adding controls or sublayouts to said cells that
the change is perceived in the window. On the other hand, deleting a row or column will
imply the destruction of all the content of the cells, both controls and sublayouts, making

it impossible to recover them again.

r
&) NAppGUI GUI Basics

SplitViews
Modal Windows
Flyzut Windows
Hotkeys

Data Binding
Struct Binding
Basic Layout
Sublayouts
Subpanels
Multi-Layouts
Scroll panel
Dynamic layouts
IP Input

[S

V-Margin: -+ H-Margin: -5

Top columns | Add

Bottomn sublayouts Add

Label (0, 0) Button (1, 0)

Label (0, 1) Button (1, 1)

Label (0,2) Butten(1,2) W

Remove Toprows Add

Remove

Title: Folder

Desc: This is a folder icon
Price: 45.12€

Stock: 25

Title: Disk

Desc: This is a disk icon
Price: 12.34€

Stock: 18

Title: Search

Desc: This is a search icon
Price: 66.19€

Stock: 10

1
Q,

y

Figure 18.74: Add/delete rows/columns in a layout. Animation at
https://nappgui.com/img/qui/dynamic_layout. gif.

It is not possible to delete all rows or all columns. At least 1x1 cells are required.

When deleting a row or column, all the elements in the cells will be destroyed and

cannot be recovered.

18.18 - Layout 379

18.18.9. Tabstops

Normally we will use the [TAB] key and the [SHIFT]+[TAB] combination to navigate
through the different controls of a window or form. Terms like taborder or tabstop
refer to both the navigation order and the membership (or not) of an element in said
list. While it is possible to arrange the elements of a tab-list randomly, layouts provide a
coherent natural order based on the placement of controls. By default, each layout creates
a tab-list going through all its cells by rows (Figure 18.75), but we can change it:

o Use layout taborder to arrange the tab-list by rows or columns.

o Use layout tabstop to add or remove controls from the tab-list.

". Transform (1) 2) (3)
Position X| [EH|Y| oo00|z| o0.00]) (5) 6)
Rotation X| 0.00|Y| 000|Z| 0.00] (7) (8) (9)
Scale X| 100|v| 100|z| 1.00]
(10)
v (11)
[(12)
Figure 18.75: Taborder by rows in layouts and sublayouts. Animation in

https://nappgui.com/img/qui/tabstops. gif.

Not every cell in a layout has to be a tabstop, since it doesn’t make sense for static
controls like Label to receive keyboard focus. In (Table 18.4) you have which controls are
included by default in that list. With layout tabstop you can add or remove controls

from the tab-list.

Control | Included
Label NO
Button YES
PopUp YES
Edit YES
Combo YES
ListBox YES
UpDown NO
Slider YES
Progress NO

380 Chapter 18 - Gui library

Control Included
View NO
TextView NO
WebView NO
ImageView NO
TableView YES
SplitView YES (children)
Layout (sublayout) YES
Panel YES (children)

Table 18.4: Controls included in the tab-list.

When the taborder enters a sublayout, it will follow the local order of the latter. When
exiting the sublayout it will continue with the main order.

18.19. Cell

Cells are the inner elements of a “Layout” (page 369) and will house a control or a
sublayout (Figure 18.76).

o Use layout cell to get the cell.

o Use cell control to get the control inside.

o Use cell layout to get the inner sublayout.

o Use cell enabled to enable or disable the controls.
o Use cell visible to show and hide the content.

o Use cell padding to set the (Figure 18.77) padding.

Layout (2, 4)

D CheckBox _ o cel

O RadioButton1 o
o @ RadioButton2 /’2)

(0,0

Label

(0, M)

Figure 18.76: Cells inside a Layout Sublayout

18.20 - Panel 381

[pt

Figure 18.77: Interior padding of a
cell. | pb

18.20. Panel

A Panel is a control within a window that groups other controls. It defines its own
reference system, that is, if we move a panel all its descendants will move in unison since
their locations will be relative to its origin. It will support other (sub)-panels as descen-
dants, which allows to form a Window Hierarchy (Figure 18.78). For portability, this
Gui library does not support specific coordinates and sizes for elements linked to a panel,
but the association is carried out by a Layout object which is responsible for calculating
at runtime the final locations of controls based on the platform and window manager. In
“Hello Subpanel!” (page 628) you have an elementary example of using panels.

» Use panel create to create a new panel.

o Use panel scroll to create a panel with scroll bars.

o Use panel custom to create a new fully configurable panel.
o Use panel layout to add child controls to the panel.

o Use panel size to set the default size of the visible area.

O Window - X
Main Panel

SubPanel [EditBox |

Push Button '

(x, y, width, height)

(0,0,411,105)

(10, 5, 59, 15) (10, 30, 281, 65) (301, 30, 100, 21)

10 5,49, 15) (’IO 30, 101, 24) (121 30, 150, 25)

Figure 18.78: Window hierarchy.

382 Chapter 18 - Gui library

18.20.1. Multi-layout panel

Each panel supports several layouts and allows you to switch between them at runtime
(Figure 18.79). This allows to create dynamic responsive interfaces with very little effort,
since the panel itself is responsible for linking and sizing the controls according to the
active layout in each case. In “Hello Multi-layout!” (page 629) you have an example.

o Use panel visible layout to change the layout.

| l

User Name: | Amanda Callister I User Name:
| Amanda Callister |
Password: | I
Password:
Address: | 35, Tuam Road I I I
City: | Galway - Ireland | Address:
Phone | +35 654 333 000 I I 35, Tuam Road I
City:
Layout1 (Visible) | Galway - Ireland |
Phone:
Layout2 (Hidden) | [+35654333000 |

Figure 18.79: Panel with two different organizations for the same controls.

Because the layouts are logical structures outside the window hierarchy, they can share
controls as they are linked to the same panel (Figure 18.80). What is not allowed is to use
the same objects in different panels, due to the hierarchy concept.

Unlike panels, layouts do not create any native control (GtkWidget, HWND, NSView,
etc.).

l
Figure 18.80: It is possible to reuse

the same components between lay-
outs of the same panel.

EditBox

18.20.2. Understanding panel sizing

We are going to show, by means of an example, the logic behind the composition and
dimensioning of panels. We start with (Listing 18.16) where we create a relatively large

18.20 - Panel 383

panel in height.

Listing 18.16: Composition of a panel with multiple edit rows.

static Window *i window (void)
{
uint32 t i, n = 20;
Window *window create (ekWINDOW STDRES) ;
Panel *panel = panel create();
Layout *layout = layout create(2, n);

for (1 = 0; 1 < n; ++1)
{
char t text[64];
Label *label = label create();
Edit *edit = edit create();
bstd sprintf (text, sizeof (text), "Value %02d", 1i);
label text (label, text);
bstd sprintf (text, sizeof (text), "Edit here value %02d", 1i);
edit text (edit, text);
layout label (layout, label, 0, 1i);
layout edit(layout, edit, 1, 1i);

for (i = 0; i < n - 1; ++1i)
layout vmargin(layout, i, 3);

layout hmargin (layout, 0, 5);

layout margin4 (layout, 10, 10, 10, 10);
panel layout (panel, layout);
window panel (window, panel);

return window;

o Lines 3-6 create the window, panel, and layout.

« Loop 8-19 adds various labels and edit boxes to the layout.

o Loop 21-22 establishes a small gap between rows.

o Lines 24-25 establish a column spacing and border margin.

o Lines 26-27 link the layout to the panel and the layout to the window.

The result of this code is the “Natural sizing” (page 370) of the panel (Figure 18.81),
which defaults to a width of 100 pixels for the editing controls. Labels fit to the text they
contain. Separations and margins have also been applied.

In this case it is possible to resize the window, since we have used the ekWINDOW STDRES
flag when creating it (Figure 18.82).

384 Chapter 18 - Gui library

Value 07 [Edit here value 07

Value 08 [Edit here value 0F

Value 09 [Edit here value 0

Value 10 [Edit here value 10

Value 11 [Edit here value 11

Value 12 [Edit here value

Value 13 [Edit here value

Value 14 [Edit here value

Value 15 [Edit here value

Value 16 [Edit here value

Figure 18.81: Natural sizing of the ete 17 [

Value 18

panel defined in (Listing 18.16). s [

Value 03 [editherevalue0s]
Value 04 [Editherevalueos]

Value 05 Edithere

Value 06 Edithere

Value 07 [Edgitherevaverr |
Value & Edit here value 06
Value 09 Edit here value 09
Value 10 Edit here value 10
Value 11 Edit here value 11

Value 12 Edit here value 12

Figure 18.82: Behavior of the panel o T —
when the window grows. 12 T —

This behavior may not be the most appropriate for the case at hand. By default, the
layout performs the “Cell expansion” (page 375) proportionally. But what we really want
is to “stretch” the editing controls so that the rows keep their default height (Listing 18.17).

Listing 18.17: Change in horizontal and vertical expansion.

Layout *layout = layout create(2, n + 1);

layout hexpand(layout, 1);
layout vexpand(layout, n);

The previous lines cause the horizontal expansion to fall exclusively on column 1 (that
of the EditBoxes). On the other hand, an extra empty row has been created, pouring all
the vertical expansion into it (Figure 18.83).

Although the panel now behaves correctly when the window grows, we have difficulties
when we want to “shrink” it below a certain limit (Figure 18.84). This is because natural
dimensioning imposes a minimum size, since there comes a time when it is impossible to
reduce the controls associated with the layout.

18.20 - Panel 385

Q Panel composition - o x

Value 00 | Edit here value 00

Value 01 | Edit here value 01

Value 02 | Edit here value 02

Value 03 | Edit here value 03

Value 04 | Edit here value 04

Value 05 | Edit here value 05

Value 06 | Edit here value 06

Value 07 | Edit here value 67

Value 08 | Edit here value 03

Value 09 | Edit here value 09

Value 10 [Edit here value 10

Value 11 [Edit here value 11

Value 12 [Edit here value 12

Value 13 [Edit here value 13

Value 14 [Edit here value 14

Value 15 [Edit here vlue 15

Value 16 | Edit here value 16

Value 17 [Edit here value 17

Value 18 [Edit here value 13

Value 19 [Edit here value 19

!

Figure 18.83: Desired behavior, ‘
when the window expands. |

& O x

Value 00 | Edit hen

Value 01 | Edit hen

Value 02 | Edit hen

Value 03 | Edit hen

Value 04 | Edit hen

Value 05 | Edit hen

Value 06 | Edit hen

Value 07 | Edit hen

Value 08 | Edit hen

Value 09 | Edit hen

Value 10 | Edit her

Value 11 | Edit hen

Value 12 | Edit her

Value 12 | Edit hen

Value 14 | Edit her

Value 15 | Edit her

Value 16 | Edit hen

Value 17 | Edit hen

Value 18
Figure 18.84: Minimum panel size. Rl

This can be a problem as we may have panels large enough that they even exceed the
size of the monitor and cannot be fully displayed. To solve this, we can set a default size
for the entire panel (Listing 18.18), which will be the one displayed when the window starts
(Figure 18.85).

Listing 18.18: Panel default size.

panel size(panel, s2df (400, 300));

This command decouples, in a way, the size of the panel from the size of its content. In
this way, the Layout is free to reduce the size of the view, regardless of whether or not it
can display the entire content (Figure 18.86).

And finally, if we want, we can create the panel with scroll bars (Listing 18.19) and
scroll through the non-visible content (Figure 18.87).

386 Chapter 18 - Gui library

&) Panel composition — O X

Value 00 | Edit here value 00
Value 01 | Edit here value 01
Value 02 | Edit here value 02
Value 03 | Edit here value 03
Value 04 | Edit here value 04
Value 05 | Edit here value 05
Value 06 | Edit here value 06
Value 07 | Edit here value 07
Value 08 | Edit here value 08
Value 09 | Edit here value 08
Value 10 | Edit here value 10

Figure 18.85: Natural sizing, forced
to 400x300. Value 11 | Edit here value 11

O - O ¥

Walue 00 | Edit here value)

Figure 18.86: Panel boundary re- Value 01 | Edit here value
duction.

1E 1 |'I.'|II-I'|I 1

Listing 18.19: Panel with scroll bars.

Panel *panel = panel scroll (TRUE, TRUE);

&) Panel composition - O X
Value 06 | Edit here value 06 ~

Value 07 | Edit here value 07
Value 08 | Edit here value 08
Value 09 | Edit here value 09
Value 10 | Edit here value 10
Value 11 | Edit here value 11

. . Yalue 12 | Edith lue 12
Figure 18.87: Panel with scroll e ! CoeEvehe

bars. < >

And, of course, everything said will work the same on any platform (Figure 18.88).

Value 00
Value 01
Value 02
Value 03
Value 04
Value 05
Value 06
Value 07
Value 08
Value 09
Value 10

Panel composition

Edit here value 00
Edit here value 01
Edit here value 02
Edit here value 03
Edit here value 04
Edit here value 05
Edit here value 06
Edit here value 07
Edit here value 08
Edit here value 09

Edit here value 10

Figure 18.88: Our panel running on

18.21. Window

Value 00

Value 01

Value 02

Value 03

Value 04

Value 05

Value 06

Value 07

18.21 - Window 387

Panel composition - 0 X

Edit here value 00
Edit here value 01
Edit here value 02
Edit here value 03
Edit here value 04
Edit here value 05
Edit here value 06

Edit here value 07

macOS and Linux.

Window objects are the highest-level containers within the user interface (Figure 18.89).
They are made up of the title bar, where the close, maximize and minimize buttons are
located, the interior area and the frame. If the window supports resizing, said frame can
be dragged with the mouse to change its size. The interior or client area (Figure 18.90)
is where the controls that make up the interface itself reside and is configured through a
main panel. In “Hello World!” (page 23) you have a simple example of composition and
sample of a window.

o Use window create to create a window.

o Use window panel to assign the main panel.

o Use window show to show a window.

o Use the ekwInDOW TITLE flag to include the title bar.

» Use window title to assign a title.

NAppGUI does not distinguish between window, dialog box, message box, etc. The role
of each window will depend on the controls it contains, its location and its behavior.

18.21.1. Window size

In principle, the size of the window is calculated automatically based on the “Natural
sizing” (page 370) of its main panel, but it can be altered at any time.

o Use window size to resize the main panel.

o Use the ekwINDOW MAX flag to include the maximize button in the title bar.

388 Chapter 18 - Gui library

[=[cloc] =]~

Settings

= Program Mana

ger

File Options Window Help
L

. . Main
H : = 3 =
e
R File Manager ControlPanel Frint Manager Clipboard DOS Prompt
= Accessories
indows Setup F = T
P L
“riter Paintbiush Teminal Notepad Recordel
= File Manager 'I‘lﬁﬂ - 12] =] Reversi
File Disk Tree View Options ad a
Window Help rdfile: Calendar Calculatar|
Dire{®
=14 [EE]p
CAWINDOWS
E]C:!D | cawinp
3 . SETUP = B
Figure 18.89: The concept of a win- [E=18]
dow appears from the first desktop ETEMP] [¥
0 »
systems. Selecled 1 file[s) (0 byles] oul of 76
Window
& Die Simulator - O X
Language /%= English
Face Five
Padding [|
Corner '
Radius '

Move the sliders to change
the parametric
representation of the die

“y face.

o)

Figure 18.90: The client area is the
inner part of the window.

o Use the ekwINnDOW MIN flag to include the minimize button in the title bar.
» Use the ekwinpow RESIZE flag to create a window with resizable borders.

The change in the dimensions of the client area implies a relocation and re-sizing of the
interior controls. This is handled automatically through the layout objects, depending on
how your “Cell ezpansion” (page 375) has been configured and will recursively propagate

through all sublayouts. In “Die” (page 447) you have an example of resizing a window
(Figure 18.91).

18.21.2. Closing the window

Normally a window is closed by pressing the [x] button located to the right of the
title bar. But sometimes it can be useful to also close it with the [ENTER] or [ESC] keys.
Closing a window implies hiding it, but not destroying it. That is, we can show an already
closed window again using window show. In the case that the closing is conditioned to
a state of the application, such as saving a file for example, we must assign a handler
through window OnClose and decide there whether to close it or not.

18.21 - Window 389

O Die Simulator - o X
Language == English v
Face Five v
Padding []
-
Corner]
Radius]
= Move the sliders to change
the parametric
representation of the die
face.
& Die Simulator - a X
Language = English v
Face Five v
Padding]
Corner '
Radius]
= Move the sliders to change
’ the parametric
representation of the die
face.
Figure 18.91: Resizing the window 1
in the demo Die.

Use window hide to hide a window.

Use window destroy to permanently destroy a window.

Use the ekxwinpow CLOSE flag to include the close button in the title bar.
Use the ekwINDOW RETURN flag to enable [ENTER] closing.

Use the ekwinDow ESC flag to enable [ESC] closing.

Use the window OnClose flag to prevent the closing of a (Listing 18.20) window.

Listing 18.20: Prevents closing the window.

static void i OnClose(App *app, Event *e)
{

const EvWinClose *params = event params (e, EvWinClose);
if (can_close(app, params->origin) == FALSE)
{

bool t *result = event result(e, bool t);

*result = FALSE;

}

window OnClose (window, listener (app, i _OnClose, App));

By destroying a window, all its internal elements and controls are implicitly destroyed.

390 Chapter 18 - Gui library

18.21.3. Modal windows

They are those that, when launched, block the previous window (or parent) until it is
closed (Figure 18.92). Being “modal” or not is not a characteristic of the window itself,
but of the way it is launched. In “Hello Modal Window!” (page 599) you have an example

of use.

o Use window modal to display a window in modal mode.

o Use window stop modal to hide it and stop the modal loop.

adal Windo th [Ret

Stroy M
Basicta) M
Sublayowes M
Subpanels 1M

Q) Modal Window with [Esc]

¢ Modal Window without [Return] ner [Esc]

Modal Window with [Return]
Modal Window with [Esc]

Modal Window with [Return] and [Esc]

J Modal stop: --

Close modal with 10 value

Clese modal with 20 value

Close modal with 30 value

Close modal with 40 value

Figure 18.92: Multiple modal windows.

After calling window modal, the program stops at this point, waiting for the window to

close, which can be done using [X], [ENTER], [ESC] or by calling window stop modal

(Listing 18.21). The value returned by this function will be:

o ekGUI CLOSE ESC (1). If the modal window was closed by pressing [ESC].
o ekGUI CLOSE INTRO (2). If the modal window was closed by pressing [ENTER].

o ekGUI CLOSE BUTTON (3). If the modal window was closed by pressing [X].

o The value indicated in window stop modal.

Listing 18.21: Using modal windows.

static void i OnAcceptClick (Window *window, Event *e)

{

window stop modal

(window, 300);

Window *window = i create window with accept button();
// The program will stop HERE until window is closed
uint32 t ret = window modal (window) ;

18.21 - Window 391

if (ret == 1)
{
// Closed by ESC
}
else if (ret == 2)
{
// Closed by INTRO
}
else if (ret == 3)
{
// Closed by [X]
}
else if (ret == 300)
{
// Closed by window stop modal
}

window destroy (&window) ;

By default, the modal window will be hidden after receiving the call to window stop modal

, but it will not be destroyed as we indicated above. On certain occasions (although not
very common), we may want to relaunch the window after finishing the modal cycle with-
out producing an unsightly “flicker” due to a new (and fast) display after closing the
window.

» Use the ekwinpow MODAL NOHIDE flag when creating the window to prevent it from
being hidden after the modal loop.

18.21.4. Overlay windows
» Use window overlay to launch an overlay window.

Sometimes it can be useful to display small windows on top of the main one that
temporarily include additional controls. It is a similar case to modal windows, with the
difference that the “parent” window will not be deactivated and will continue to receive
events from the operating system, while the secondary one remains visible. They usually
do not include a border or title bar. In “Hello Overlay Window!” (page 603) you have the
source code for (Figure 18.93).

o Use window control frame to get the window coordinates of an inner control.

o Usewindow client to screen to transform window coordinates to screen coordi-
nates.

It is common that we have to position the overlay windows taking as reference some
control inside the window, but the origin of the window must be provided in screen coor-

392 Chapter 18 - Gui library

-
&) NAppGUI GUI Basics - X

A flyout window will be show when you press ... button

Vertical paddin
P J Press [ESC] or [RETURN] to close the flyout window

Tabstops
TextViews (@] Left-top () Left-bottom [.] Right-top O Right-bottom
TableView Push Button '
SplitViews .
Modal Windows A popup menu will be show wh Flyout control 0 '
Fiyout Windows ttern 1 Flyout control 1 '
Hotkeys ltem 2
Data Binding ltem 3 Flyout control 2 [
Struct Binding Itern 4 Fiyout control 3
Basic Layout
Sublayouts
Subpanels
L -

Figure 18.93: Overlay window with additional controls.

dinates. (Listing 18.22) shows how to correctly perform the coordinate transformation of
(Figure 18.93).

Listing 18.22: Alignment of the overlay window with respect to an Editbox.

static void i OnIdleLaunch (FlyOut *flyout, Event *e)

{
/* Edit control bounds in window coordinates */
R2Df frame = window control frame (flyout->parent,
/* Top-Left edit control in screen coordinates */
V2Df pos = window client to screen(flyout->parent,
/* Flyout window size */

flyout->edit);

frame.pos);

S2Df size = window get size(flyout->flywin);
switch (flyout->align) {
case 0:
pos.y += frame.size.height;
break;
case 1:
pos.y —-= size.height;
break;
case 2:
pos.x —= size.width - frame.size.width;
pos.y += frame.size.height;
break;
case 3:
pos.x —-= size.width - frame.size.width;
pos.y —-= size.height;
break;

/* Position in screen coordinates */

window origin(flyout->flywin, pos);

window overlay(flyout->flywin, flyout->parent):;
unref (e) ;

18.21 - Window 393

If we click on the parent window, the secondary window will be deactivated and hid-
den automatically. We will have to call window overlay again to show it. If we want
to avoid closing due to deactivation, we must consider the value ekGUI CLOSE DEACT in
window OnClose. Of course, we can also include the ekGUI CLOSE ESC and ekGUI CLOSE INTRO
flags to close the window using the keyboard.

18.21.5. Keyboard focus

Certain windows, such as dialog boxes, make extensive use of the keyboard. It is even
possible that the user will have to manage data entry without using the mouse. This is
why we have to be very clear about how the different elements behave when keystrokes.
The only control that receives key events within a given window is called keyboard
focus. Typically this control appears with the highlighted border (Figure 18.94).

o Use window get focus to get the keyboard focus control.

Simple ListBox With Images
Itern 1 = Spain
Item 2 IBLLL:Y
ltern 3 | United Kingdorm
Item 4 3 Vietnam
= Russia
W Portugal
* lapan
M pisk
Figure 18.94: The control on the " Feli
left has keyboard focus.

18.21.6. Focus change

The keyboard focus is automatically assigned to the first control in the tab-list when
the window is activated and can be changed in different ways:

o Using [TAB] or [SHIFT]+[TAB] we will move through the controls included in the
tab-list, as we already saw in “Tabstops” (page 379).

o Clicking on the control to which we want to connect the keyboard.
o Using window focus, which will set it to the desired control via code.

o Using window next tabstop which is equivalent to pressing [TAB]. In “Hello IP-
Input!” (page 656) you have several Edit that move to the next control when exactly
three numbers are entered.

394 Chapter 18 - Gui library

o Using window previous tabstop which is equivalent to pressing [SHIFT]+ [TAB].

These functions will return a gui focus t to indicate whether the focus change was
successful or not.

18.21.7. Focus protocol

Changing focus between controls is not direct, but rather follows a protocol (Fig-
ure 18.95). Generally we don’t have to worry about this, since each control has a default
behavior when releasing or accepting focus. The points to keep in mind are the following;:

e Edit controls can retain focus in response to an OnChange event, as we saw in
“Validate texts” (page 336).

o Custom views allow you to make a decision at runtime using the OnResignFocus
and OnAcceptFocus events, as we also saw in “Using the keyboard” (page 349). By
default, they will accept both cases.

o Use window focus info within edit OnChange or view OnResignFocus to ob-
tain additional information about the focus change operation.

For example, if we press [TAB] on an Edit, the OnChange event will be raised, which
may return FALSE as a reply. In this case, the keyboard focus will remain on that Edit
and will not jump to the next control.

Resign? ! edit_OnChange()

Requestfocus . v view_OnResignFocus()
. Yes .
Accept? :
Yes : view_OnAcceptFocus()
SetFocus

Figure 18.95: Protocol for changing the focus.

18.21.8. Tablist without cycles

Returning to navigation using the [TAB] key, the usual thing will be for the tabstops
to work cyclically (by default). That is, if the last control in the tab-list has focus and
we press [TAB], the focus will go back to the first control in the tab-list. It is possible to
disable this behavior, leaving the focus fixed on the last control even if we repeatedly press

18.21 - Window 395

the [TAB] key. Likewise, the focus will remain fixed on the first control even if we press
[SHIFT]+[TAB].

o Use window cycle tabstop to enable/disable cycling tabstops.

18.21.9. Default button

The default button is the one that appears highlighted within the window and that
will receive an OnClick event every time the [RETURN] key is pressed, regardless of which
control have keyboard focus. In principle, there is no button by default, it must be
indicated explicitly in the window.

o Use window defbutton to set the default button.

HQ/

Enable 3D Render B!

© Wireframe B Llines

O Shaded [J Meshes Focused
(O Realistic () Materials

(O V-Ray Lights

Cancel Ok
/

Figure 18.96: Default button. Default

18.21.10. Keyboard shortcuts

As we have already indicated, the keyboard focus will be fixed on some control inside
the window, be it a Edit, Button, View, etc. But it is possible that we want to define
global actions associated with a specific key.

o Use window hotkey to assign an action to a key.
o Use window clear hotkeys to remove all shortcuts associated with the window.

The hotkeys will have priority over the keyboard focus (Figure 18.97). That is, if we
have an action linked to the [F9] key, the window will capture the ekGUI EVENT KEYDOWN
event (F9) and this will not reach the control that currently has the keyboard focus.

To conclude, we summarize all the points to take into account when carrying out correct
keyboard management.

o Close the window with [RETURN] or [ESC.
o Correctly manage the tab-list and keyboard focus.

o Define a default button, which is activated when pressing [RETURN].

396 Chapter 18 - Gui library

YES
Keyboard focus

NO
[F9]

Intel i7-8700K <

T

XA

o Define the appropriate keyboard shortcuts.

Figure 18.97: Processing a key-
board shortcut.

18.22. GUI Data binding

By GUI Data Binding we mean automatic mapping between program variables and
user interface controls (Figure 18.98). In this way both will be synchronized without
the programmer having to do any extra work such as capturing events, assigning values,

checking ranges, etc. In “Hello Gui Binding!” (page 612) you have the complete source
code of the example that we will show below.

& NAppGUI GUI Basics - X
— i ; &
Labels ynglg !me ~ || Label Text String Text String 0/. " Layo ut
Labels multiline EditBox | | Text String Text String
Labels mouse sensitive
Buttons Check True Of A
PopUp Combo Check3 KMIXED |4« .
ListBoxes m_ < a &’ struct BasicTypes
Form 8Rad|o1 {
: Radio 2
Slid
i Radio Og“@i Cell 1] ¢’ String *str_val;
S paced ¢’ bool_t bool_val;
Struct Binding ORadio 6 ¢ state_t enum3_val;
Basic Layout PopUp | Cyan > Cyan > uint16_t uinti6_val H
g::;:f’;s“ o > myenum_t enum_val;
Multi-Layouts Blue (/0 real32_t rea132_val;
Scroll panel v Green A } .
. Black 14 !
ListBox Magenta Cyan
Cyan
Yellow
While
Slider] 15.50
A4
UpDown| % 15.50

Figure 18.98: Automatic data synchronization with the user interface.

18.22 - GUI Data binding 397

18.22.1. Basic type binding

We start from a data structure composed of several basic types fields (Listing 18.23),
where no other structures or objects are nested.

Listing 18.23: Simple data model.

typedef struct basictypes t BasicTypes;

typedef enum myenum t

{
ekRED,
ekBLUE,
ekGREEN,
ekBLACK,
ekMAGENTA,
ekCYAN,
ekYELLOW,
ekWHITE

} myenum t;

struct basictypes t

{
bool t bool val;
uintl6é t uintlé val;
real32 t real32 val;
myenum_t enum val;
gui state t enum3 val;
String *str val;

The first thing we must do is register the fields of the structure with dbind (List-
ing 18.24):

Listing 18.24: Register in dbind de los campos de la estructura.

dbind enum(gui state t, ekGUI OFF, "");
dbind enum(gui state t, ekGUI ON, "");
dbind enum(gui state t, ekGUI MIXED, "");
dbind enum (myenum t, ekRED, "Red");

dbind enum(myenum t, ekBLUE, "Blue");
dbind enum(myenum t, ekGREEN, "Green");
dbind enum(myenum t, ekBLACK, "Black");
dbind enum(myenum t, ekMAGENTA, "Magenta");
dbind enum(myenum t, ekCYAN, "Cyan");
dbind enum (myenum t, ekYELLOW, "Yellow");
dbind enum(myenum t, ekWHITE, "While");
dbind(BasicTypes, bool t, bool val);
dbind(BasicTypes, uintl6 t, uintlé6 val);
dbind (BasicTypes, real32 t, real32 val);
dbind (BasicTypes, gui state t, enum3 val);
dbind(BasicTypes, myenum t, enum val);

398 Chapter 18 - Gui library

dbind(BasicTypes, String*, str val);
dbind range (BasicTypes, real32 t, real32 val, -50, 50);
dbind increment (BasicTypes, real32 t, real32 val, 5);

DBind is a registry, within the application, that allows automating certain operations
on the data, as well as establishing ranges, precisions or aliases. Its use goes beyond
graphical user interfaces. More information in “Data binding” (page 219).

On the other hand, we build a “Layout” (page 369) that hosts the different controls of
the user interface (Listing 18.25):

Listing 18.25: Interface controls organized in a layout (Figure 18.98).

static Layout *i layout (void)

{
Layout *layout = layout create(3, 9);
Label *label = label create();
Edit *edit = edit create();
Button *check = button check();
Button *check3 = button check3();
Layout *radios = i radio layout();
PopUp *popup = popup create();
ListBox *listbox = listbox create();
Slider *slider = slider create();
UpDown *updown = updown create();
layout label (layout, label, 1, 0);
layout edit(layout, edit, 1, 1);
layout button(layout, check, 1, 2);
layout button(layout, check3, 1, 3);
layout layout (layout, radios, 1, 4);
layout popup (layout, popup, 1, 5);
layout listbox(layout, listbox, 1, 6);
layout slider (layout, slider, 1, 7);
layout updown (layout, updown, 1, 8);
layout halign(layout, 1, 0, ekJUSTIFY);
layout halign(layout, 1, 8, ekLEFT);
return layout;

Now we will link the cells of our layout with the fields of the structure (Listing 18.26).
Pay attention that we have not yet created any object of type BasicTypes. Therefore,
it is a semantic link where memory positions do not intervene, but the displacements
(offset) of the fields within the data structure.

o Use cell dbind to bind a field to an individual cell.
o Use layout dbind to link a structure with a layout.

o Use layout cell to get a cell from a Layout.

18.22 - GUI Data binding 399

Listing 18.26: Binding variables with cells in the layout.

cell dbind(layout cell (layout, 1, 0), BasicTypes, String*, str val);

cell dbind(layout cell(layout, 1, 1), BasicTypes, String*, str val);

cell dbind(layout cell (layout, 1, 2), BasicTypes, bool t, bool val);

cell dbind(layout cell (layout, 1, 3), BasicTypes, gui state t, enum3 val);
cell dbind(layout cell (layout, 1, 4), BasicTypes, uintlé t, uintlé val);
cell dbind(layout cell (layout, 1, 5), BasicTypes, myenum t, enum val);
cell dbind(layout cell (layout, 1, 6), BasicTypes, myenum t, enum val);
cell dbind(layout cell (layout, 1, 7), BasicTypes, real32 t, real32 val);

cell dbind(layout cell (layout, 1, 8), BasicTypes, real32 t, real32 val);
layout dbind(layout, NULL, BasicTypes);

When linking a data structure with layout dbind() we must bear in mind that the
cells of said layout can only be associated with fields of the same structure.
Otherwise, we will get a run-time error, due to the data inconsistency that would occur.
In other words, we cannot mix structures within the same layout.

Isolated variables cannot be used in Data Binding. They must all belong to a struct
since, internally, the relations (Layout = Struct) and (Cell = Field or Variable) are
established.

Finally, we will associate an object of type BasicTypes with the layout created previ-
ously (Listing 18.27).
o Use layout dbind obj to bind an object to the user interface.

« Use layout dbind get obj to get the binded object.

Listing 18.27: Binding an object to the interface.

BasicTypes *data = heap new(BasicTypes) ;
data->bool val = TRUE;

data->uintl6 val 4;

data->real32 val 15.5f;

data->enum3 val = ekGUI MIXED;
data->enum val = ekCYAN;

data->str val = str c("Text String");
layout dbind obj(layout, data, BasicTypes):;

» You can change the object being “edited” at any time, with a new call to layout dbind obj
() (Figure 18.99).

» If we pass NULL to layout dbind obj () the cells linked to fields of the structure
will be disabled.

400 Chapter 18 - Gui library

st
{

3

layout_dbind()

<
<

>
>

ruct BasicTypes

BasicTypes *obj
obj->real32_val
layout_dbind ob](ob])

Layout

String *str_val;

bool t bool_val;

state_t enum3_val; cell_dbind()

uintl6 t uintl6_val;
myenum_t enum_val;

4-/—>

real32_val (3)

real32 t real32_val;

Cells

Figure 18.99: When we assign an object to a Layout, the values of its fields are
synchronized with the interface.

18.22.2.

Keep in mind that the expressiveness of controls will, generally, be well below the range
of values supported by data types (Listing 18.28). For example, if we link a uint16 t with
a RadioGroup the latter will only support values between 0 and n-1, where n is the total
number of radios. The controls are set up to handle out-of-range values as consistently as
possible, but this does not exempt the programmer from getting it right. In (Table 18.5)
you have a summary of the data types and ranges supported by the standard controls.

Limits and ranges

Listing 18.28: Value not representable in the RadioGroup of (Figure 18.98).

data->uintl6 val
cell dbind(layout cell (layout,

1678;

1, 4),

BasicTypes, uintlé t, uintlé val);

Control

Data Type

“Label” (page 329)

String, Number, Enum, Bool

“Edit” (page 336)

String, Number

“Button” (page 332) (CheckBox)

Boolean

“Button” (page 332) (CheckBox3)

Enum (3 values), Integer (0,1,2)

“RadioGroup” (page 333)

Enum, Integer (0,1,2...n-1)

“PopUp” (page 336)

Enum, Integer (0,1,2...n-1)

“ListBox” (page 341)

Enum, Integer (0,1,2...n-1)

“Slider” (page 343)

Number (min..max)

“UpDown” (page 341)

Enum, Number

Table 18.5: Data types and ranges of GUI controls.

18.22 - GUI Data binding 401

18.22.3. Nested structures

Let’s now look at a somewhat more complicated data model, which includes nested
structures in addition to the basic types (Figure 18.100). In this case we have a structure
called structTypes that contains instances of another structure called vector (List-
ing 18.29). You can find the complete source code for this second example at “Hello Struct
Binding!” (page 617).

& NAppGUI GUI Basics = X 10\

R | | ¢ struct StructTypes

abels single line A || Object Name: | | Generic Object ‘ <
Labels multi line & \ i
Labels mouse sensitive vecl vec2 vec3 lengtht: | 417 \>(/0 String *name;
s::)tlojgsCombo x[1203 x| 020 x| 320 »’real32_t lengthi;
?ﬁwa v[2] v[te]=| v aw]s !Tfm: 293 | »qzxecior \:ec3;3

orm > ector vecs,
Sliders z[3w|i z 2302 | z[a0 lengthx: 751 | b < P !
TextViews 4
SplitViews *pvecl *pvec2 *pvec3 lengthd: 8.20

x[0o x[soofH|x[39%]2
Z - - + | length: 11224

asic Layout Y: l 5.00] = Y: | 2,20] =|Y: I -5.00 | = 0/)4
SubLayouts = = =1 | length: 675
Subpanels z[20| z 5005 z[o30]s ER0.
Multi-Layouts
Scroll panel v

rves] &+ struct Vector

X: 090 [25]| 57« {
z f;;“\\-+c9rea1327t X;
W ~——>Preal32_t y;
z[20| ——— Preal32_t z;
¥

=<

Figure 18.100: Data binding with substructures.

Listing 18.29: Data model with nested structures and registry in dbind.

typedef struct vector_t Vector;
typedef struct structtypes t StructTypes;

struct _vector_t
{
real32 t x;
real32 t y;
real32 t z;
b

struct structtypes t

{
String *name;
Vector vecl;
Vector vec2;
Vector vec3;
Vector *pvecl;
Vector *pvec2;
Vector *pvec3;
real32 t lengthl;
real32 t length2;

402 Chapter 18 - Gui library

real32 t length3;

real32 t length4;

real32 t length5;

real32 t lengthé6;
bi
dbind(Vector, real32 t, x);
dbind(Vector, real32 t, y);
dbind(Vector, real32 t, z)
dbind (StructTypes, String*, name);
dbind (StructTypes, Vector, vecl);
dbind (StructTypes, Vector, vec2);
dbind (StructTypes, Vector, vec3);
dbind (StructTypes, Vector*, pvecl);
dbind (StructTypes, Vector*, pvec2);
dbind (StructTypes, Vector*, pvec3);
dbind(StructTypes, real32 t, lengthl)
dbind(StructTypes, real32 t, length2)
dbind(StructTypes, real32 t, length3);
dbind(StructTypes, real32 t, lengthi4);

)
)

’

’

’

’

dbind(StructTypes, real32 t, length5
dbind(StructTypes, real32 t, length6);
dbind range(Vector, real32 t, x, -5, 5);
dbind range (Vector, real32 t, y, -5, 5);
dbind range (Vector, real32 t, z, -5, 5);
dbind increment (Vector, real32 t, x, .1f);
dbind increment (Vector, real32 t, y, .1f);
dbind increment (Vector, real32 t, z, .1f);

We started with the same methodology that we used with the first example. We create
a layout and link it with the Vector structure (Listing 18.30). This does not present
problems, as it is composed exclusively of basic types real32 t.

Listing 18.30: Layout for editing objects of type Vector.

static Layout *i vector layout (void)
{
Layout *layout = layout create(3, 3);
Label *labell = label create();
Label *label2 = label create();
Label *label3 = label create();
Edit *editl = edit create();
Edit *edit2 = edit create();
Edit *edit3 = edit create();

UpDown *updownl = updown create();
UpDown *updown2 = updown create();
UpDown *updown3 = updown create();

label text(labell, "X:");
label text (label2, "Y:");
label text(label3, "Z:");
edit align(editl, ekRIGHT);

18.22 - GUI Data binding 403

edit align(edit2, ekRIGHT);
edit align(edit3, ekRIGHT);
layout label (layout, labell, 0, O
layout label (layout, label2, 0, 1);
layout label (layout, label3, 0, 2
layout edit (layout, editl, 1, O
layout edit(layout, edit2, 1, 1
layout edit(layout, edit3, 1, 2

)

)

)
layout updown (layout, updownl, 2, 0);
layout updown (layout, updown2, 2, 1);
layout updown (layout, updown3, 2, 2);
cell dbind(layout cell(layout, 1, 0), Vector, real32 t, x);
cell dbind(layout cell (layout, 1, 1), Vector, real32 t, y);
cell dbind(layout cell (layout, 1, 2), Vector, real32 t, z);
cell dbind(layout cell (layout, 2, 0), Vector, real32 t, x);
cell dbind(layout cell (layout, 2, 1), Vector, real32 t, y);
cell dbind(layout cell (layout, 2, 2), Vector, real32 t, z);

layout dbind(layout, NULL, Vector);
return layout;

The idea now is to use this function to create “Sub-layouts” (page 374) and associate
them to cells of a higher level layout, which can support objects of type StructTypes
(Listing 18.31). Sub-layouts of type Vector are linked to the fields {vector vecl,
Vector * pvecl, ...} using cell dbind, so similar to how we did it with the basic

types.

Listing 18.31: Layout that supports objects of type StructTypes.

static Layout *i struct types layout (void)

{

Layout *layoutl = i create layout();
Layout *layout2 = i vector layout();
Layout *layout3 = i vector layout();
Layout *layout4 = i vector layout();
Layout *layout5 = i vector layout();
Layout *layouté6 = i vector layout();
Layout *layout7 = i vector layout();

Label *labell
Label *label2
Label *label3

layout layout (layoutl,
layout layout (layoutl,
layout layout (layoutl,
layout layout (layoutl,
layout layout (layoutl,
layout layout (layoutl,
layout label (layoutl,

layout label (layoutl,

layout label (layoutl,

cell dbind(layout cell (layoutl, O,

label create();
label create();
label create();

layout2, 0, 0);
layout3, 1, 0);
layout4, 2, 0);
layout5, 0, 1);
layouté6, 1, 1);
layout7, 2, 1);
labell, 0, 2);
label2, 1, 2);
label3, 2, 2);
0), StructTypes, Vector, vecl);

404 Chapter 18 - Gui library

cell dbind(layout cell (layoutl,
cell dbind(layout cell (layoutl,
cell dbind(layout cell (layoutl,

((0), StructTypes, Vector, vec2);
((
((
cell dbind(layout cell (layoutl,
((
((
((

0), StructTypes, Vector, vec3);

1), StructTypes, Vector*, pvecl);
1), StructTypes, Vector*, pvec2);

, 1), StructTypes, Vector*, pvec3);
cell dbind(layout cell (layoutl, 0, 2), StructTypes, real32 t, lengthl);
cell dbind(layout cell (layoutl, 1, 2), StructTypes, real32 t, length2);
cell dbind(layout cell (layoutl, 2, 2), StructTypes, real32 t, length3);
layout dbind(layoutl, NULL, StructTypes);

return layoutl;

~

~

~

cell dbind(layout cell (layoutl,

R OoONEFE ONR
~

And finally, we only have to link objects of type StructTypes with the main layout
(Listing 18.32). DBind will detect sub-layouts of type vector and will automatically
associate the corresponding sub-objects (by value or by pointer). Therefore, only one call
to layout dbind obj will be necessary (the one of the main object).

Listing 18.32: Associate object and sub-objects to a layout.

StructTypes *data = heap new (StructTypes);
Layout *layout = i struct types layout():;

data->name = str c("Generic Object");
data->pvecl = heap new (Vector);
data->pvec2 = heap new (Vector);
data->pvec3 = heap new (Vector) ;

data->vecl = i vec init(1.2f, 2.1f, -3.4f);
data->vec2 = i vec init(-0.2f, 1.8f, 2.3f);
data->vec3 = i vec init(-3.2f, 4.9f, -4.7f);
*data->pvecl = i vec init(0.9f, 7.9f, -2.0f);
*data->pvec2 = i vec_init(-6.9f, 2.2f, 8.6f);
*data->pvec3 = i vec init(3.9f, -5.5f, 0.3f);
data->lengthl = i vec length(&data->vecl)
data->length?2 i vec length (&data->vec2)
data->length3 i vec length (&data->vec3);
data->length4 i vec length (data->pvecl);
()
()

’

’

’

data->length5 = i vec length (data->pvec?2
data->length6

’

i vec_ length (data->pvec3

layout dbind obj (layout, data, StructTypes):;

In summary:
o For each sub-structure we create a sub-layout, linking the fields locally.
o The cells that contain these sub-layouts will be linked to the main structure.

« We assign the object to edit to the main layout.

18.22 - GUI Data binding 405

18.22.4. Notifications and calculated fields

If we apply what was seen in the previous sections, the synchronization between data
and interface is carried out in these two situations:

« When the program calls layout dbind obj. At that time the interface will reflect
the state of the object.

¢ When the user manipulates any control, then the object’s value will be updated.

However, it is possible that the program must be notified when the user modifies the
object, in order to carry out certain actions (update drawings, save data in files, launch
calculus algorithms, etc.). This will be resolved by events, as reflected in (Figure 18.101).
On the other hand, the program can alter the values of certain fields of the object and
must notify the changes to the interface (layout) so that it remains updated.

Layout w
{05 2

Object Name: I Generic Object l

] B : OnDataChange() App
Vec VEC. VEeC | hi: 2417
x| 1203 %[020 |x[-320% e
v:[2w lv[1] v ag0]z] 'engthZ
z| 3w |z] 230 |z 470 length3: | 751«
*pvecl *pvec2 *pvec3 lengthd: layout_dbind_update()
x| oo x| -sooff|x[3902
vo| soof|ve| 220 |v:[-s00]% e
z| 200 [z] so0oEH|z] o030]Z] lengthe:

Figure 18.101: Notification of value change to main program.

o Use layout dbind to include a listener that notifies changes to the application.
o Use evbind object to obtain, within the callback, the object that is being edited.

o Use event sender to obtain, within the callback, the layout that sent the notifi-
cation.

+ Useevbind modify to know, inside the callback, if a field of the object has changed
or not.

o Use layout dbind update to notify the layout that a field of the object has been
modified by the application.

All of this can be seen in (Listing 18.33). Every time the user changes any StructTypes
value, a notification of type ekGUI EVENT OBJCHANGE will be launched that will check if

406 Chapter 18 - Gui library

the vecl field has changed. If so, its length will be recalculated and the GUI controls
associated with that variable will be updated.

Listing 18.33: Notification of object values modification.

static void i OnDataChange (App *app, Event *e)

{
StructTypes *data = evbind object (e, StructTypes);
Layout *layout = event sender (e, Layout);
cassert (event type(e) == ekGUI EVENT OBJCHANGE) ;

if (evbind modify (e, StructTypes, Vector, vecl) == TRUE)
{
app_update drawing (app) ;
data->lengthl = i vec length(&data->vecl);
layout dbind update(layout, StructTypes, real32 t, lengthl);

layout dbind(layout, listener(app, i OnDataChange, App), StructTypes);

If, for some reason, the modified value is not allowed by the application, it can be
reverted by returning FALSE as a result of the event (Listing 18.34).

Listing 18.34: Canceling changes made by the user.

static void i OnDataChange (App *app, Event *e)

{
StructTypes *data = evbind object (e, StructTypes);
Layout *layout = event sender (e, Layout);

if (evbind modify (e, StructTypes, Vector, vecl) == TRUE)
{
real32 t length = i vec length(&data->vecl);
if (length < 5.f)
{
app_update drawing (app);
data->lengthl = length;
layout dbind update (layout, StructTypes, real32 t, lengthl);
}
else
{
// This will REVERT the changes in 'vecl' variable
bool t *res = event result(e, bool t);
*res = FALSE;

18.28 - Menu 407

18.23. Menu

A Menu is a type of control that integrates a series of options, also called items or
Menuitems. Each of them consists of a short text, optionally an icon and optionally also
a keyboard shortcut, such as the classic Ctr1+C/Ctr1+V to copy and paste. Additionally,
an item can house a submenu forming a hierarchy with different levels of depth. In “Prod-
ucts” (page 489) you have an application that uses menus and in “Hello dynamic Menu!”
(page 648) an example of adding or eliminating items at runtime.

o Use menu create to create a menu.
o Use menu destroy to destroy a menu.
o Use menu add item to add an option.

We must explicitly destroy any menu that we create in the application.

When destroying a menu, the destruction of all its elements and submenus is recur-
sively.

18.23.1. Menu bar
o Use osapp menubar to establish the application menu bar.
o Use menu is menubar to obtain if a menu is acting as a menu bar.

Once the menu created, we can establish it as the main menu bar (Figure 18.102),
which will be anchored to the main window, although there are operating systems (such
as macOS) that show the menu bar at the top of the screen.

18.23.2. macOS particularities

macOS treats the menu bar slightly differently, compared to Windows or Linux. In
multiplatform applications, you must take into account these considerations to comply
with the Apple Human Guidelines.

« macOS reserve the first element of the bar to the application menu and will always
appear, although the application lacks a menu bar. We can see it next to the Apple
icon (Figure 18.103). Any content associated with the first element of the menu will
automatically linked to this item (Listing 18.35).

Listing 18.35: First element of the menu bar in macOS, associated with the application menu.

#if defined(_ APPLE)
// Apple app menu
Menu *submenu = menu create();
Menultem *item0 = menuitem create();

408 Chapter 18 - Gui library

O Products

File | Navigate View Server Language Help

“: First F5 o e

Back F6

Products File Navigate View Server Language
[

» O 6 Log Out 7 ¢

Products

Language H

English

EL T

Portugués

Italiana

Tiéng viet

Description

Intel BX80684158400 8th

Figure 18.102: Menu bar in Win- Gen Core i5-8400 Processor

dows, macOS and Linux.

Menultem *iteml = menuitem separator();
Menultem *item2 = menuitem create();
Menultem *item3 = menuitem separator();
Menultem *item4 = menuitem create();
menuitem text (item0, "About Products");
menuitem text (item2, "Settings...");
menuitem text (item4, "Quit Products");
menu_add item(submenu, item0);
menu_add item(submenu, iteml
(
(
(

7
menu add item(submenu, item2);
menu_add item(submenu, item3

menu_add item(submenu, item4

’

)
)
)
) .

’

// Set the Apple app menu as first item
Menultem *item = menuitem create();
menuitem text (item, "");
menuitem submenu(item, &submenu);
menu_ins item(menu, 0, item);

#endif

« macOS does not allow icons in the main elements of the menu bar, so they will be
disabled. However, the icons will be visible in the drop -down submenus.

« macOS expects all the main elements of the menu bar to have an associated submenu,
so it will not launch events when clicking on the main items of the menu bar. It will

18.23 - Menu 409

Products File Mavigate View Server Language

About Products Products
Settings...

Figure 18.103: The application Quit Products

menu appears by default in all ma- Code

cOS applications.

only launch events by clicking on the submenus elements.

18.23.3. PopUp menu
o Use menu launch to launch a popup menu.

On the other hand, we can launch popup, or contextual menus, at any time of execution
(Figure 18.104). They will be displayed as a overlapped window, usually when right click
on some interface element. NAppGUI does not make distinctions between menu bar or
popup, that is, we can use the same object for both roles (Listing 18.36).

Scroll panel :
i I English
Dynamic layouts
Dynamic menus == Espafiol
IP Input EN Portugues
Font x-scale 11 ltaliana
Bl Tigng Viet
== Poccum
o BH#FE

Colors

Figure 18.104: Context menu launched at runtime.

Listing 18.36: The same menu in different roles.

Menu *menu = create menu with options();

// Set as menubar
Oosapp menubar (menu, main window) ;

// Unset menubar
osapp menubar (NULL, main window) ;

// Launch as popup
menu launch (menu, main window, v2df(x, y));

410 Chapter 18 - Gui library

// Destroy the menu
menu_destroy (&menu) ;

18.23.4. Historical perspective

The menu concept, like the window, exists from the origin of the graphic interfaces.
The first computer to incorporate them was the Xerox Alto that appeared in 1973 and its
commercial successor the Xerox Star. Concepts still very alive today as: menu, window,
icon, desk, or mouse were already present in these teams that served as inspiration to
Steve Jobs in the creation of Apple Lisa (Figure 18.105), precursor of the Macintosh and
inspiring Microsoft Windows.

r Desk File/Print d Type Style Page Layout Arrangement Fill Lines Pen b
Undo Last Change
R alculator
B Cut C—
Lisawrite Paper Lif P85714286
Paste
M= me mx

LisaTerminal Papar

clock

| Clear
Duplicate w0
Select ANl A

Make Lowercase

Lis{ Make Uppercase

Make Title

Sinpolh
Lmrnoth

Fiowgnd Dovners..,

Wastegasket

=

Freferances 2D

ClipBoard

OTC Faper

caloulator

<
1=

O [Co|os]

-Frofile

=lige

Figure 18.105: Apple Lisa was one of the first systems to incorpo-
rate menus as part of the graphic interface.

18.24. Menultem

Represents an option within a “Menu” (page 407). They will always have an associated
action that will be executed when activated.

e Use menuitem create to create an item.
e Use menuitem text to assign a text.

o Use menuitem image to assign an icon.

18.25 - Common dialogs 411

18.25. Common dialogs

Common dialogs are default windows provided by the operating system to perform
daily tasks such as: Open files (Figure 18.106), select colors, fonts, etc. Its use is doubly
beneficial. On the one hand we avoid programming them as part of the application and,
on the other, we take advantage of the user’s previous knowledge since they will surely
have been used in other programs.

Open *
< « 4 Bl s ThisPC » Desktop v D Search Desktop el
Organize + MNew folder = O @
[This PC ~ MName Date modified Type Siz ™
C
J 30 Objects a2 logs Shortcut
I Deskt 7 Maple Shortcut
esktol
G |6 menu_windows.png PMG File
| Documents & nappgui Shortcut
4 Downloads 211 NAPPGUI_EXAMPLES Shortcut
J’! Music . MAPPGUI_GITHUB Shortcut
=/ Pictures |6 Screenshot 2019-12-27 at 15.35.17.png PMG File
B Videos |6 Screenshot from 2019-12-27 15-31-47.png PMG File
i 4 \ i
. Local Disk (CJ) |&| Screenshot_l.png PNG File v
>
File name: |menu_windows.png v| *.png w

=1 Desktop

A Applications i ios-cmake- MyFirstlOS nappgul
master
[Desktop

= Recents

k' Documents E

Screenshot Screenshot Screenshot
3.66 2019-12..10.08.18 2019-12..12.50.19

1

Sierra

i@l

High_Sierra

&

Catalina

Screenshot Screensh
2019-12...17.33.45 2019-12... .22 .62. 2019-12..12.04.09

[

Catalina - Data

O

Remote Disc

Cancel

Figure 18.107: File explorer in macOS.

412 Chapter 18 - Gui library

4 fGrfran [Desktop

Home Name - Sjze Modified

I & GTK_GLX 6 May
Documents
& gtk_code 9 Apr
Downloads E= Screenshot from 2019-12-27 15-31-47.png 563.0kB 15:31
Music 23 apple_lisa.png 326kB 11:13
: 4 windows_3.png 7.8kB 26 Apr
Pictures
nappgui_build
Other Locations
*png ¥

Figure 18.108: File explorer in Linux.

RGB Sliders

Red

r
R |
L]

Hex Color # S879C7

Opacity
& 100%

Figure 18.109: Color selection in
macOS.

18.25 - Common dialogs 413

Diffuse color >

Elasuc colors:

TILLEE
EEENTT

1 HEEENN
1T HEEERT]
11 FHEENEN
11 HEEEERN

Custom colors:

rr

11 TTHEEEF

¥
N
N
N
-

Hue: 1 Bed: 'I
Sat: [240 | z-m green.-
Define Custom Colors =3 ColoriSglid I:um_- Ellge:

[ok | cance | | Add to Custom Colors |

Figure 18.110: Color selection in Windows.

Diffuse color

Figure 18.111: Color selection in Linux.

414 Chapter 18 - Gui library

CHAPTER

OSApp library

19.1 OSApp 415
19.2 main() and osmain() 415
19.3 Synchronous applications 419
19.4 Multi-threaded tasks 420

19.1. OSApp

The OSApp library starts and manages the message cycle of a desktop application
(Figure 19.1). Although the Gui library could be integrated into existing applications
through a plugin, if we want to create an application from scratch, we will need to manage
the events that the operating system sends to the program.

o Use osmain to start a desktop application.

o Use osapp finish to end a desktop application.

19.2. main() and osmain()

The classic main function is the starting point of any C/C++ command line program
(Figure 19.2). Its operation does not involve any difficulty and can be summarized in:

o @ The operating system loads the program into memory and calls the function
main () to start its execution.

« @ The sentences are executed sequentially and in the order in which they are written.
This order can be altered by means of control sentences (for, if, switch, etc.) or
function calls.

416 Chapter 19 - OSApp library

.

command
line

Figure 19.1: OSApp dependencies.
See “NAppGUI API” (page 149).

Figure 19.2: Running a con-
sole C application.

« © If input/output is necessary, the program will wait for the communication to end
and continue with the execution.

19.2 - main() and osmain() 417

o When the end of the function is reached main () or an exit () sentence is
executed, the program will end and the operating system will download it from
memory.

However, in desktop applications (event driven), the execution cycle is a bit more com-
plicated. In essence, the program is continuously executing a loop waiting for the user to
perform some action (Figure 19.3) (Listing 19.1). In “Hello World!” (page 23) you have a
simple example:

osmain ()

create ()

*app_ obj

.-\- event handler ()
runloop

cL \%

destroy ()

>
.

Figure 19.3: Running a desktop C application.

« @ The operating system loads the program into memory and calls the main () func-
tion. Now it is encapsulated inside the osmain macro which initiates certain struc-
tures necessary for event capture and management.

« @ At some point in this initial process, the application constructor will be called
(the first parameter of osmain()) that the main object should create. Since the
program is continuously returning control to the operating system, the state of the
data and windows will be maintained in this object.

418 Chapter 19 - OSApp library

. nce initialized, the application will enter a loop known as a message cycle
© Once initialized, th lication will enter a loop k 1
(Figure 19.4), while waiting for the user to perform some action on the program

interface.
while (GetMessage () >0) ‘ ==
[NSApplication run] ><
Figure 19.4: Message cycle g application run() A
implementation. - - ¥

« @ When this occurs, the operating system will capture the event and send it to the
application.

« © If the application has defined a handle for that event, it will be invoked and the
response code will be executed. An application can receive hundreds of messages but
will only respond to those it deems necessary, ignoring the rest.

. There is a special exit event that is generated by calling osapp finish. When
this happens, osmain () start freeing up resources and preparing a clean exit. At
some point the destructor of the application will be called (second parameter of
osmain()) to do its part of the job, closing possible open files and destroying the
main object.

« @ The operating system unload the application from memory.
. The pink blocks are platform dependent and are implemented within NAppGUI.

. The orange blocks are multiplatform (fully portable) and are implemented within
the application.

Listing 19.1: Elementary skeleton of a desktop application.

typedef struct app t App;
struct app t
{
// Program data
Window *window;

}i

static App* i create (void)
{
App *app = heap new (App) ;
// Init program data, GUI and Event handlers
app->window = ...
return app;

19.3 - Synchronous applications 419

static void i destroy(App *app)

{
// Destroy program data
window destroy (& (*app)->window) ;
heap delete (app, App):;

}

osmain (i create, i destroy, "", App);

19.3. Synchronous applications

Certain types of applications including video games, media players or simulators, need
to be updated at regular intervals, whether or not the user intervenes (Figure 19.5) (List-
ing 19.2). For these cases we will need a variant of osmain, which accepts an update
function and a time interval. In “Bricks” (page 463) you have an example.

o Use osmain sync to start a synchronous application.

event handler ()

n
& -

Listing 19.2: Elemental skeleton of a synchronous application.

Figure 19.5: Events in syn-
chronous applications.

typedef struct app t App;
struct app t
{
// Program data
Window *window;

}i

static App* i create (void)
{
App *app = heap new (App);
// Init program data, GUI and Event handlers
app->window =
return app;

420 Chapter 19 - OSApp library

static void i update (App *app, const real64 t prtime, const real64 t ctime
—)

{
// Update program state every 40ms

}

static void i destroy(App *app)

{
// Destroy program data
window destroy (& (*app)->window) ;
heap delete (app, App);

}

osmain sync(0.04, i create, i destroy, i update, "", App);

19.4. Multi-threaded tasks

Both synchronous and asynchronous applications execute the message cycle on a single
CPU thread. This means that if, in response to an event, a relatively slow task must
be executed, the application will be “frozen” until it is finished (Figure 19.6)(a). This
will produce an unwanted effect since the program will not respond for a few seconds,
giving the impression that it has been blocked. The solution is to launch a task in par-
allel (Figure 19.6)(b) (Listing 19.3), quickly release the thread that manages the GUL In
“Multi-threaded login” (page 504) you have an example of the use of tasks.

o Use osapp task to launch a new task in a parallel thread.

Listing 19.3: New task in a parallel thread.

// Runs in new thread
static uint32 t i task main(TaskData *data)
{
// Do the task work here!
}

// Runs in GUI thread
static void i task update (TaskData *data)
{
// Update the GUI here!
}

// Runs in GUI thread
static void i task end(TaskData *data, const uint32 t rvalue)

{
// Finish task code here!
}

osapp task(tdata, .04, i task main, i task update, i task end, TaskData);

19.4 - Multi-threaded tasks 421

Gui Thread

frozen

O 1

' (a)
g_% Slow task
& O

thread (b)

Figure 19.6: (a) Interface lock due to a slow function. (b) Slow function in a parallel
thread.

The new thread will begin its execution in task main. This function should not access
the interface elements, just perform calculations or input/output tasks. If it is necessary to
update the GUI for the duration of the task (increasing a progress bar or similar), it must
be done in task update, indicating in updtime the update interval. The new thread will
end when it returns from task main, moment to be called task end in the main thread.
Obviously, if both threads access shared variables, they must be protected by a Mutex.

422 Chapter 19 - OSApp library

CHAPTER

Encode library

20.1 Encode 423
20.2 Base64 423
20.3 JSON 424
20.3.1 JSON parsing and conversion to data in C 426
20.3.2 Mapping between Json and C 429
20.3.3 Convert from C to JSON 430
20.4 URL 432

20.1. Encode

The Encode library groups the implementation of encoders and decoders for some of
the most used data formats such as Base64 or Json. Some of these modules were originally
included in the “INet” (page 435) library, but from the version 1.5.2 of NAppGUI they
have moved to encode to be able to be used in applications that do not require network
support, thus avoiding external dependencies such as libcurl (Figure 20.1).

20.2. Baseb64

Base64 is a coding system that converts binary data (such as images or files) into
a text string composed of ASCII characters for transmission and storage, especially in
environments that only admit text (such as emails, URLs, JSON, XML). As the name
implies, 64 symbols are used for coding that are A-Z, a-z, 0-9 in this order for the first
62 digits, plus two additional characters +/. The protocol is relatively simple and can be
summarized in:

« Divide the binary data into blocks of 3 bytes (24 bits).

424 Chapter 20 - Encode library

I back-end

|

Figure 20.1: Dependencies of
encode. See “NAppGUI API”
(page 149).

« Each block is divided into 4 groups of 6 bits.
o Each 6-bit group translates to a character of the 64 allowed.

o Base64 encoding increases data size by approximately 33%, since every 3 bytes be-
come 4 characters.

o It allows to send and store binary data in systems that only accept flat text.

e Does not encrypt or protect the data, it only represents them in a textual way.

20.3. JSON

JSON JavaScript Object Notation, is a data format in text mode that allows to easily
represent basic types, objects and arrays. Although its use has become popular in the
Web environment, it can also be used for other purposes, such as configuration files or
local exchange. Its syntax is easy to understand for humans and simple to process for
machines. In (Listing 20.1) we reproduce a small fragment of the JSON response of a Web
service:

Listing 20.1: JSON fragment returned by a Web Service.

"code":0,
"size":80,
"data": [
{

"id":o0,

"code":"1i7-8700K",

"description":"Intel BX80684I78700K 8th Gen Core i7-8700K Processor",
type":0,

"price":374.89,

20.3 - JSON 425

"image":"cpu 00.jpg",
"image64":"\/937\/4AAQSkZIJRgABAQ."

"id":1,

"code":"G3930",

"description":"Intel BX80677G3930 7th Gen Celeron Desktop Processors",
"type":0,

"price":51.95,

"image":"cpu 01.jpg",

"image64":"\/93\/4AAQSkZIJRGABAQAAAQABAAD. .. "

In its structure we can find these data types:

Booleans: Represented by constants true or false.

Numbers: Use the exponential notation of C for floating-point values: 2.3, .76
, —0.54 or 5.6e12 they are valid examples of numerical values. JSON does not
distinguish between integers, negatives or reals.

Strings: Any text in quotes is considered a string. Supports any Unicode charac-
ter in “UTF-8” (page 162) or through the escape sequence <c >\uXXXX</c >to
indicate the codepoint.

Arrays: Lists of items delimited by brackets [...] and separated by commas. The
values do not have to be the same type as usually happens in some programming
languages (Listing 20.2).

Listing 20.2: JSON array

"Red", "Green", "Blue", "Yellow"

Objects: They are delimited by keys and composed of several fields separated by
commas. Each field is formed by an identifier (string) followed by a colon and a value
that can be any simple type, object or array (Listing 20.3).

Listing 20.3: JSON object

"fieldl" : true,

"field2"™ : 24.067,

"field3"™ : "Hello Pibe",
"field4" : [1, 2, 4, 8.4],

"field5" : { "x" : 34.32, "y" : -6.19 }

426 Chapter 20 - Encode library

« null: Indicates the absence of value.

» Binaries: JSON does not support binary data so opaque objects (images, for ex-
ample) must be encoded in text and transmitted as a string type value. The most
widespread and globally supported format is the “Base6/” (page 423) where each
character represents 6 bits of information.

NAppGUI’s JSON parser automatically transforms Image objects to Base6/ and vicev-
ersa, allowing images to be embedded as data fields.

20.3.1. JSON parsing and conversion to data in C
NAppGUI allows automatic parsing of Json information.
o Use json read to translate a Json to C.
o Use json destroy to destroy a previously read object.

Next we will show different examples with basic types, arrays and objects. In “Read-
/Write Json” (page 819) you have the complete code. The first step is to create a Stream
with the content of the Json (Listing 20.4):

Listing 20.4: Create a Stream with Json data.

/* Json data from web service */
Stream *stm = http dget ("http://serv.nappgui.com/dproducts.php", NULL, NULL);

/* Json data from disk file */
Stream *stm = hfile stream("/home/fran/appdata/products.json”, NULL);

/* Json data from memory block */
const char t *data = "[12, 34, 67, 45]";
Stream *stm = stm from block((const byte t*)data, str len c(data));

The Stream should be destroyed with stm close at the end of the analysis.

Later we will use json read indicating the expected data type of the Json.

Listing 20.5: Json boolean.

json: true

bool t *json = json read(stm, NULL, bool t);
bstd printf ("Json boolean: %d\n", *json):;
json destroy(&json, bool t);

20.3 - JSON

Listing 20.6: Json number.

427

json: 6654

uintl6é t *json = json read(stm, NULL, uintlé t);
bstd printf("Json unsigned int: %d\n", *json);
json destroy(&json, uintlé t);

Listing 20.7: Json string.

json: "Hello World"

String *json = json_read(stm, NULL, String);
bstd printf ("Json string: $s\n", tc(json));
json destroy(&json, String);

Listing 20.8: Json string/b64 image (jpg, png, bmp).

json: "/93/4QBARXhpZgAASUkgAAGAAA..."

Image *json = json read(stm, NULL, Image);

uint32 t width = image_width(json);

uint32 t height = image height (json);

bstd printf ("Json image: width: %d height: %d\n", width, height);
json destroy(&json, Image);

Listing 20.9: Json integer array

json: [=321, 12, -8943, 228, -220, 347]

ArrSt (intl6é t) *json = json read(stm, NULL, ArrSt(intl6 t));
bstd printf ("Json array: ");
arrst foreach(id, Jjson, intlé _t)
bstd printf ("%d ", *id);
arrst _end()
bstd printf ("\n");
json destroy(&json, ArrSt(intlé t));

Listing 20.10: Json string array

json: ["Red", "Green", "Blue", "Yellow", "Orange"]

ArrPt (String) *json = json read(stm, NULL, ArrPt(String));
bstd printf ("Json array: ");
arrpt foreach(str, json, String)
bstd printf("%s ", tc(str));
arrpt end()
bstd printf ("\n");
json destroy(&json, ArrPt(String));

428 Chapter 20 - Encode library

For the analysis of objects it is necessary that we register with “Data binding” (page 219)
their structure, in such a way that the types and names of the fields of the Json object
coincide with the struct from C. Given this Json:

Listing 20.11: Json object

"description"™ : "Intel i7-7700K",
"price" : 329.99

"description" : "Ryzen-5-1600",
"price" : 194.99

}I

{
"description" : "GTX-1060",

"price" : 449.99

We define these structs and register them:

Listing 20.12: Structures that will hold the data of the Json object.

typedef struct product t Product;
typedef struct products t Products;

struct product t

{
String *description;
real32 t price;

}i

struct products t
{

uint32 t size;

ArrSt (Product) *data;
bi

DeclSt (Product) ;

dbind (Product, String*, description);
dbind(Product, real32 t, price);
dbind(Products, uint32 t, size);

dbind (Products, ArrSt (Product)*, data);

This way we can now call json read:

20.3 - JSON 429

Listing 20.13: Reading the Json object.

Products *Jjson = json read(stm, NULL, Products):;

bstd printf ("Json object: Size %d\n", Jjson->size);

arrst foreach (elem, json->data, Product)
bstd printf ("Product: %s Price %.2f\n",

— 7

arrst end()

bstd printf ("\n");

json destroy(&json,

tc(elem->description), elem->price)

Products) ;

json__read() ignores (skips) those fields of Json objects that are not registered with
dbind. In no case will they generate caches or dynamic memory.

20.3.2. Mapping between Json and C

json read recognizes the basic NAppGUI types, as well as String, Image, ArrSt, and
arrpt. Will not work with other data types such as int or float. It will also not
recognize the STL structures vector, map, etc. In (Table 20.1) we show the equivalence

between the fields of a Json and the C types that we need to map it correctly.

Json C Example
boolean bool t true, false
number int8 t, intl6 t, int32 t, int64 t -6785, 45, 0
number uint8 t, uintl6 t, uint32 t, uinté64 t 1, 36734, 255, 0, 14
number real32 t, real64 t 67.554, -3.456, 1.5e7

string String “Intel Celeron”, “Red”

string Image “/9j/4QB4RXhpZgAASUkqAAg
array Arrst(uintl6 t) [12, 111, 865 |

array Arrst(real32_t) [-34.89, 0.0001, 567.45, let
array Arrpt(String) [“red”, “green”, “blue”]
array arrpt(Image) [“/9j/4QB4RXh...”, “/9j/4QB4RX
object | struct Product (“Data binding” (page 219)) { “description” : “i7-8700K”, “ "price
array Arrst(Product) [{ “description” : “i7-8700K”, “ "price*
array arrpt(Product) [{ “description” : “i7-8700K”, “ "price*

Table 20.1: Equivalence between Json and NAppGUI types.

430 Chapter 20 - Encode library

20.3.3. Convert from C to JSON

o Use json write to write data/objects from C to Json.

Based again on (Table 20.1), let’s do the reverse process and generate Json data from
C types and objects. First, create a write stream to hold the result (Listing 20.14):

Listing 20.14: Create a write Stream.

/* Write stream in memory */
Stream *stm = stm memory(2048);

/* Write stream in disk */
Stream *stm = stm to file("/home/fran/appdata/products.json", NULL);

The Stream should be destroyed with stm close when it is no longer needed.

Later we will use json write indicating the expected data type of the Json.

Listing 20.15: Write boolean to Json.

bool t data bool = TRUE;
stm writef (stm, "Json from bool t: ");
json write(stm, &data bool, NULL, bool t);

// Json from bool t: true

Listing 20.16: Write integer to Json.

uintl6 t data uint = 6654;
stm writef (stm, "Json from uintlé t: ");
json write(stm, &data uint, NULL, uintlé6 t);

// Json from uintlé t: 6654

Listing 20.17: Write String to Json.

String *data str = str c("Hello World");
stm writef (stm, "Json from String: ");
json write(stm, data str, NULL, String);
str destroy(&data str);

// Json from String: "Hello World"

Listing 20.18: Write Image to Json.

Image *data image = load image();
stm_writef(stm, "Json from Image: ");
json write(stm, data image, NULL, Image);
image destroy(&data image);

20.3 - JSON

// Json from Image: "iVBORwWOKGgOAAAANSUhEUgAAAATIA..."

431

Listing 20.19: Write ArrSt(int16_t) to Json.

ArrSt (intl6_t) *array = arrst create(intlé t);
arrst append(array, -321, intlé t);

arrst append(array, 12, intl6 t);

arrst append(array, -8943, intl6 t);

arrst append(array, 228, intlé t);

arrst append(array, -220, intlé6 t);

arrst _append(array, 347, intlé6 _t);

stm writef (stm, "Json from int array: ");

json write(stm, array, NULL, ArrSt(intl6 t));
arrst destroy(&array, NULL, intlé t);

// Json from int array: [-321, 12, -8943, 228, -220, 347]

Listing 20.20: Write ArrPt(String) to Json.

ArrPt (String) *array = arrpt create(String);
arrpt append(array, str c("Red"), String);
arrpt append(array, str c("Green"), String);
arrpt append(array, str c("Blue"), String);
arrpt append(array, str c("Yellow"), String);
arrpt append(array, str c("Orange"), String);
stm writef (stm, "Json from string array: ");
json write(stm, array, NULL, ArrPt(String)):;
arrpt destroy(&array, str destroy, String);

// Json from string array: ["Red", "Green'", "Blue", "Yellow'", "Orange"]

Listing 20.21: Write Products object to Json.

Products *products = heap new (Products);
products->size = 3;
products->data = arrst create (Product) ;

Product *product = arrst new(products->data, Product);
product->description = str c("Intel i7-7700K");
product->price = 329.99f;

Product *product = arrst new(products->data, Product);
product->description = str c("Ryzen-5-1600");
product->price = 194.99f;

432 Chapter 20 - Encode library

Product *product = arrst new(products->data, Product);
product->description = str c("GTX-1060");
product->price = 449.99f;

stm writef (stm, "Json from object: ");
json write(stm, products, NULL, Products);
dbind destroy (&products, Products);

// Json from object: {"size" : 3, "data" : [{'"description" : "Intel i7-7700K",
— "price" : 329.989990 }, {"description" : "Ryzen-5-1600", '"price"
— 194.990005 }, {"description" : "GIX-1060", "price" : 449.989990 }] }

20.4. URL

URL is the acronym for Uniform Resource Locator that identifies a unique resource on
the Internet. The most common use is found when making requests to a Web server. For
example https://www.google.com is a widely recognized and used URL. Being some-
what more specific, we can say that it is a string of characters with a specific format

composed of a series of fields that allow unambiguously locating a unique global resource
(Listing 20.22) (Figure 20.2).

Listing 20.22: Parsing a URL string.

Url *url = url parse("https://frang@www.nappgui.com/services/demo/userlist.php?
< id=peter&city=Alicante");

const char t *scheme = url scheme (url); // https

const char t *host = url host (url); // www.nappgui.com

const char t *path = url path(url); // /services/demo/userlist.php

const char t *query = url query(url); // id=peter&city=Alicante

¢ Scheme: Communication protocol used. http, https, ftp, smtp, mailto, etc.

o Authority: Access string to the server composed of several fields, where only the
host name is required. The rest are optional.

o Host: Server name or IP address.
o User: User name. Optional, only if the service requires it.
« Password: Password. Optional, only if the service requires it.

o Port: Access port. Each protocol has a default port, which will be the one
used if none is specified. 80 = http, 413 = https.

« Resource: Path within the server where the resource we are looking for is located.
The pathname is the only one required.

20./ - URL 433

URL
Scheme Authority Resource Fragment

l | | l

http://www.nappgui.com/path/to/file.html#head2

Authority

User Password Host Port

I l l

frang:p6sWOrd@www.nappgui.com:80

Resource

Pathname Parameters Queries

l l l

/path/to/file.html;param=value?query=value

Figure 20.2: The different fields that make up a URL.

« Pathname: Directory and name of the file or resource.

o Parameters: List of name = value arguments that the service may need. Not
normally used. If there are multiple values, they are separated by the character
A

¢ Queries: List of name = value arguments that the service may need. These
are the ones normally used by Web services. That is, in the URL you must
use the '2' separator instead of '; ' after the pathname. If there are multiple
values, they are separated by the character 's"'.

o Fragment: It is an anchor to a specific part of the document that we request from
the server. Normally used to access a specific point in an HTML page.

434 Chapter 20 - Encode library

CHAPTER

INet library

21.1 INet 435
21.2 HTTP 436
21.1. INet

The INet library implements general Internet protocols. Although “Sockets” (page 185)
allow us to open a communication channel between two remote machines, it is necessary
to define a format for the messages that both interlocutors will exchange, in order for
communication to be carried out satisfactorily. Any modern operating system provides
APIs to use the most popular Internet services, like HTTP. INet accesses this functionality
under a common unified and simplified interface (Figure 21.1).

Important. To use INet in your projects, you will have to link the library explicitly
in the CMakeLists. txt of your application, through the macro nap link inet.

nap desktop app (Products "" NRC EMBEDDED)
nap_link inet (Products)

Important. On Linux you will need to install the curl development libraries.

sudo apt-get install libcurl4-openssl-dev

436 Chapter 21 - INet library

inet WinINet

-—
—

NSURLSession

[

T curl

o - i

Fe=n command
osbs C” line

Figure 21.1: INet dependencies.
See “NAppGUI API” (page 149) .

21.2. HTTP

It is common for an application to need information beyond that stored on the com-
puter itself. The simplest and most common way to share information is to store it on
a Web Server and publish a URL that provides the desired content (Figure 21.2). This
client /server scheme uses the HT'TP/HTTPS protocol, which was originally designed to
transmit HTML documents between web servers and browsers. Due to the great impact
it has had over the years, its use has been expanding for the exchange of structured infor-
mation between any application that “understands” HTTP. The response from the server
will usually be a block of text formatted in JSON or XML.

App
Web Server
Database
e By
—8o
Figure 21.2: Requesting a remote .7

resource using HTTP.

» Use http dget to download a resource from its “URL” (page 432) (Listing 21.1).
» Use http create to create an HTTP session.

o Use http secure to create an HTTPS session (encrypted).

Listing 21.1: Direct download of content from a URL.

Stream *webpage = http dget ("https://nappgui.com/en/start/win mac linux.
~— html", NULL, NULL);

Stream *imgdata = http dget ("http://test.nappgui.com/image formats/
— sea 02 rgb.png", NULL, NULL);

Image *image = image read (imgdata);

if (webpage !'= NULL)

21.2 - HTTP 437

stm_close (&webpage) ;

On the other hand, if we are going to make successive calls to the same server or if we
need more control over the HTTP headers, we must create a session (Listing 21.2).

Listing 21.2: HTTP session.

Stream *webpage = NULL;

Http *http = http secure("nappgui.com", UINT16 MAX) ;
if (http_get (http, "/en/start/win mac linux.html", NULL, O, NULL) == TRUE)
{
if (http response status (http) == 200)
{
webpage = stm memory(1024);
if (http response body(http, webpage, NULL) == FALSE)
stm close (&webpage) ;

http destroy(&http);

if (webpage != NULL)
{

stm close (&webpage) ;

438 Chapter 21 - INet library

CHAPTER

OGL3D library

22.1 OGL3D 439
22.2 3D Contexts 440
22.3 Drawing operation 441
22.4 GLEW 442

22.1. OGL3D

The OGL3D library will allow us to create cross-platform OpenGL contexts, with-
out having to worry about the particular implementation in each operating system (Fig-
ure 22.1). Although the OpenGL API is fully portable, the way you create graphical
contexts and link them to a window is platform-dependent. In “Hello 3D Graphics!”
(page 693) you have an example application.

Important. To use OGLS3D in your projects, you will have to link the library explicitly
in the CMakeLists. txt of your application.

nap desktop app (GLHello "" NRC_EMBEDDED)
nap link opengl (GLHello)

Important. On Linuz you will need to install the Mesa development libraries.

sudo apt-get install mesa-common-dev libglul-mesa-dev libegll-mesa-dev

440 Chapter 22 - OGL3D library

o WGL --
|
I NSOpenGLContext]
(CGL) ><
Figure 22.1: OGLS3D depen- -
dencies. See “NAppGUI API” EGL &
(page 149). L) D

22.2. 3D Contexts

Use 0gl3d context to create a context.
Use 0gl3d destroy to destroy a context.

A 3D context represents a set of states and objects within which OpenGL drawing
operations are performed (Figure 22.2). Basically a context includes:

o States: Current settings such as projection mode, transformation matrices, lighting
options, etc.

o Shaders: Programs that allow you to customize the rendering within the GPU.
o Geometry and textures: Graphic resources that represent the objects to be rendered.

o Graphic buffers: Color, depth, stencil, and others that are used to store pixel infor-
mation during the rendering process.

o Windows: Integration with the operating system to draw in a specific window.

@ @ Geometry

Textures

OGLCtx

Buffers

=e® | Views

Figure 22.2: OpenGL context and associated objects.

22.8 - Drawing operation 441

To create a context you will need the native identifier of the associated view. That is,
a HWND object on Windows, a GtkWidget on Linux or a NSView on macOS. In NAppGUI,
this is provided by the view native function (Listing 22.1).

Listing 22.1: Creating an OpenGL context, associated with a window.

View *view =

void *nview = view native (view);
OGLCtx *oglctx = NULL;

OGLProps props;

oglerr t err;

props.api = ekOGL 3 3;
props.hdaccel = TRUE;
props.color bpp = 32;
props.depth bpp = 0;
props.stencil bpp = 0;

props.aux buffers 0;
props.transparent = FALSE;
props.shared = NULL;

oglctx = ogl3d context (&props, nview, &err);
if (oglctx == NULL)

{

bstd printf ("Error: %s\n", ogl3d err str(err));

22.3. Drawing operation

o Use ogl3d begin draw when starting rendering.
» Use 0gl3d end draw when finishing rendering.

The view object will raise an OnDraw event every time it needs to update the drawing
area (“Draw in views” (page 345)). In the handler for this event, we must include the
OpenGL code.

Listing 22.2: Drawing in a view, using OpenGL.

static void i OnDraw (App *app, Event *e)

{
const EvDraw *p = event params (e, EvDraw);
0gl3d begin draw(app->oglctx);

// OpenGIL Code (cross-platform)

glviewport (0, 0, (GLsizei)p->width, (GLsizei)p->height);
glClearColor(.8f, .8f, .8f, 1.0f);

glClear (GL_COLOR BUFFER BIT);
glMatrixMode (GL MODELVIEW) ;

glLoadIdentity () ;

glBegin (GL TRIANGLES) ;

glColor3f (1, 0, 0);

442 Chapter 22 - OGLS3D library

glvertex3f (0, 1, 0);
glColor3f (0, 1, 0);
glvertex3f (-1, -1, 0);
glColor3f(0, 0, 1);
glVertex3f (1, -1, 0);
glEnd () ;

0gl3d end draw (ogl->ctx);
}

view OnDraw (view, listener (app, i _OnDraw, App));

22.4. GLEW

OpenGL allows the incorporation of optional extensions that are not included in the
core of the standard. These extensions allow hardware manufacturers (such as NVIDIA,
AMD, Intel, etc.) and software developers to add new functionality or improve the per-
formance of existing features. In general, detecting whether an extension is present or
not when creating a context implies a great workload for the programmer, which is why
different libraries have been created for this purpose.

OGL3D includes a copy of GLEW! (OpenGL Extension Wrangler Library) which facil-
itates this task enormously. Its initialization by calling glewInit () is done automatically
when creating the 0GLCtx object. We will only have to include this header before making
any call to OpenGL (Listing 22.3).

Listing 22.3: GLEW inclusion.

// Include OpenGL and GLEW
#include "nowarn.hxx"
#include <ogl3d/glew.h>
#include "warn.hxx"

// OpenGL calls

glviewport (0, 0, (GLsizei)width, (GLsizei)height);
glClearColor(.8f, .8f, .8f, 1.0f);

glClear (GL_COLOR_BUFFER BIT);
glMatrixMode (GL MODELVIEW) ;

To check if an extension is present, we can use glewIsSupported() or the different
macros provided by GLEW (Listing 22.4).

Listing 22.4: Checking extensions with GLEW.

if (glewIsSupported ("GL ARB vertex program"))

"https://glew.sourceforge.net

https://glew.sourceforge.net

{

// Extension available

}

if (GLEW ARB vertex program)
{

// Extension available

}

22.) - GLEW 443

444 Chapter 22 - OGLS3D library

Part 3

Sample Applications

445

CHAPTER

Die

Beautiful code is likely to be simple — clear and easy to understand. Beautitful code is likely to be
compact — just enough code to do the job and no more — but not cryptic, to the point where it
cannot be understood. Beautiful code may well be general, solving a broad class of problems in a
uniform way. One might even describe it as elegant, showing good taste and refinement.

Brian Kernighan

23.1 Die 447
23.2 Use of sublayouts 448
23.3 Use of Custom Views 450
23.4 Parametric drawing 451
23.5 Resizing 453
23.6 Use of resources 455
23.7 Die and Dice 456
23.8 The complete Die program 457
23.1. Die

As the road is made by walking, we will devote a few chapters to deepen the use of
NAppGUI hand in hand with real applications. Our goal is to present programs of a certain
level, halfway between the simple “book examples” and the commercial applications. In
this first demo we have a program that allows us to draw the silhouette of a die (Figure 23.1)
and that will serve as an excuse to introduce concepts of parametric drawing, composition
of layouts and use of resources. The source code is in folder /src/demo/die of the SDK
distribution. In “Create new application” (page 71) and “Resources” (page 99) we saw how
to create the project from scratch.

448 Chapter 23 - Die

) Die Simulator — | *
Language == English ~
Face Five e
Padding [|

Corner '
Radius '

Muove the sliders to change
the parametric
representation of the die
face.

Figure 23.1: Die Simulator application, Windows version. Inspired
by DieView (Cocoa Programming for OSX, Hillegass et al.)

Die Simulator
Language == English
Face Five
Padding (]
Corner Qo

Radius @

Move the sliders to
change the parametric
representation of the die
face.

Figure 23.2: MacOS version.

23.2. Use of sublayouts

We started working on the user interface, which we have divided into two areas: a
customized view (View) where we will draw the representation of the die in 2D, and a
zone of controls where we can interact with this drawing. As we already saw in “Hello
World!” (page 23) we will use Layout objects to locate the controls inside the main
window. However, we observe that this arrangement of elements does not fit well in a
single table, therefore, we will use two horizontal cells as the main container and a grid of
two columns and six rows for the controls (Listing 23.1) (Listing 23.1). This second layout
will be located in the right cell of the first container and we will say that it is a sublayout
of the main layout.

23.2 - Use of sublayouts 449

Die Simulator *

Language == English -

Face Five -

Padding = _l————

Corner =

Radius

Move the sliders to
change the parametric
representation of the
die face.

Figure 23.3: Linux/GTK+ version.

Listing 23.1: Composition through sublayouts.

Layout *layout = layout create(2, 1);
Layout *layoutl = layout create(2, 6);
layout view(layout, view, 0, 0);
layout label (layoutl, labell, O
layout label (layoutl, label2, 0
layout label (layoutl, label3, 0,
layout label (layoutl, labeld, 0,
0
5
1
1

~.

’

4

S wWw N PO
N Ne e

layout label (layoutl, label5,
layout view(layoutl, vimg, O,
layout popup (layoutl, popupl,
layout popup (layoutl, popup2,
layout slider (layoutl, sliderl, 1, 2);
layout slider (layoutl, slider2, 1, 3);
layout slider (layoutl, slider3, 1, 4);
layout label (layoutl, label6, 1, 5);

layout layout (layout, layoutl, 1, 0);

~.

)

~
=
~

In the same way that we did in “Layout format” (page 29) we have established certain
margins and a fixed width for the controls column.

Listing 23.2: Layout format

view size(view, s2df(200.f, 200.f));
layout margin(layout, 10.f);

layout hsize(layoutl, 1, 150.f);
layout hmargin(layout, 0, 10.f);
layout hmargin(layoutl, 0, 5.f);
layout vmargin(layoutl, 0, 5.f);
layout vmargin(layoutl, 1, 5.f);
layout vmargin(layoutl, 2, 5.f);

450 Chapter 23 - Die

layout(2, 1) sublayout(2, 6)

E= English

Move the sliders to change
the parametric
representation of the die
face.

Figure 23.4: The use of sublayouts adds flexibility when designing
the gui .

layout vmargin(layoutl, 3, 5.f);
layout vmargin(layoutl, 4, 5.f);

23.3. Use of Custom Views

View are controls that will allow us to design our own widgets. On the contrary that
happens with another type of components, like “Slider” (page 343) or “Button” (page 332),
here we will have total freedom to draw anything. We can interact with the control by
capturing its events (mouse, keyboard, etc) and implementing the appropriate handlers.
These views are integrated into the layout like any other component (Listing 23.3).

Listing 23.3: Creating a custom view.

View *view = view create();
view size(view, s2df(200.f, 200.f));
layout view(layout, view, 0, 0);

We can not draw inside a View whenever we want. We will have to make a request to
the operating system through the method view update (Listing 23.4), since the drawing
area can affect overlapping windows and this must be managed centrally. When the control
is ready to refresh, the system will send an event EvDraw that we must capture through

view OnDraw.

Listing 23.4: Code basic of View refresh.

static void i OnPadding (App *app, Event *e)
{

const EvSlider *params = event params (e, EvSlider);

23.4 - Parametric drawing 451

app->padding = params->pos;
view update (app->view);

}

static void i OnDraw (App *app, Event *e)
{
const EvDraw *params = event params (e, EvDraw);
die draw(params->context, params->width, params->height, app):;

}

slider OnMoved(sliderl, listener (app, i OnPadding, App)):;
view OnDraw(view, listener (app, i_OnDraw, App));

Each time the user moves a slider (padding parameter, for example) the operating sys-
tem captures the action and informs the application through the method i OnPadding
(Figure 23.5). Because the action involves a change in the drawing, this method calls
view update to inform the system again that the view must be updated. When it con-
siders it appropriate, send the event EvDraw, which is captured by i OnDraw where the

drawing is regenerated with the new parameters.
O— m@ °
k — —>.- <—view_update()
Figure 23.5: Understanding \

the event flow in interactive p— ¢ ° ¢ i OnDraw()
drawings. ® -

,,,WﬂfOnPaddiﬂg()

23.4. Parametric drawing

Under this concept we describe the ability to generate vector images from a few numeri-
cal values known as parameters (Figure 23.6). It is used a lot in the computer-aided design
(CAD), it allows you to make adjustments easily in planes or models without having to
edit, one by one, a lot of primitives.

In our application, the representation of the die can change at runtime as the user
manipulates the sliders or sizes the window, so we calculate the position and size of their
primitives using parametric formulas. Once resolved, we created the drawing with three
simple API commands “Drawing primitives” (page 287).

o draw clear. Clear the entire drawing area using a solid color.

452 Chapter 23 - Die

Figure 23.6: Principles of
parametric drawing, applied in
Die.

e draw rndrect. Draw a rectangle with rounded corners.

o draw circle. Draw a circle.

Listing 23.5: demo/casino/ddraw.c

/* Die drawing */

#include "ddraw.h"
#include <draw2d/draw2dall.h>

/*

static const real32 t i MAX PADDING = 0.2f;

const real32 t kDEF PADDING = .15f;

const real32 t kDEF CORNER = .15f;

const real32 t kDEF RADIUS = .35f;

J*
(_> ___
= &y

void die draw(DCtx *ctx, const real32 t x, const real32 t y, const
— real32 t width, const real32 t height, const real32 t padding,
— const real32 t corner, const real32 t radius, const uint32 t face)

color t white = color rgb (255, 255, 255);
color t black = color rgb(0, 0, 0);
real32 t dsize, dx, dy;

real32 t rc, rr;

real32 t pl, p2, p3;

dsize = width < height ? width : height;
dsize -= bmath floorf(2.f * dsize * padding * i MAX PADDING) ;
dx = x + .5f * (width - dsize);

dy = y + .5f * (height - dsize);
dsize * (.1f + .3f * corner);

rc
rr dsize * (.05f +
pl = 0.5f * dsize;
p2 = 0.2f * dsize;
p3 = 0.8f * dsize;

.1f * radius);

draw fill color(ctx, white);
draw_rndrect (ctx, ekFILL, dx,
draw_fill color(ctx, black);

if (face == 1 || face
draw circle (ctx,

if (face != 1)

{
draw _circle (ctx,
draw _circle (ctx,

if (face == || face
{
draw _circle (ctx,
draw _circle (ctx,

if (face == 06)

{
draw_circle (ctx,
draw _circle (ctx,

== 3 ||
ekFILL,

ekFILL,

ekFILL, dx + p2,

ekFILL,
ekFILL,

ekFILL,
ekFILL,

dy, dsize,

face == 5)

dx + pl, dy
dx + p3, dy
dy

face == 0)

dx + p2, dy
dx + p3, dy
dx + p2, dy
dx + p3, dy

dsize,

rc)

rr);

rr);
rr);

rr);
rr);

rr);
rr);

23.5 - Resizing 453

’

The drawing commands are reflected on a canvas, also known as context DCtx. This
object reaches to i OnDraw as parameter of the event EvDraw. In this case, the canvas
is provided by the view control itself, but it is also possible to create contexts to draw

directly in memory.

23.5. Resizing

In this application, the window can be resized by stretching the cursor over its edges,
which is common in desktop programs. Let’s see some basic aspects about this feature
not present in “Hello World!” (page 23), which had a static window. The first thing is to
enable the option inside the window’s constructor.

window create (ekWINDOW STDRES,

&panel)

’

When a window changes in size, the inner controls should do so proportionally as well

454 Chapter 23 - Die

as change its location within the panel. This management is carried out within each
Layout object. When the window starts, the default size of each layout is calculated by
applying the natural sizing, which is the result of the initial size of the controls plus
the margins, as we saw in “Layout format” (page 29). When we stretch or contract the
window, the pixel difference between natural and real dimensioning is distributed between
the columns of the layout (Figure 23.7). The same happens with the vertical difference,
which is distributed among its rows. If a cell contains a sublayout, this increment will be
recursively distributed by its own columns and rows.

Figure 23.7: When resizing, the excess of pixels is distributed pro-
portionally by the rows and columns of the LLayout.

But in this particular case, we want the whole increment to go to the drawing area
(column 0). In other words, we want the column of the controls to remain fixed and not
grow (Figure 23.8). For this we must change the proportion of the resized:

layout hexpand(layout, 0);

With this function 100% of the horizontal surplus will go to column 0. By default, they
had a proportion of (50%, 50%) since they are two columns (33% for three, 25% for four,
etc). With this we would have resolved the resizing for the X dimension of the window,
but what happens with the vertical? In the main layout, we only have one row that, when
expanded, will change the height of the custom view. But this expansion will also affect the

23.6 - Use of resources 455

cell on the right, where the controls will also grow vertically due to the recursive increase
of pixels in the sublayout rows. To solve it, we force the vertical alignment ekTOP in the
right cell of the layout.

layout valign(layout, 1, 0, ekTOP);

instead of ekJUSTIFY, which is the default alignment for sublayouts. In this way, the
content of the cell (the entire sublayout) will not expand vertically, but it will adjust to
the upper edge leaving all the free space in the lower part of the cell. Obviously, if we use
ekCENTER or ekBOTTOM, the sublayout will center or adjust to the bottom edge.

& Die Simulator - (m} X
Language == English v
Face Five v
Padding [|
e
Corner '
Radius '
= Move the sliders to change
’ the parametric
representation of the die
face.
& Die Simulator - [} X
Language == English v
Face Five v
Padding [|
Corner '
Radius '
= Move the sliders to change
’ the parametric
representation of the die
face.

Figure 23.8: Playing with the horizontal ratio and vertical align-
ment, only the drawing area will be affected by the size changes.

23.6. Use of resources

Both the text and the icons that we have used in Die have been outsourced in the
resource package all. Thanks to this, we can perform an automatic translation of the
interface between the English and Spanish languages. You can check “Resources” (page 99)

456 Chapter 23 - Die

to get detailed information on how text and images have been assigned in the program

interface.

Listing 23.6: demo/die/res/res_ die/strings.msg

/* Die strings
TEXT FACE
TEXT PADDING
TEXT CORNER
TEXT RADIUS
TEXT ONE
TEXT TWO
TEXT THREE
TEXT FOUR
TEXT FIVE
TEXT SIX
TEXT TITLE
TEXT INFO

27

Face

Padding
Corner

Radius

One

Two

Three

Four

Five

Six

Die Simulator
Move the sliders to change the parametric representation of the

— die face.

TEXT_ LANG
TEXT ENGLISH
TEXT SPANISH

Language
English
Spanish

Listing 23.7: demo/die/res/res_die/es_es/strings.msg

/* Die strings
TEXT FACE
TEXT PADDING
TEXT CORNER
TEXT RADIUS
TEXT ONE
TEXT TWO
TEXT THREE
TEXT FOUR
TEXT FIVE
TEXT SIX
TEXT TITLE
TEXT INFO

— la cara
TEXT LANG
TEXT ENGLISH
TEXT SPANISH

27

Cara

Margen

Borde

Radio

Uno

Dos

Tres

Cuatro

Cinco

Seis

Simulador de dado
Mueve los sliders para cambiar la representacidén paramétrica de
del dado.

Idioma

Inglés

Espafiol

23.7. Die and Dice

This application has been used as a guiding thread of the “Create new application”

(page 71) chapter and following from the NAppGUI tutorial.

The complete example

consists of two applications (Die and Dice), as well as the casino library that groups the

23.8 - The complete Die program 457

common routines for both programs (Figure 23.9). You have the three complete projects
ready to compile and test in the folder src/demo of SDK distribution.

S - <
Y
e o o/06 ©
& Die Simulator - o X .
Language E= English S . . . ‘ .
Face Five v *: # #
Padding] . ‘ .
Corner]
Radius ® ® L ®
LN Move the sliders to change [) [) [)
k=1 A
face. v

L .
i Common routines !

Figure 23.9: Common routines for both applications are shared
through the casino library.

23.8. The complete Die program

Listing 23.8: demo/die/die.hxx

/* Die Types */

#ifndef DIE HXX
#define DIE HXX

#include <gui/gui.hxx>
typedef struct app t App;

struct app t
{

real32 t
real32 t
real32 t
uint32 t

padding;
corner;
radius;
face;

View *view;

458 Chapter 23 - Die

Window *window;

}i

#endif

Listing 23.9: demo/die/main.c

/* Die application */

#include "dgui.h"
#include <nappgui.h>

static void i OnClose(App *app, Event *e)
{

osapp_ finish();

unref (app) ;

unref (e);

static App *i create(void)
{
App *app = heap new((App) ;
app->padding = 0.2f;
app->corner = 0.1f;
app->radius 0.5f;
app->face = 5;
app->window dgui_ window (app) ;
window origin (app->window, v2df(200.f, 200.f));
window OnClose (app->window, listener (app, i1 OnClose, App)):;
window show (app->window) ;
return app;

o

static void i destroy(App **app)

{
window destroy (& (*app)->window) ;
heap delete (app, App):

#include <osapp/osmain.h>
osmain (i create, i destroy, "", App)

Listing 23.10: demo/die/dgui.c

23.8 - The complete Die program 459

/* Die Gui */

#include "dgui.h"
#include "res die.h"
#include <casino/ddraw.h>
#include <gui/guiall.h>

static void i OnDraw (App *app, Event *e)
{
color t green = color rgb(102, 153, 26);
const EvDraw *params = event params (e, EvDraw);
draw clear (params->ctx, green);
die draw(params->ctx, 0, 0, params->width, params->height, app->padding,
— app->corner, app->radius, app->face);

static void i OnAcceptFocus (App *app, Event *e)
{

bool t *r = event result(e, bool t);

unref (app) ;

*r = FALSE;

static void i OnFace (App *app, Event *e)

{
const EvButton *params = event params (e, EvButton);
app->face = params->index + 1;
view update (app->view);

static void i OnPadding (App *app, Event *e)

{
const EvSlider *params = event params (e, EvSlider);
app->padding = params->pos;
view update (app->view);

static void i OnCorner (App *app, Event *e)

{
const EvSlider *params = event params (e, EvSlider);
app->corner = params->pos;

460 Chapter 23 - Die

view update (app->view);

static void i OnRadius (App *app, Event *e)

{
const EvSlider *params = event params (e, EvSlider);
app->radius = params->pos;
view update (app->view);

static void i OnLang (App *app, Event *e)
{
const EvButton *params = event params (e, EvButton);
const char t *lang = params->index == 0 ? "en us" : "es es";
gui language (lang);
unref (app) ;

static Panel *i panel (App *app)
{
Panel *panel = panel create();
Layout *layout = layout create(2, 1);
Layout *layoutl = layout create(2, 6);
View *view = view create();
Label *labell = label create();
Label *label2 = label create();
Label *label3 = label create();
Label *label4 = label create();
Label *label5 = label create();
Label *label6 = label create();
PopUp *popupl = popup create();
PopUp *popup2 = popup create();

Slider *sliderl = slider create();
Slider *slider2 = slider create();
Slider *slider3 = slider create();
ImageView *img = imageview create();

app->view = view;

view size(view, s2df (200, 200)):;

view OnDraw(view, listener (app, i _OnDraw, App)):;

view OnAcceptFocus (view, listener (app, i OnAcceptFocus, App)):;
label text (labell, TEXT_ LANG) ;

label text(label2, TEXT FACE);

label text(label3, TEXT PADDING) ;

label text (label4, TEXT CORNER);

label text (label5, TEXT RADIUS);

23.8 - The complete Die program 461

label text(label6, TEXT INFO);

label multiline (label6,
popup add elem(popupl,
popup_add elem(popupl,
popup OnSelect (popupl,
popup_add elem(popup2,
popup_add elem(popup2,
popup add elem(popup2,
popup_add elem(popup2,
popup_add elem(popup2,
popup add elem(popup2,
popup_OnSelect (popup2,
popup_selected (popup2,
slider value(sliderl,

slider value(slider2,

slider value(slider3,

TRUE) ;
TEXT ENGLISH, gui_image(USA_PNG));
TEXT SPANISH, gui_image(SPAIN_PNG));
listener (app, i OnlLang, App)):;
TEXT ONE, NULL);
TEXT TWO, NULL);
TEXT THREE, NULL) ;
TEXT FOUR, NULL);
TEXT FIVE, NULL);
TEXT_SIX, NULL) ;

listener (app, i_OnFace, App));
app->face - 1);

app->padding) ;
app->corner) ;
app->radius) ;

slider OnMoved(sliderl, listener (app, i_OnPadding, App)):;
slider OnMoved(slider2, listener (app, i_OnCorner, App));
slider OnMoved(slider3, listener (app, i OnRadius, App));
imageview image (img, cast const (CARDS PNG, Image));
layout view(layout, view, 0, 0);

layout label (layoutl, labell, 0, 0);
layout label (layoutl, label2, 0, 1);
layout label (layoutl, label3, 0, 2);
layout label (layoutl, label4, 0, 3);
layout label (layoutl, label5, 0, 4);

layout imageview (layoutl, img, 0, 5);
layout popup (layoutl, popupl, 1, 0);
layout popup (layoutl, popup2, 1, 1);

layout slider (layoutl, sliderl, 1, 2);

layout slider (layoutl, slider2, 1, 3);

layout slider(layoutl, slider3, 1, 4);

layout label (layoutl, labelo, 1, 5);

layout layout (layout, layoutl, 1, 0);

layout margin (layout,

layout hsize(layoutl, 1,

layout hmargin(layout,

layout hmargin(layoutl,
layout vmargin(layoutl,
layout vmargin(layoutl,
layout vmargin (layoutl,
layout vmargin(layoutl,
layout vmargin(layoutl,
layout hexpand (layout,

layout valign(layout, 1, O,
layout) ;

panel layout (panel,
return panel;

10);

150);
0, 10);
’ ’

14 ’

, 10)
0, 5)
0, 5)
1,)8
2, 5);
3, 9) 8
4, 5);

’ ’

ekTOP) ;

462 Chapter 23 - Die

Window *dgui window (App *app)

{
gui respack(res_die respack);
gui language("");

{
Panel *panel = i panel (app);
Window *window = window create (ekWINDOW STDRES) ;
window panel (window, panel);
window title(window, TEXT TITLE);
return window;

Listing 23.11: demo/die/dgui.h

/* Die Gui */

#include "die.hxx"

_ EXTERN C

Window *dgui window (App *app)

__END C

CHAPTER

Bricks

24.1 Bricks 463

24.1. Bricks

Briks is a very simplistic imitation of the Atari Breakout video game, which will
allow us to make an introduction to the world of “Synchronous applications” (page 419).
Any real-time application must be constantly updating whether or not the user intervenes.
The source code is in folder /src/demo/bricks of the SDK distribution.

o Use osmain sync to start a synchronous application, indicating an interval and
update callback function. NAppGUI will periodically launch time events that will
update the program.

This application is managed by two events (Figure 24.2). On the one hand the slider
movement, which can occur at any time (asynchronous event), and will update the player
position. On the other a synchronous event produced by osmain sync every 40 mil-
liseconds and will be notified through i update () to update the game state and graphic
view.

Listing 24.1: demo/bricks/bricks.c

/* Simplistic Breakout-like game */
#include <nappgui.h>
#define NUM BRICKS 40

typedef struct brick t Brick;
typedef struct app t App;

464 Chapter 2/ - Bricks

&) Bricks- A2D Game — | e ®

Bricks - A 2D Game

v é ® U

Use the siider! Use the slider! Use the slider!

Start Stark

Figure 24.1: Bricks video game on Windows, macOS and Linux.

i_OnSlider()

T i OnDraw()

Figure 24.2: Synchronous and .
asynchronous events. I_u pd ate()

struct brick t

{
real32 t x;
real32 t y;
uint8 t color;
bool t is visible;

}i

struct app t

{
bool_t is_running;
Brick bricks[NUM BRICKS];
color t color([4];

2/.1

real32 t brick width;
real32 t player pos;
real32_t ball x;
real32 t ball y;

V2Df ball dir;
real32_t ball_ speed;
Cell *button;

Slider *slider;

View *view;

Window *window;

- Bricks 465

e e e e e O O e * /
static const real32 t i BALL RADIUS = .03f;
static const real32 t i BRICK HEIGHT = .03f;
static const real32 t i BRICK SEPARATION = .005f;
static const uint32 t i BRICKS_PER ROW = 10;
static const uint32 t i NUM ROWS = 4;
/* ___ */
static void i OnDraw (App *app, Event *e)
{
const EvDraw *params = event params (e, EvDraw);
uint32 t i = 0;
draw clear (params->ctx, color rgb (102, 153, 26));
draw_line color (params->ctx, kCOLOR BLACK) ;
for (i = 0; i < NUM BRICKS; ++i)
{
if (app->bricks[i].is visible == TRUE)
{
real32 t x = app->bricks[i].x * params->width;
real32 t y = app->bricks[i].y * params->height;
real32 t width = app->brick width * params->width;
real32 t height = i BRICK HEIGHT * params->height;
draw fill color(params->ctx, app->color[app->bricks[i].color]);
draw rect (params->ctx, ekFILLSK, x, y, width, height);
}
}
{
real32 t x = (app->player pos - app->brick width) * params->width;
real32 t y = (1 - i BRICK HEIGHT - i BRICK SEPARATION) * params->height

— 7
real32 t width = 2 * app->brick width * params->width;
real32 t height = i BRICK HEIGHT * params->height;
draw_fill color (params->ctx, kCOLOR BLACK) ;
draw_rect (params->ctx, ekFILL, x, y, width, height);

466 Chapter 24 - Bricks

real32 t x =
real32 t y
real32 t rad =
draw fill color (params->ctx,
draw_circle(params->ctx, ekFILL, x,

static void i OnSlider (App *app, Event *e)

{
const EvSlider *params = event params (e,
app->player pos = params->pos;

static void i OnStart (App *app, Event *e)
{

unref (e);

app->is running = TRUE;

cell enabled(app->button, FALSE);

static Panel *i panel (App *app)

{
Panel *panel = panel create();
Layout *layout = layout create(1l,
View *view = view create();
Slider *slider = slider create();
Label *label = label create();
Button *button = button push();
view size(view, s2df (258, 344));
view OnDraw (view, listener (app,
slider OnMoved(slider, listener (app,
label text(label, "Use the slider!");
button text (button, "Start");
button OnClick(button, listener (app,
layout view(layout, view, 0, 0);
layout slider (layout, slider, 0, 1);
layout label (layout, label, 0, 2);
layout button(layout, button, 0, 3);
layout vexpand(layout, O0);
layout vmargin (layout, O,
layout vmargin (layout, 2,

4);

10) ;
10);

app->ball x * params->width;
app->ball y * params->height;

i BALL RADIUS * params->width;
kCOLOR WHITE) ;

y, rad);
________________________________ */
EvSlider);
________________________________ */
________________________________ */

i OnDraw, App));
i OnSlider, App));

i _OnStart, App));

24.1 - Bricks 467
layout margin(layout, 10);
panel layout (panel, layout);
app->view = view;
app->slider = slider;
app->button = layout cell (layout, 0, 3);
return panel;
}
/* ___ */
static void i init game (App *app)
{
real32 t hoffset;
Brick *brick = NULL;
uint32 t j, 1i;
app->color[0] = color rgb(255, 0, 0);
app->color[l] = color rgb(0, 255, 0);
app->color[2] = color rgb(0, 0, 255);
app->color[3] = color rgb(0, 255, 255);

hoffset =
brick =

app->is running =

app->brick width =
< 1 BRICK_ SEPARATION) /

for

{

(3 = 0;

real32 t woffset =

for (1 = 0;

{

brick->x =
brick->y =
brick->is visible =
brick->color =

i_BRICK_SEPARATION;
app->bricks;

FALSE;

(1 - ((real32 t)i BRICKS PER ROW + 1) *

(real32 t)i BRICKS_PER ROW;

j < i NUM ROWS; ++3)

i BRICK SEPARATION;

i < i BRICKS_PER ROW; ++i)

woffset;
hoffset;
TRUE;
(uint8 t)j;

woffset += app->brick width + i BRICK SEPARATION;

brick++;

hoffset += i BRICK HEIGHT + i BRICK SEPARATION;

app->player pos =
app->ball x = .5f;
app->ball y = .5f;
app->ball dir.x =
app->ball dir.y =
app->ball speed =

slider get value(app->slider);

.3f;
-.1f;
.6f;

468 Chapter 24 - Bricks

v2d normf (&app->ball dir);

static void i OnClose (App *app, Event *e)

{

osapp_ finish();
unref (app) ;
unref (e) ;

static App *i create(void)

{

App *app = heap_newO (App) ;

Panel *panel = i panel (app);

app->window = window create (ekWINDOW STDRES) ;
window panel (app->window, panel);

window origin (app->window, v2df (200, 200));
window title (app->window, "Bricks - A 2D Game");

window OnClose (app->window, listener (app, i1 OnClose, App)):;

window show (app->window) ;
i init_game (app);
return app;

static void i destroy(App **app)

{

window destroy (& (*app) ->window) ;
heap delete (app, App):;

static bool t i collision(Brick *brick, real32 t brick width,

{

— real32 t ball y)

if (ball x + i BALL RADIUS < brick->x)
return FALSE;

if (ball x - i BALL RADIUS > brick->x + brick width)
return FALSE;

if (ball y + i BALL RADIUS < brick->y)
return FALSE;

if (ball y - i BALL RADIUS > brick->y + i BRICK HEIGHT)
return FALSE;

return TRUE;

real32 t ball x,

static void i update (App *app, const real64 t prtime, const real6d4d t ctime)

{

if

{

(app->is_running == TRUE)

24.1 - Bricks

real32 t step = (real32 t) (ctime - prtime);

bool t collide;
uint32 t i;

/* Update ball position */

app->ball x += step * app->ball speed * app->ball dir.x;
app->ball y += step * app->ball speed * app->ball dir.y;

/* Collision with limits */
if (app->ball x + i BALL RADIUS >= 1.
app->ball dir.x = -app->ball dir.

if (app->ball x - i BALL RADIUS <= 0.
app->ball dir.x = -app->ball dir.

if (app->ball y - i BALL RADIUS <= 0.
app->ball dir.y = -app->ball dir.

/* Collision with bricks */
collide = FALSE;
for (i = 0; i < NUM BRICKS; ++i)
{
if (app->bricks[i].is visible ==
{
if (i _collision(&app->bricks]|
— app->ball y) == TRUE)

app->bricks[i].is visible
if (collide == FALSE)
{

f && app->ball dir.x >= 0.f)
Xy

f && app->ball dir.x <= 0.f)
Xy

f && app->ball dir.y <= 0.f)
vy

TRUE)

469

i], app->brick width, app->ball x,

= FALSE;

real32 t brick x = app->bricks[i].x + .5f * app->

— brick width;
app->ball dir.x = 5.f

* (app->ball x - brick x);

app->ball dir.y = -app->ball dir.y;
v2d normf (&app->ball dir);

collide = TRUE;

/* Collision with player */
{
Brick player;

470 Chapter 24 - Bricks

player.x = app->player pos - app->brick width;
player.y = 1.f - i BRICK HEIGHT - i BRICK SEPARATION;

if (i_collision(&player,

— ball_y)
{

app->ball dir.x = 5.f *
app->ball dir.y = -app->ball dir.y;

== TRUE)

2.f * app->brick width, app->ball x,

v2d normf (&app->ball dir);

/* Game Over */

if (app->ball y + i BALL RADIUS >= 1.f)

{

i init game (app) ;

cell enabled(app->button,

view update (app->view);

#include <osapp/osmain.h>
osmain sync (.04, i create,

i destroy,

TRUE) ;

i update,

nn
4

(app->ball x - app->player pos);

App)

app->

CHAPTER

Fractals

25.1 Fractals 471

25.1. Fractals

In this application we create an procedural image by calculating the color of each pixel
using fractal algorithms (Figure 25.1). Some of the most fascinating results produced by a
dynamic system occur when we iterate a complex variable function instead of a real one.
This is the case of Julia’s sets. The source code is in folder /src/demo/fractals of
the SDK distribution.

O Fractals - X [] Fractals
PiFormat RGBAIZ v] PixFormat: | RGBA32 o

Threads: 1 © @vertOHotz 31,265 milliseconds Threads: 8 ® Vert ([Hotz 29.507 milliseconds

Figure 25.1: Fractals application Windows and macOS version.

472 Chapter 25 - Fractals

PixFormat: | RGBA32 ¥ PixFormat: | RGBA32 v

Threads: 2 w | O Vvert’ ' Hotz 20,832 milliseconds Threads: 8 v (®)Vert Hotz 76,259 milliseconds

Figure 25.2: Ubuntu and Raspbian version.

Due to the large computational load of this algorithm we have divided the calcula-
tion into several threads (Figure 25.3). This problem is easily parallelizable simply by
fractioning the image, because each pixel is obtained independently.

Figure 25.3: Collaboration of sev-
eral threads. I_JU|Ia()

Listing 25.1: demo/fractals/fractals.c

25.1 - Fractals

473

/* Multi-threaded fractals */

#include <nappgui.h>

typedef struct app t App;
typedef struct thdata t ThData;

struct _app t

{

}i

Window *window;
ImageView *view;
Label *time label;
Clock *clock;
uint32_t threads;
bool t vertical;
real64d t fct;

struct thdata t

{

}i

realed t fct;
real64 t kreal;
real64 t kimag;
Pixbuf *pixbuf;
uint32 t i;
uint32 t j;
uint32 t width;
uint32 t height;

static const real64 t i FCT = 2.85;
static const uint32 t i ITERATIONS = 512;
static const uint32 t i WIDTH = 601;
static const uint32 t i HEIGHT = 601;

static uint32 t i inset(real64 t zreal, real64 t zimag,

— real64 t cimag)

uint32 t i;
for (i = 0; 1 < i ITERATIONS; ++1i)
{

real64 t ztmp, zdist;

ztmp = zreal * zreal - zimag * zimag;
zimag = zreal * zimag + zreal * zimag;
zreal = ztmp;

zreal = zreal + creal;

zimag = zimag + cimag;

zdist = zimag * zimag + zreal * zreal;

real64 t creal,

474 Chapter 25 - Fractals

if |

return 0

zdist > 3)
return i;

’

static uint32 t i julia thread(ThData *data)

{

real64d t
uint32 t
real64d t
real64d t
realoed t
real64d t
uint32 t
realoed t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

for (j =
{

cima

for

{

fct = data->fct;

imgwidth = pixbuf width (data->pixbuf);
freal = fct / imgwidth;

fimag fct / pixbuf height (data->pixbuf) ;
kreal data->kreal;

kimag data->kimag;

val;

creal, cimag;

stj = data->3j;

edj = data->j + data->height;

sti = data->i;

edi = data->i + data->width;

i, J;

stj; j < edj; ++3)
g = fimag * j - (fct / 2);
(1 = sti; i < edi; ++i)

creal = freal * 1 - (fct / 2);
val = i inset(creal, cimag, kreal, kimag):;
if (val > 0)
{
uint8 t n val = (uint8 t) (val % 255);
if (val < (i_ITERATIONS >> 1))
val = color rgb((uint8 t) (n val << 2), (uint8 t) (n_val <<
— 3), (uint8 t) (n_val << 4));
else
val = color rgb((uint8 t) (n val << 4), (uint8 t) (n _val <<
— 2), (uint8 t) (n_val << 5));
}
else

{
val = kCOLOR BLACK;

pixbuf set(data->pixbuf, i, j, wval);

25.1 - Practals 475

return 5;

static void i julia(const uint32 t nthreads, const bool t vertical, const
— real64 t fct, const real64 t kreal, const real64 t kimag, Pixbuf *pixbuf
=)

ThData datal[8];
uint32 t width = pixbuf width (pixbuf);
uint32 t height = pixbuf height (pixbuf);
data[0].fct = fct;
datal0] .kreal kreal;
datal0] .kimag = kimag;

[

datal[0] .pixbuf = pixbuf;
if (nthreads == 1)
{
data[0].i = 0;
datal0].j = 0;
data[0] .width = width;
data[0] .height = height;
i julia thread(&data([0]);
}
else

Thread *thread[8];

uint32 t i;
if (vertical == TRUE)
{
uint32 t twidth = width / nthreads;
for (1 = 0; 1 < nthreads; ++i)
{
data[i] = data[0];
data[i].i = 1 * twidth;
datali]l.j = 0;
data[i] .width = twidth;
data[i] .height = height;

data[nthreads - 1].width += (width - (twidth * nthreads));
}
else
{

uint32 t theight = height / nthreads;

for (1 = 0; 1 < nthreads; ++1i)

{

data[i] = datal0];

476 Chapter 25 - Fractals

datal[i].i = 0;

datali]l.j = i1 * theight;
data[i] .width = width;
data[i] .height = theight;

data[nthreads - 1].height += (height -

for (i = i < nthreads; ++i)
]

for (1 = 0; i < nthreads; ++1)

(theight * nthreads));

= bthread create(i julia thread, &data[i], ThData);

uint32 t thid = bthread wait (thread[i]);

cassert unref (thid == 5, thid);
bthread close(&thread[i]);

static void i image (App *app)
{

Pixbuf *pixbuf = pixbuf create(i WIDTH, i HEIGHT, ekRGBA32);

real64 t rfactor = app->fct / i WIDTH;
real64 t ifactor = app->fct / i HEIGHT;
real64 t kreal = rfactor * 307 - 2;

real64 t kimag = ifactor * 184 - 1.4;

Image *image = NULL;

real6d t timems;

String *str;

clock reset (app->clock);

i julia(app->threads, app->vertical, app->fct,
timems = 1000. * clock elapsed(app->clock);
str = str printf("%.3f milliseconds", timems);
label text (app->time label, tc(str));

str destroy (&str);

image = image from pixbuf (pixbuf, NULL);
imageview image (app->view, image);

image destroy(&image) ;

pixbuf destroy (&pixbuf);

static void i OnSlider (App *app, Event *e)

{
const EvSlider *p = event params(e, EvSlider);
real64 t st = i FCT - 1;

kreal, kimag, pixbuf);

static void i OnThreads (App *app, Event *e)

{

real6d4 t ed = i FCT + 1;

app->fct = ((ed
i image (app) s

const EvButton *p = event params (e,
(p—>index)

switch

{

case 0:
app->thread
break;

case 1:
app->thread
break;

case 2:
app->thread
break;

case 3:
app->thread
break;

case 4:
app->thread
break;

}

i image (app);

- st) * p->pos)

s = 1;

s = 2;

s = 3;

s = 4;

s = 8;

r Seg

EvButton) ;

static void i OnVertical (App *app, Event *e)

{

const EvButton *p = event params (e,

app->vertical =
i image (app);

p->index == 0 ? TRUE

static Panel *i panel (App *app)

{

Panel *panel =

Layout *layoutl =

Layout *layout2
Label *labell =
Label *label2 =
PopUp *popup =
Slider *slider

panel create();

layout create(l, 3);

= layout create(5, 1);

label create();
label create();
popup_create();

= slider create();

EvButton) ;

FALSE;

25.1 - Fractals

477

478 Chapter 25 - Fractals

Button *buttonl =
Button *button2 =
ImageView *view =
label text(labell,

button radio();

button radio();

imageview create();
"Threads:") ;

popup add elem(popup,
popup add elem(popup,
popup add elem(popup,
popup add elem(popup,
popup add elem(popup,
popup selected (popup,
popup OnSelect (popup,
slider value(slider,
slider OnMoved(slider,

"1", NULL);

"on NULL) ;

3" NULL) ;

"4n NULL) ;

"g", NULL) ;

0);

listener (app, i OnThreads, App)):;

o SIE)) §

listener (app, i OnSlider, App)):

button text (buttonl, "Vert");

button text (button2, "Hotz");

button state(buttonl, ekGUI ON);

button OnClick(buttonl, listener (app, i _OnVertical, App)):;
imageview size(view, s2di (i WIDTH, i HEIGHT));

layout slider (layoutl, slider, 0, 0);
layout label (layout2, labell, 0, 0);

layout popup (layout2, popup, 1, 0)
layout button(layout2, buttonl, 2, 0);
layout button(layout2, button2, 3, 0);
layout label (layout2, label2, 4, 0);
layout halign(layout2, 4, 0, ekJUSTIFY);
layout hexpand(layout2, 4);

layout layout (layoutl, layout2, 0, 1);
layout imageview(layoutl, view, 0, 2);

’

layout vmargin(layoutl, 1, 5);
layout margin2(layout2, 0, 5);
layout hmargin(layout2, 0, 5);
layout hmargin(layout2, 1, 10);
layout hmargin(layout2, 2, 5);

layout hmargin(layout2, 3, 15);
panel layout (panel, layoutl);
app->fct = i FCT;

app->threads = 1;

app->vertical = TRUE;

app->view = view;

app->time label = label2;
return panel;

static void i OnClose(ARpp *app, Event *e)
{

osapp_finish();

unref (app) ;

unref (e);

25.1 - FPractals 479

static App *i create(void)
{
App *app = heap newO (App) ;
Panel *panel = i panel (app);
app->window = window create (ekWINDOW STD) ;
app->clock = clock create(0);
i image (app) ;
window panel (app->window, panel);
window title (app->window, "Fractals");
window origin (app->window, v2df (500, 200));
window OnClose (app->window, listener (app, i OnClose, App)):;
window show (app->window) ;
return app;

static void i destroy(App **app)

{
window destroy (& (*app) ->window) ;
clock destroy (& (*app)->clock);
heap delete (app, App):;

#include <osapp/osmain.h>
osmain (i create, i destroy, "", App)

480 Chapter 25 - Fractals

CHAPTER

Bode

26.1 Bode 481

26.1. Bode

In this project we approach the construction of an interactive user interface for Bode
Plots, a tool widely used in Control Engineering (Figure 26.1). The calculus module
has been written in C language by Javier Gil Chica', Phd of Physics Department of the
University of Alicante. The complete source code is available in folder /src/demo/bode
of the SDK distribution.

The main window has been divided vertically into two parts, using a layout (2, 1)
(Figure 26.4). On the left side we have the parameters P, Q, T, R and some buttons.
Sublayouts have been used i coeffs(4,9) and i ranges(3,3) to group controls. In
the right area are two View drawing controls for graphics and other sublayout i sliders
(3,3) with the parameters I, p, D.

The horizontal resizing is done entirely on the right cell (graphs and sliders), keeping
the parameter area a constant horizontal size. During the vertical resizing the graphs will
grow with a proportion of 50% each. For the left part, an empty cell has been reserved,
which will expand horizontally, aligning the button [More Info] to the bottom edge of
the window.

Listing 26.1: demo/bode/bdview.c

/* Bode View */

#include "bdview.h"

1 . .
mailto:francisco.gil@ua.es

mailto:francisco.gil@ua.es

482 Chapter 26 - Bode

&) Bode plot - m] x

SnapShot
Take

Restore
Clear

Slider Range

More info D '

20.00

-1.00
0.00 - _ go0858

1.00
-2.00
-6.00

0.00

0.00

1000 R
Reset defaults

SnapShot

Slider Range
I 0.00 10.00

1.00 10.00
0.00 10.00

More info

Figure 26.2: macOS version.

#include "bdctrl.h"
#include <gui/guiall.h>

static const real32 t kEDIT WIDTH = 60;

26.1 - Bode 483

Bode plot X

plo] (100,00 | P11 100]

p2][1,00 P31 o00]

pl4][o000)

100 | Q@][1,00]

[200 op][600]

0,00 | o[7][000]

]
]
Q[800 Qrsl[o00)
]
]

0,00 |

T [1000] R [000]
Reset defaults

SnapShot
Take

Restore
Clear

slider Range
1 [000][1000]

P| 100/ 10,00 | y [as5)

o[oo0][1000 o . [805]

More info D (1,06‘

Figure 26.3: Ubuntu version.

layout(1,2)

i_coeffs

(4.9) view1

vexpand 50%

view?2

i_ranges

vexpand 50%
(3.3)

vexpand
100%

i_sliders(3,3)
1

hexpand 100%

Figure 26.4: Bode user interface distribution.

484 Chapter 26 - Bode

static Cell *i coeff (Layout *layout, const char t *text, const uint32 t col,
— const uint32 t row)

{
Label *label = label create();
Edit *edit = edit create();
label text(label, text);
edit align(edit, ekRIGHT);
layout halign(layout, col * 2, row, ekCENTER):;
layout label (layout, label, col * 2, row);
layout edit(layout, edit, col * 2 + 1, row);
return layout cell(layout, col * 2 + 1, row);

static Layout *i coeffs(void)

{

, 0), Params, real32 t,
, 0), Params, real32 t,
, 1), Params, real32 t,
, 1), Params, real32 t,
, 2), Params, real32 t,
, 3), Params, real32 t,

Layout *layout = layout create(4, 9)

cell dbind(i coeff (layout, "P[O]", O

cell dbind (i coeff (layout, "P[1]", 1

cell dbind(i_coeff (layout, "P[2]", O

cell dbind(i coeff (layout, "P[3]", 1

cell dbind (i coeff (layout, "P[4]", O

cell dbind(i_coeff (layout, "Q[O]", O
cell dbind(i coeff (layout, "Q[1]", 1, 3), Params, real32 t,
cell dbind(i coeff (layout, "Q[2]", O, 4), Params, real32 t,
cell dbind(i_coeff (layout, "Q[3]", 1, 4), Params, real32 t,

(0

(1

(0

(1

(0

(8

8

)

)

Ne Ne Ne Ne Ne Ne Ne o Ne N

~e

cell dbind(i coeff (layout, "Q[4]", , 5), Params, real32 t,
cell dbind(i coeff (layout, "Q[5]", , 5), Params, real32 t,
cell dbind(i_coeff (layout, "Q[6]", , 6), Params, real32 t,
cell dbind (i coeff (layout, "Q[7]", , 6), Params, real32 t,
cell dbind(i coeff (layout, "Q[8]",

cell dbind(i_coeff (layout, "T", O,

cell dbind(i coeff (layout, "R", 1,

layout hsize(layout, 1, kEDIT WIDTH
layout hsize(layout, 3, kEDIT WIDTH
layout vmargin(layout,
layout vmargin(layout,
layout vmargin(layout,
layout vmargin(layout,
layout vmargin(layout,

~e N

~e

COOIOOOOO YT T T
DU a e N OE WD Ao

, 1), Params, real32 t,
), Params, real32 t, T);
), Params, real32 t, R);

~e

’

’

0, 5);
(1, 5);
(2, 10);
(3, 5);
(4, 5);
layout vmargin (layout, 5, 5);
layout vmargin (layout, 6
layout vmargin(layout, 7
layout hmargin(layout, 1
layout hmargin(layout, O
layout hmargin(layout, 2
return layout;

static void i range (Layout *layout, const char t *text, const uint32 t i)

{
Label *label = label create();
Edit *editl = edit create();
Edit *edit2 = edit create();
label text(label, text);
edit align(editl, ekRIGHT);
edit align(edit2, ekRIGHT);
layout label (layout, label, 0, i);
layout edit(layout, editl, 1, 1i);
layout edit (layout, edit2, 2, 1i);

static Layout *i ranges (void)
{
Layout *layout = layout create(3, 3);
i range(layout, "I", 0);
i range(layout, "P", 1);
i range (layout, "D", 2);
layout hsize(layout, 1, kEDIT WIDTH);
layout hsize(layout, 2, kEDIT WIDTH);
layout vmargin (layout, 0, 5);
layout vmargin (layout, 1, 5);
layout hmargin(layout, 0, 5);
layout hmargin (layout, 1, 5);
cell dbind(layout cell (layout,
cell dbind(layout cell (layout,
cell dbind(layout cell (layout,
cell dbind(layout cell (layout,
((
(

~

NEFENEDNE
~
NN PR P OO

~
~ 0~

~
~

cell dbind(layout cell (layout,
cell dbind(layout cell (layout,
return layout;

~ 0~
~ 0~ 0~

static Layout *i left (Ctrl *ctrl)

{
Layout *layout = layout create(l, 10);
Layout *layoutl = i coeffs();
Button *button = button push();
Label *label = label create();
Button *button2 = button push();
Button *button3 = button push();
Button *button4 = button push();
Label *label2 = label create();
Layout *layout2 = i ranges();
Button *buttonb5 button push () ;

Params,
Params,
Params,
Params,
Params,
Params,

real32 t,
real32 t,
real32 t,
real32 t,
real32 t,
real32 t,

26.1 - Bode

485

486 Chapter 26 - Bode

button text (button, "Reset defaults");
button text (button2, "Take");
button_text (button3, "Restore");
button text (button4, "Clear");
button text (button5, "More info");
label text (label, "SnapShot");

label text(label2, "Slider Range");
layout layout (layout, layoutl, 0, 0);
layout button (layout, button, 0, 1);
layout label (layout, label, 0, 2);
layout button(layout, button2, 0, 3);
layout button (layout, button3, 0, 4);
layout button(layout, button4, 0, 5);
layout label (layout, label2, 0, 6);
layout layout (layout, layout2, 0, 7);
layout button(layout, button5, 0, 9);
layout halign(layout, 0, 7, ekLEFT);
layout vmargin(layout, 0, 10);
layout vmargin(layout, 1, 10);

layout vmargin (layout, 2, 5);

layout vmargin(layout, 3, 5);

layout vmargin (layout, 4, 5);

layout vmargin(layout, 5, 10);

layout vmargin(layout, 6, 5);

layout vmargin(layout, 7, 10);

layout vexpand(layout, 8);

ctrl reset(ctrl, button);

ctrl take(ctrl, layout cell (layout, 0, 3));
ctrl restore(ctrl, layout cell (layout, 0, 4));
ctrl clear(ctrl, layout cell(layout, 0, 5));
ctrl info(ctrl, buttonb);

return layout;

static void i slider K(Layout *layout, const char t *title, const uint32 t row)

{

Label *label = label create();

Slider *slider = slider create();

Edit *edit = edit create();

label text(label, title);

edit align(edit, ekRIGHT);
layout label (layout, label, 0, row);
layout slider (layout, slider, 1, row);
layout edit (layout, edit, 2, row);

static Layout *i sliders (Ctrl *ctrl)

26.1 - Bode 487

Layout *layout = layout create(3, 3);
i slider K(layout, "I", 0);
i slider K(layout, "P", 1);
i slider K(layout, "D", 2);
layout hsize(layout, 2, kEDIT WIDTH);
layout vmargin(layout, O
layout vmargin(layout, 1, 5
layout hmargin(layout, 0
layout hmargin (layout, 1,
layout hexpand(layout, 1);
cell dbind(layout cell (layout,
cell dbind(layout cell (layout,
cell dbind(layout cell (layout,
((
((

1 01);
2
1
cell dbind(layout cell (layout, 2,
1
2
1

01)-
11);
11);
2]1);
21);

, 0), Params, real32 t,
, 0), Params, real32 t,
, 1), Params, real32 t,

1), Params, real32 t,
cell dbind(layout cell (layout, , 2), Params, real32 t,
cell dbind(layout cell (layout, , 2), Params, real32 t,
ctrl sliderl(ctrl, layout cell (layout, 1, 0));

return layout;

AR R R R R

static Layout *i right(Ctrl *ctrl)

{
Layout *layout = layout create(l, 3);
Layout *layoutl = i sliders(ctrl);
View *viewl = view create();
View *view2 = view create();
layout view(layout, viewl, 0, 0);
layout view(layout, view2, 0, 1);
layout layout (layout, layoutl, 0, 2);
layout vmargin(layout, 0, 2);
layout vmargin (layout, 1, 5);
layout vexpand2(layout, 0, 1, .5f);
ctrl viewl(ctrl, viewl);
ctrl view2(ctrl, view2);
return layout;

static Panel *i panel (Ctrl *ctrl)

{
Panel *panel = panel create();
Layout *layout = layout create(2, 1);
Layout *layoutl i left(ctrl);
Layout *layout2 = i right(ctrl);
layout layout (layout, layoutl, 0, 0);
layout layout (layout, layout2, 1, 0);
layout hmargin (layout, 0, 5);

488 Chapter 26 - Bode

layout hexpand(layout, 1);

layout margin(layout, 10);

panel layout (panel, layout);

layout dbind(layoutl, NULL, Params);

layout dbind(layout2, NULL, Params);

cell dbind(layout cell (layout, 0, 0), Model, Params, cparams);

cell dbind(layout cell (layout, 1, 0), Model, Params, cparams);

layout dbind(layout, listener(ctrl, ctrl OnModelChange, Ctrl), Model);
ctrl layout(ctrl, layout);

return panel;

Window *bdview create (Ctrl *ctrl)
{
Panel *panel = i_panel(ctrl);
Window *window = window create (ekWINDOW STDRES) ;
window panel (window, panel);
window title(window, "Bode plot");
return window;

CHAPTER

Products

27.1 Products
27.2 Specifications
27.3 Model-View-Controller
27.4 Model
27.4.1 JSON WebServices
27.4.2 Write/Read on disk
27.4.3 Add/Delete records
27.5 View
27.5.1 Multi-layout panel
27.5.2 Hide columns
27.5.3 Bar graphs
27.5.4 Translations
27.5.5 Dark Mode themes
27.6 Controller
27.6.1 Multi-threaded login
27.6.2 Synchronize Model and View
27.6.3 Change the image
27.6.4 Memory management

27.7 The complete program

27.1. Products

In this project we will face the construction of an application that allows browsing
through a database of products obtained from a Web server (Figure 27.1). This client-
server pattern is widely used today, so we will have a stable base to create any application

489
491
492
492
493
495
496
497
498
499
500
501
502
503
504
505
507
508
509

490 Chapter 27 - Products

based on this model. The source code is in folder /src/demo/products of the SDK
distribution.

C} Products

File Navigate Wiew Server Language Help

“HP» OO
U

Search, w o

Code e
[Gas00 | Brian Murphy
brian@nappgui.com

Description

Intel CPU BXB0662G3900 Celeron

G3900 2.80Ghz 2M LGA1151 2C/2T I I

Skylake Retail o

10.14

Type Price
@cPU OGPU OHDD (OSCD ‘ 46.00 € | ELogout

) Data has been downloaded correctly.

Figure 27.1: Application Products, Windows version.

“«“dPD»r®Ee

Code

ETB—FireCudai Amanda Callister

amanda@nappgui.com
Description

Seagate 2TB FireCuda Gaming
SSHD (Solid State Hybrid
Drive) - 7200 RPM SATA 6Gb/s
64MB Cache 3.5-Inch Hard
Drive (ST2000DX002)

Type Price
CPU_ GPU '® HDD 100.00€ ¢

Data has been downloaded correctly.

Figure 27.2: macOS version.

27.2 - Specifications 491

Products

File Navigate View Server Language Help

44 H H [2 2 e e (search... *|o |

Code [48/80]
2TB-FireCuda

John Krasinski
john@nappgui.com
Description

Seagate 2TB FireCuda
Gaming SSHD (Solid State
Hybrid Drive) - 7200 RPM
SATA 6Gb/s 64MB Cache 3.5-
Inch Hard Drive
(ST2000DX002)

Type) Fjrice
CPUC) GPUO HDD) SCD 99,00 € : 3 Logout

& Data has been downloaded correctly.

Figure 27.3: Linux/GTK+ version.

27.2. Specifications

o The database is remote and we will access it through Web services that will encap-
sulate the data in JSON. To obtain the products we will use this service! and to
register a user this other?. We have four users registered in our database: amanda,
brenda, brian and john all with password 1234.

o The remote database is read-only. We do not have web services to edit it.
o The moment a user registers, all articles will automatically be downloaded.
o A small graph with the sales statistics of each product will be displayed.

« You can edit the database locally, as well as add or delete records.

« You can export the local database to disk, as well as import it.

o We will have the typical navigation controls: First, last, next, previous.

« We can establish a filter by description. Only those products whose description
matches partially with the filter will be displayed.

o The interface will be in seven languages: English, Spanish, Portuguese, Italian, Viet-
namese, Russian and Japanese. We can change the language without closing the

1http: //serv.nappgui.com/dproducts.php
2http: //serv.nappgui.com/duser.php?user=amanda&pass=1234

http://serv.nappgui.com/dproducts.php
http://serv.nappgui.com/duser.php?user=amanda&pass=1234

492 Chapter 27 - Products

application.

o The application must run on Windows, macOS and Linux.

27.3. Model-View-Controller

Since this program has a medium level of complexity, we will fragment it into three
parts using the well-known pattern model-view-controller MVC (Figure 27.4).

:)«\

MVVM

\

)

T

Figure 27.4: MVC modules that make up the application.

e Model: It will deal with the data itself, the connection with the server and the
reading/writing on disk. It will be implemented in prmodel.c.

e View: Here we will implement the data presentation layer, composed of the main
window (in prview.c) and the menu bar (in prmenu.c).

o Controller: Will take care of the logic of the program prctrl.c. It will respond to
user events and maintain consistency between the model and the view. Due to the
amount of extra work involved in synchronizing each field of the structure with the
interface controls, we will use the pattern Model- View-ViewModel MV VM where
the model data will be automatically synchronized with the interface and the I/0
channels.

¢ Main: module products.c. It contains the function osmain and load the three
previous actors.

27.4. Model

The data model of this application is quite simple (Listing 27.1), since it only requires
manipulating an array of structures of type Product.

27.4 - Model 493

Listing 27.1: Structures that make up the data model.

typedef struct model t Model;
typedef struct product t Product;

typedef enum type t
{

ekCPU,

ekGPU,

ekHDD,

ekSCD
} type t;

struct product t

{
type t type;
String *code;
String *description;
Image *image64;
real32 t price;

}i

struct model t
{
ArrSt(uint32_t) *filter;
ArrPt (Product) *products;
bi

As a previous step, we will register the model structures which will allow us to automate
I/0 tasks without having to explicitly coding them thanks to “Data binding” (page 219)
(Listing 27.2).

Listing 27.2: Registration of data model struct fields.

dbind enum(type t, ekCPU);
dbind enum(type t, ekGPU);
dbind enum(type t, ekHDD)
dbind enum(type t, ekSCD);

dbind (Product, type t, type);

dbind (Product, String*, code);

dbind (Product, String*, description);
dbind (Product, Image*, image64);
dbind(Product, real32 t, price);

’

27.4.1. JSON WebServices

We will get the articles data from the Web server in two steps. On the one hand we
will download a Stream with the JSON using HTTP and, later, we will parse it to a C
object (Listing 27.3).

494 Chapter 27 - Products

Listing 27.3: JSON data download and processing.

wserv_t model webserv(Model *model)
{
Stream *stm = http dget ("serv.nappgui.com",80,"/dproducts.php",NULL) ;
if (stm != NULL)
{
PJson *json = json read(stm, NULL, PJson);
stm close (&stm);

The JSON of this web service® consists of a header and a list of products (Listing 27.4),
so we must register a new structure in order to json read can create the object correctly
(Listing 27.5). Note that JSON-C pairing is carried out by the field name, so these must
be identical (Figure 27.5).

Listing 27.4: Web service format.

"code":0,
"size":80,
"data": [
{"id":0,

"code":"i7-8700K",

"description":"Intel BX80684I78700K 8th Gen Core i7-8700K Processor",
type":0,

"price":374.8899999999999863575794734060764312744140625,

"image":"cpu 00.jpg",

"image64":"\/9j\/4AAQSkZJIRGABAQ. . ..

}I

Listing 27.5: JSON header registration.

typedef struct pjson t PJson;
struct pjson t
{
int32 t code;
uint32 t size;
ArrPt (Product) *data;
}i

dbind(PJson, int32 t, code);
dbind (PJson, uint32 t, size);
dbind (PJson, ArrPt (Product)*, data);

3http://serv.nappgui.com/dproducts.php

http://serv.nappgui.com/dproducts.php

27.4 - Model 495

struct PJSon dbind JSON
PJson {
int32 t codey— | code & « "code":0,
uint32 t sizep————[size & «” "size":80,
ArrPt(Product) *date’—«[data & & "data":[
; "id". ,
struct Product ¢ "code":"i7-8700K",
Product « "description":"Intel BX8068..
type t typey” & type - &5 F.yp‘?":?'
String *codey” [code - & price” :3'74 88999,
String *descriptiony-——|description |- ulmage :hepu 00.jpg"
Image *image64 ;- & [Image6d - & 1mage64 : \/9]\/4AAQSkZJR
real32 t pricep. & [price - v

b

Figure 27.5: json_ read access dbind registry to create a C object from a JSON stream.

27.4.2. Write/Read on disk

Serialization (Listing 27.6) and de-serialization (Listing 27.7) of objects using binary
streams can also be performed automatically simply by registering the data types (Fig-
ure 27.6). We do not need to explicitly program reading and writing class methods.

Listing 27.6: Export of the database to disk.

bool t model export (Model *model, const char t *pathname, ferror t *err)
{
Stream *stm = stm to file(pathname, err);
if (stm != NULL)
{
dbind write(stm, model->products, ArrPt (Product));
stm close (&stm) ;
return TRUE;
}

return FALSE;

Listing 27.7: Importing the database from disk.

bool t model import (Model *model, const char t *pathname, ferror t *err)
{
Stream *stm = stm from file(pathname, err);
if (stm != NULL)
{
ArrPt (Product) *products = dbind read(stm, ArrPt(Product)):;
stm close (&stm);

if (products != NULL)

{
dbind destroy (&model->products, ArrPt(Product));
model->products = products;

496 Chapter 27 - Products

return TRUE;

}

return FALSE;

struct Product dbind
{ Product
type t typey” &’ | type &
String *codey” | code Ook
String *descriptiong--¢?[description |-——e= >
Image *image64; - o [image6d 00{
real32 t pricep. -#|price &

Figure 27.6: (De)serialization of binary objects by dbind.

27.4.3. Add/Delete records

And finally we will see how to add or delete records to the database using the construc-
tors and destructors provided dbind by default. In (Listing 27.8) we create a new article
and in (Listing 27.9) we destroy another existing one from its index.

Listing 27.8: Default constructor.

void model add(Model *model)
{

Product *product = dbind create (Product);
arrpt append (model->products, product, Product);

Listing 27.9: Destructor.

static void i destroy(Product **product)
{

dbind destroy(product, Product);
}

void model delete(Model *model, const uint32 t index)
{
arrpt delete (model->products, index, i destroy, Product);

}

27.5 - View 497

27.5. View

We have fragmented the design of the main window into several blocks, each one im-
plemented in its own sublayout. In “Use of sublayouts” (page 448) and “Sub-layouts”
(page 374) you have examples about it. We start with a layout of a column and two rows
(Listing 27.10) (Figure 27.7). In the upper cell we will place a sublayout with two other
cells horizontally: one for the form and one for the login panel. The lower cell will be used
for the status bar.

Listing 27.10: Composition of the main layout.

static Layout *i layout (Ctrl *ctrl)

{
Layout *layout = layout create(l, 2);
Layout *layoutO layout create(2, 1);
Layout *layoutl i form(ctrl);
Layout *layout2 = i status bar(ctrl);
Panel *panell = i login panel(ctrl);
layout layout (layoutO, layoutl, 0, 0);
layout panel (layoutO, panell, 1, 0);
layout layout (layout, layoutO, 0, 0);
layout layout (layout, layout2, 0, 1);
return layout;

In turn, the layout that integrates the form, implemented in i form(), is composed
of three cells in vertical (Figure 27.8): One for the toolbar i toolbar (), another for the
selection slider and another for the article data i product (). This last cell is a sublayout
of two columns and three rows. In the central row we locate the labels Type and Price and,
in the other two, four sublayout created by the functions i code desc() , i n img(),
i type() and i price().

If we look at the code of i product (), reproduced partially in (Listing 27.11), we have
made a “Layout format” (page 29), assigning a minimum width and height for the upper
cells. We also indicate that the vertical expansion is performed on row 0, avoiding the
expansion of rows 1 and 2, corresponding to the label, the radiobutton and the price.

Listing 27.11: Format of layout 1 _product ()).

static Layout *i product ()

{
Layout *layout = layout create(2, 3);

layout hsize(layout, 0, 200.f);
layout hsize(layout, 1, 200.f);
layout vsize (layout, 0, 200.f);
layout vexpand (layout, 0);

498 Chapter 27 - Products

Code
[63900 |

Description
Intel CPU BX80662G3900 Celeron
G3900 2.80Ghz 2M LGA1151 2C/2T
Skylake Retail

Type

PRLLEX X s
v

[7/80]

@cPu OGPU OHDD OSCD ’

Brian Murphy
brian@nappgui.com

.

10.14

i form()

46.00 € |- Dlogout
() Data has been downloaded correctly.
layout(1,2)
sublayout(2,1)
i_login

panel()

i_status_bar()

Figure 27.7: Main window layout.

27.5.1. Multi-layout panel

For user login we have used a panel with two different layouts: One for registration
and another to show user data once registered (Listing 27.12) (Figure 27.9). This way,
the controller can easily switch between them by calling panel visible layout. This
function will be responsible for displaying/hiding controls and recalculating the size of the
window, since it may have suffered variations due to the change in layout.

Listing 27.12: Creation of a multi-layout panel.

static Panel *i login panel (Ctrl *ctrl)

{

Panel *panel = panel create()

’

Layout *layout0 = i login(ctrl);
Layout *layoutl = i logout (ctrl);

panel layout (panel, layoutO);
panel layout (panel, layoutl);
return panel;

i_form(1,3) i_product(2,3)

27.5 - View 499

i_toolbar()

-8

i_code_desc()

200px

i_n_img()

100%

[Type |

[Price|

i_type()

i_price()

Figure 27.8: Layout que implementa el formulario.

i_login(1,10)

i_logout(1,6)

Select language

E= English v

Please, login into the server to
download product descriptions.
Users: amanda, brenda, brian, john.
Pass: 1234

Brian Murphy

brian@nappgui.com

Username

Lo |

| Password

100% I

100% I

’ @Login ‘

@Logout

|

Figure 27.9: Login panel with two layouts.

27.5.2. Hide columns

It is also possible to hide the login panel through the menu or the corresponding button
This is simple to do inside the controller, acting on the column that
contains said panel.

(Figure 27.10).

layout_show_col (ctrl->layout,

1, state == ekGUI ON ? TRUE

: FALSE);

500 Chapter 27 - Products

guage Help Help
| o Select language

Show/Hide the login panel >

[0/0] [0/0] Please, login into the server to
download preduct descriptions.
Users: amanda, brenda, brian, jehn.
Pass: 1234

-

Username

Password

Price Price

Product Price |~ Product Price £)Login

Search.. 0 [

g for legin... n..

Figure 27.10: Show/Hide the login panel.

27.5.3. Bar graphs

One of the requirements is that the interface includes a small bar chart that shows the
sales statistics of each product (Figure 27.11). The code generated by this graphic is in
(Listing 27.13). In “Use of Custom Views” (page 450), “Parametric drawing” (page 451)

and “2D Contexts” (page 279) you have more information about interactive graphics.

Listing 27.13: Parametric drawing of a bar graph.

static void i OnStats(Ctrl *ctrl, Event *e)

{
const EvDraw *params = event params (e, EvDraw);
uint32 t i, n = sizeof(ctrl->stats) / sizeof (real32 t);
real32 t p = 10.f, x = p, y0 = params->height - p;
real32 t w = (params->width - p * 2) / n;
real32 t h = params->height - p * 2;
real32 t avg = 0, pavg;
char t tavg[lé6];
color t cl[2];

real32 t stopl[2] = {0, 1};
c[0] = kHOLDER;
c[1] = kCOLOR_VIEW;

draw _fill linear (params->ctx, c¢,stop, 2, 0, p, 0, params->height - p + 1);

for (1 = 0; 1 < n; ++1)

{
real32 t hr = h * (ctrl->stats[i] / i MAX STATS);
real32 t y =p + h - hr;
draw_rect (params->ctx, ekFILL, X, y, W - 2, hr);
avg += ctrl->stats[i];
X += w;

avg /= n;

pavg = h *
pavg = p + h - pavg;
bstd sprintf (tavg,

draw fill color (params-—
draw line color (params-—

draw line (params->ctx,

draw line color (params-—

draw_line (params->ctx,
draw line (params->ctx,
draw text (params->ctx,

sizeof (tavg),

27.5 - View

(avg / i_MAX_STATS);

"$.2£",
>ctx, KTXTRED) ;
>ctx, KTXTRED) ;

p - 2, pavg, params->width - p, pavg);
>ctx, kCOLOR LABEL) ;

p - 2, yO + 2, params->width - p,
p-2,vy0+ 2, p-2, p);
ekFILL, tavg, p, pavg):;

avgq) ;

yoO + 2);

501

Figure 27.11:
the login panel.

27.5.4. Translations

Dynamic graphs in

*

Amanda Callister
amanda@nappgui.com

The interface has been translated into seven languages, with English as default (Fig-
ure 27.12). To change the language, we call to gui language within the PopUp event
handler (Listing 27.14). In “Resources” (page 99) you have a step-by-step guide to locat-
ing and translating applications.

Listing 27.14: Code that changes the language of the program.

static void i OnLang(Ctrl *ctrl, Event *e)

{

const EvButton *params = event params (e, EvButton);
static const char t *LANGS[] = { "en US", "es ES", "pt PT", "it IT",
(_> n , n ruiRU " 0 n j aiJP AL } ’.

"vi VN

502 Chapter 27 - Products

gui language (LANGS [params->index]) ;

Q) Products - *
File Mavigate View Server Language Help

Select language

Search... o

E= English v
E= English A

Code [0/0] = S"g . h

Product Code o
® Portuguese

Description BN italian

Product Description Bl Vietnamese o
Username
Password

Type Price

CPU GPU HDD SCD Product Price DLogin

| 1) Waiting for login... |

Figure 27.12: Automatic translations.

27.5.5. Dark Mode themes

NAppGUI uses native interface controls, which causes windows to integrate seamlessly
with the active desktop theme on each machine. However, if we use custom icons or colors,
these may not always be consistent when porting to other systems.

o In “Gui” (page 322) a series of “system” colors are defined, for example gui label color
, whose RGB value will be resolved at runtime depending on the target platform.
Using these functions, we will be certain that our applications will always look good
and present a consistent color scheme. In “Color table” (page 813) you have a demo
that shows these colors.

o Use gui alt color to define colors with two versions: One for light themes and
one for dark ones. NAppGUI will be responsible for resolving the RGB whenever
necessary (Listing 27.15).

Listing 27.15: Custom colors used in Products.

’

kHOLDER = gui_alt color(color bgr (0x4681Cf), color bgr (0x1569E6)) ;

kEDITBG = gui alt color(color bgr (0xFFFFed), color bgr (0x101010))

kSTATBG = gui alt color(color bgr (0xFFC165), color bgr (0x523d1ld)):;
()))
()))

’

kSTATSK = gui_alt color(color bgr (0xFF8034), color bgr (0xFF8034
kKTXTRED = gui alt color(color bgr (0xFF0000), color bgr (0XEB665A

’

27.6 - Controller 503

o For the images, we must include two versions in the program resources and select
one or the other depending on the gui dark mode value (Listing 27.16).

Listing 27.16: Icon selection for Light or Dark Themes.

void ctrl theme images (Ctrl *ctrl)
{
bool t dark = color dark mode() ;
button image (cell button(ctrl->first cell), dark ? FIRSTD PNG
<~ FIRST_PNG);
button image(cell button(ctrl->back cell), dark ? BACKD PNG : BACK PNG

—)i

button image(cell button(ctrl->next cell), dark ? NEXTD PNG : NEXT PNG
—)

button image(cell button(ctrl->last cell), dark ? LASTD PNG : LAST PNG
—)i

button_image(cell_button(ctrl—>add_cell), ADD PNG) ;

button image(cell button(ctrl->minus cell), MINUS PNG) ;

button_image(cell_button(ctrl—>setting_cell), SETTINGS PNG) ;

button image(cell button(ctrl->login cell), LOGIN1l6 PNG);

button image(cell button(ctrl->logout cell), dark ? LOGOUT16D PNG
<~ LOGOUT16_PNG) ;

menuitem image (ctrl->import item, OPEN PNG) ;

menuitem image (ctrl->export item, dark ? SAVED PNG : SAVE PNG);

menuitem image (ctrl->first item, dark ? FIRST16D PNG : FIRST16 PNG);

menuitem image (ctrl->back item, dark ? BACKI16D PNG : BACKl6 PNG);

menuitem image (ctrl->next item, dark ? NEXT16D PNG : NEXT16 PNG);

menuitem image (ctrl->last item, dark ? LAST16D PNG : LAST16 PNG);

menuitem image(ctrl->login item, LOGIN16 PNG) ;

menuitem image (ctrl->logout item, dark ? LOGOUT16D PNG : LOGOUT16 PNG)
— i

» Use gui OnThemeChanged to update custom icons at runtime (Listing 27.17) (Fig-
ure 27.13).

Listing 27.17: Runtime icon update.

static void i OnThemeChanged (App *app, Event *e)
{

ctrl theme images (app->ctrl);
unref (e);

gui OnThemeChanged(listener (app, i OnThemeChanged, App));

27.6. Controller

The controller is responsible for maintaining consistency between the Model and the
View, as well as for implementing the business logic. Specifically, this program does

504 Chapter 27 - Products

H o = a search...

Code ; i

i7-8700K Brenda Blethyn
brenda@nappgui.com

Description

Intel BX80684I78700K 8th Gen
Core i7-8700K Processor |

Type
©crPu GPU HDD SCD

() Data has been downloaded correctly.

Figure 27.13: Desktop theme change.

virtually nothing with the data, regardless of downloading and displaying, which presents
a good opportunity to practice.

27.6.1. Multi-threaded login

When the user presses the button [Login] the program calls two Web services. One
to register the user and another to download the data. This process lasts about a second,
which is an eternity from the point of view of a process. During this time you will come
to appreciate that the program remains “frozen” waiting for the calls to the server to be
resolved. This occurs because a “slow” task is running on the same thread that manages
the program message loop (Figure 27.14)(a).

To avoid this unpleasant effect, which can be aggravated if the request lasts longer, we
will use “Multi-threaded tasks” (page 420) by osapp task (Listing 27.18) (Figure 27.14)(b).
This creates a new execution thread that begins in i login begin. At the time the data
has been downloaded, the NAppGUI task manager will call i login end (already in the
main thread) and the program will continue with its (mono-thread) execution.

Listing 27.18: Multi-thread login process.

static void i OnLogin(Ctrl *ctrl, Event *e)
{
ctrl->status = ekIN LOGIN;
i status(ctrl);
osapp_task(ctrl, 0., i login begin, NULL, i login _end, Ctrl);
unref (e);

27.6 - Controller 505

|

Figure 27.14: Execution of a “slow” task. Single-thread (a), Multi-thread (b). With
a single thread the interface will be “frozen”.

27.6.2. Synchronize Model and View

Keeping the Data Model and the View synchronized is also the controller’s task. As
the user interacts with the interface, it must capture the events, filter data and update the
model objects. Similarly, every time the model changes it has to refresh the interface. This
bidirectional synchronization can be done using dbind, saving a lot of extra programming
code (Figure 27.15).

MVVM

Figure 27.15: DBind helps the controller in the recurring task of
synchronizing objects with the interface.

The implementation of this MV VM pattern Model- View- ViewModel is quite simple
and we have it summarized in (Listing 27.19) (Figure 27.16).
o Use cell dbind to link a layout cell with a model field.

o Use layout dbind to link the layout containing the previous cells with the struct
which contains the fields.

o Use layout dbind obj to assign an object to the layout. From here the Model-View
updates will be made automatically.

Listing 27.19: Binding struct with layout.

506 Chapter 27 - Products

// In View
Cell *cell0 = layout cell(layout, 0, 1);

cell dbind

(cellO, Product, String*, code);
cell dbind(celll, Product, String*, description);
cell dbind(cell2, Product, type t, type);

(

cell dbind(cell3, Product, Image*, image64);
cell dbind(cell4, Product, real32 t, price);
layout dbind(layout, Product);

// In Controller
Product *product = model product (model, index);
layout dbind obj(layout, product, Product);

dbind

Product &
cell_dbind Type T

Code layout_dbind
description
1mageb4 &
price &

BRES

Code
%4 “ i7-8700K ”
_Description %Y
00 Intel BX80684178700K 8th Gen Core
i7-8700K Processor
Type Price
?||@cPu O6PU OHDD OSCD 37490 € ||| »

Figure 27.16: Data binding in GUI.

It is common for data to be reviewed (filtered) after editing to verify that the values
are consistent with the model. dbind supports different formats for registered fields. In
(Listing 27.20) we have applied formatting to the field pricefrom Product.

Listing 27.20: Field format price from Product.

dbind default (Product, real32 t, price, 1);
dbind range (Product, real32 t, price, .50f, le6f);
dbind precision(Product, real32 t, price, .05f);
dbind increment (Product, real32 t, price, 5.f);

27.6 - Controller 507

dbind suffix(Product, real32 t, price, "€");

27.6.3. Change the image

To change the image associated with the product, the controller has slightly modified
the operation of the ImagevView, which will show an edit icon each time the mouse is
placed on top of the image (Listing 27.21), (Figure 27.17).

Listing 27.21: Drawing an overlay when the mouse is over the image.

static void i OnImgDraw (Ctrl *ctrl, Event *e)
{
const EvDraw *params = event params (e, EvDraw);
const Image *image = gui respack image (EDIT PNG) ;
uint32 t w, h;
image size (image, &w, &h);
draw image (params->context, image, params->width - w - 10, params->height -
— h - 10);
unref (ctrl);

imageview OnOverDraw (view, listener(ctrl, i OnImgDraw, Ctrl));

Code
i13-7100

Description
Intel Core i3-7100 7th Gen Core
Desktop Processor 3M Cache, 3.90
GHz (BXB0&7TI37100)

Figure 27.17: Superimposed icon on image control.

Clicking on the image will open the file opening dialog that will allow us to select
a new one. If the dialog is accepted, the image will be loaded and assigned to control
(Listing 27.22). The object will update automatically.

Listing 27.22: Drawing an overlay when the mouse is over the image.

static void i OnImgClick(Ctrl *ctrl, Event *e)

{
const char t *type[] = { "png", "jpg" };
const char t *file = comwin open file(type, 2, NULL);
if (file != NULL)

508 Chapter 27 - Products

Image *image = image from file(file, NULL);
if (image != NULL)
{

View *view = cell view(ctrl->image cell);

imageview image (view, image);
image destroy(&image) ;

}

unref (e) ;

imageview OnClick(view, listener(ctrl, i OnImgClick, Ctrl));

27.6.4. Memory management

After closing the program, a report will be printed with the use of memory, alerting us
to possible memory leaks (Listing 27.23). It does not hurt to check it periodically in order
to detect anomalies as soon as possible.

Listing 27.23: Memory usage statistics, generated at the close of any NAppGUI application.

22:17:21 [OK] Heap Memory Staticstics

22:17:21

22:17:21] Total a/dellocations: 2065, 2065

22:17:21] Total bytes a/dellocated: 2831766, 2831766

[]
[1
[1
[]
[22:17:21] Max bytes allocated: 1642879
[1
[]
[1
[1

22:17:21] Effective reallocations: (0/55)

22:17:21] Real allocations: 13 pages of 65536 bytes

22:17:21 5 pages greater than 65536 bytes
22:17:21

If we want more detailed information about the use of memory, we can pass the pa-
rameter "-hv" in the options field of osmain (Listing 27.24).

osmain (i create, i destroy, "-hv", App)

Listing 27.24: Detailed output of memory usage.

[12:01:41] 'App' a/deallocations: 1, 1 (32) bytes
[12:01:41] 'ArrPt::Cell' a/deallocations: 24, 24 (576) bytes
[12:01:41] 'ArrPt::GuiComponent' a/deallocations: 8, 8 (192) bytes

12:01:41

[] 'Button' a/deallocations: 13, 13 (1664) bytes
[12:01:41] 'View' a/deallocations: 5, 5 (840) bytes
[12:01:41] 'Clock' a/deallocations: 1, 1 (48) bytes
[12:01:41] 'Combo' a/deallocations: 1, 1 (176) bytes

[12:01:41] 'UpDown' a/deallocations: 1, 1 (64) bytes
[12:01:41] 'VImgData' a/deallocations: 4, 4 (160) bytes

27.7 - The complete program

1, 1 (80) bytes

[12:01:41] 'Window' a/deallocations:

[12:01:41] 'bool t::arr' a/deallocations: 6, 6 (27) bytes
[12:01:41] 'i App' a/deallocations: 1, 1 (184) bytes
[12:01:41]

'i Task' a/deallocations: 1, 1 (64) bytes

509

27.7. The complete program

Listing 27.25: demo/products/products.hxx

/* Products Types */

#ifndef TYPES HXX
#define TYPES HXX

#include <gui/gui.hxx>

typedef enum wserv t
{
ekWS CONNECT = 1,
ekWS_JSON,
ekWS ACCESS,
ekWS_OK
} wserv_t;

typedef struct model t Model;
typedef struct product t Product;
typedef struct ctrl t Ctrl;

__ EXTERN C

extern color t kHOLDER;
extern color t kEDITBG;
extern color t kSTATBG;
extern color t kSTATSK;
extern color t kTXTRED;
__END C

#endif

Listing 27.26: demo/products/products.c

/* NAppGUI Products Demo */

#include "nappgui.h"
#include "prmodel.h"
#include "prmenu.h"
#include "prctrl.h"
#include "prview.h"
#include "res products.h"

510 Chapter 27 - Products

#include <inet/inet.h>

typedef struct app t App;
struct app t
{

Model *model;

Cerl “grwEllg

Window *window;

Menu *menu;

b8

color t kHOLDER;
color t kEDITBG;
color t kSTATBG;
color t kSTATSK;
color t kTXTRED;

static void i OnThemeChanged (App *app, Event *e)
{

ctrl theme images (app->ctrl);

unref (e);

static App *i create(void)
{
App *app = heap new (App) ;
kHOLDER = gui alt color(color bgr (0x4681Cf), color bgr (0x1569E6))
kEDITBG = gui alt color(color bgr (0xFFFFed4), color bgr(0x101010)):;
kSTATBG = gui_alt color(color bgr (0xFFC165), color bgr (0x523dld)):;
()))
()))

’

’

kSTATSK = gui alt color(color bgr (0xFF8034), color bgr (0xFF8034
kTXTRED = gui alt color(color bgr (0xFF0000), color bgr (0xEB665A
inet start();

gui respack(res products respack);

gui language ("");

gui OnThemeChanged(listener (app, i OnThemeChanged, App)):

model bind();

app->model = model create();

app->ctrl = ctrl create(app->model) ;

app->menu = prmenu create (app->ctrl);

app->window = prview create (app->ctrl);

Oosapp_menubar (app->menu, app->window) ;

window origin (app->window, v2df(100.f, 100.f));

window show (app->window) ;

ctrl run(app->ctrl);

return app;

’

27.7 - The complete program 511

static void i destroy (App **app)

{
cassert no null (app) ;
cassert no_null (*app) ;
ctrl destroy (& (*app)->ctrl);
window destroy (& (*app)->window) ;
menu_destroy (& (*app) ->menu) ;
model destroy (& (*app)->model) ;
inet finish();
heap delete (app, App):

#include <osapp/osmain.h>
osmain (i create, i destroy, "", App)

Listing 27.27: demo/products/prmodel.c

/* Products Model */

#include "prmodel.h"
#include "res products.h"
#include <gui/guiall.h>
#include <encode/json.h>
#include <inet/httpreq.h>

typedef struct pjson t PJson;

typedef enum type t
{

ekCPU,

ekGPU,

ekHDD,

ekSCD
} type t;

struct product_t

{
type_ t type;
String *code;
String *description;
Image *image64;
real32 t price;

}i

struct pjson t

{
int32 t code;

512 Chapter 27 - Products

uint32 t size;
ArrPt (Product) *data;

}i

struct model t

{
*filter;
*products;

ArrSt (uint32 t)
ArrPt (Product)
i

DeclPt (Product) ;

Model *model create (void)

{

Model *model
model->filter
model->products
return model;

heap new (Model) ;
arrst create(uint32 t);
arrpt_create(Product);

void model destroy(Model **model)

{
arrst destroy(&(*model)->filter, NULL, uint32 t);
dbind destroy (& (*model)->products, ArrPt(Product));
heap delete (model, Model) ;

static Stream *i http get (void)
{

Http *http = http create("serv.nappgui.com", 80);
Stream *stm = NULL;
if (http get (http, "/dproducts.php", NULL, 0, NULL)

{

uint32 t status http response status (http);
if (status >= 200 && status <= 299)
{

stm stm memory (4096) ;
if (http response body (http,
stm close (&stm);

stm, NULL)

http destroy(&http);
return stm;

== TRUE)

FALSE)

27.7 - The complete program

wserv_t model webserv (Model *model)

{

Stream *stm = i http get();
if (stm != NULL)
{

PJson *json = json read(stm, NULL, PJson);
stm close (&stm);

if (json != NULL)
{

cassert (json->size == arrpt size(json->data, Product));
dbind destroy (&model->products, ArrPt (Product));
model->products = json->data;

json->data = NULL;

json destroy(&json, PJson);

return ekWS_OK;

return ekWS_JSON;

return ekWS CONNECT;

bool t model import (Model *model, const char t *pathname, ferror t *err)

{

Stream *stm = stm_from_file(pathname, err) ;
if (stm != NULL)

{
ArrPt (Product) *products = dbind_read(stm, ArrPt (Product)) ;

stm close (&stm);

if (products != NULL)

{
dbind destroy (&model->products, ArrPt (Product));

model->products = products;
return TRUE;

return FALSE;

513

514 Chapter 27 - Products

bool t model export (Model *model, const char t *pathname, ferror t *err)
{
Stream *stm = stm_to_file(pathname, err);
if (stm != NULL)
{
dbind write (stm, model->products, ArrPt(Product));
stm close (&stm) ;
return TRUE;

return FALSE;

uint32 t model count (const Model *model)
{
uint32 t total = arrst_size(model->filter, uint32 t);
if (total == 0)
total = arrpt size(model->products, Product);
return total;

void model clear (Model *model)

{
dbind destroy (&model->products, ArrPt (Product));
arrst clear (model->filter, NULL, uint32 t);
model->products = dbind_create(ArrPt(Product));

void model add(Model *model)

{
Product *product = dbind create (Product);
arrpt append (model->products, product, Product);
arrst clear (model->filter, NULL, uint32 t);

static uint32 t i index (ArrSt (uint32 t) *filter, const uint32 t index)
{
if (arrst size(filter, uint32 t) > 0)
return *arrst get(filter, index, uint32 t);
else
return index;

27.7 - The complete program

/* ___
static INLINE void i destroy(Product **product)
{
dbind destroy(product, Product);
}
/* ___

void model delete (Model *model, const uint32 t index)

{
uint32 t lindex = i index(model->filter, index);
arrpt delete (model->products, lindex, i destroy, Product);
arrst clear (model->filter, NULL, uint32 t);

bool t model filter (Model *model, const char t *filter)
{

ArrSt (uint32 t) *new filter = arrst create(uint32 t);

arrpt foreach (product, model->products, Product)
if (str_str(tc(product->description), filter) != NULL)
arrst append(new filter, product i, uint32 t);
arrpt end()

arrst destroy(&model->filter, NULL, uint32 t);
model->filter = new filter;

return (bool t) (arrst size(new filter, uint32 t) > 0);

Product *model product (Model *model, const uint32 t product id)
{
uint32 t lindex = i index(model->filter, product id);
return arrpt get (model->products, lindex, Product);

void model bind(void)

{
dbind enum(type t, ekCpPU, "")
dbind enum(type t, ekGPU, "");
dbind enum(type t, ekHDD, "")
dbind enum(type t, ekSCD, "")
dbind (Product, type t, type);
dbind (Product, String *, code);

515

516 Chapter 27 - Products

dbind (Product, String *, description);
dbind (Product, Image *, image64);
dbind (Product, real32 t, price);
dbind (PJson, int32 t, code);

dbind (PJson, uint32 t, size);

dbind (PJson, ArrPt (Product) *, data);

dbind default (Product, real32 t, price, 1);

dbind range (Product, real32 t, price, .50f, leé6f);

dbind precision(Product, real32 t, price, .05f);

dbind increment (Product, real32 t, price, 5.f);

dbind suffix (Product, real32 t, price, "€");

dbind default (Product, Image *, image64, gui image (NOIMAGE PNG))

void model layout (Layout *layout)

{
layout dbind(layout, NULL, Product);

void model type (Cell *cell)

{
cell dbind(cell, Product, type t, type):;

void model code (Cell *cell)

{
cell dbind(cell, Product, String *, code);

void model desc(Cell *cell)

{
cell dbind(cell, Product, String *, description);

void model image (Cell *cell)

{
cell dbind(cell, Product, Image *, image64);

27.7 - The complete program 517

void model price(Cell *cell)

{
cell dbind(cell, Product, real32 t, price);

Listing 27.28: demo/products/prview.c

/* Products View */

#include "prview.h"
#include "prctrl.h"
#include "res products.h"
#include <gui/guiall.h>

static Layout *i toolbar (Ctrl *ctrl)
{
Layout *layout = layout create(8, 1);
Button *button0 = button flat(
Button *buttonl = button flat(
Button *button2 = button flat(
Button *button3 = button flat(
(
(

’
’

’

)
)

)
)
Button *button4 = button flat();

Button *button5 = button_ flat ()

Button *button6é = button flatgl

Combo *combo = combo create();
button text (button0, TWIN FIRST);

button text (buttonl, TWIN BACK) ;
button text (button2, TWIN NEXT) ;
button text (button3, TWIN LAST);
button text (button4, TWIN ADD);
button text (button5, TWIN DEL);

button text (buttono, TWIN SETTINGS PANEL);
combo tooltip(combo, TWIN FILTER DESC);
combo_bgcolor focus (combo, kEDITBG) ;
combo_ phtext (combo, TWIN FILTER);

combo phcolor (combo, kHOLDER) ;

e();

combo_phstyle (combo, ekFITALIC | ekFUNDERLINE) ;
layout button (layout, button0O, 0, 0);

layout button(layout, buttonl, 1, 0);

layout button(layout, button2, 2, 0);

layout button (layout, button3, 3, 0);

layout button(layout, button4, 4, 0);

layout button(layout, button5, 5, 0);

layout combo (layout, combo, 6, 0);

layout button (layout, buttoné6, 7, 0);

layout hmargin (layout, 5, 5);

layout hmargin(layout, 6, 5);

layout hexpand(layout, 6);

ctrl first cell(ctrl, layout cell(layout, 0, 0));

518 Chapter 27 - Products

ctrl back cell(ctrl, layout cell(layout, 1, 0
ctrl next cell(ctrl, layout cell (layout, 2, 0
ctrl last cell(ctrl, layout cell(layout, 3, 0
ctrl add cell(ctrl, layout cell(layout, 4, 0));
ctrl minus cell(ctrl, layout cell(layout, 5,)
ctrl filter cell(ctrl, layout cell(layout, 6, 0));
ctrl setting cell(ctrl, layout cell (layout, 7, 0));
return layout;

static Layout *i code desc(Ctrl *ctrl)
{
Layout *layout = layout create(l, 4);
Label *label0 = label create();
Label *labell = label create();
Edit *editO = edit create();
Edit *editl = edit multiline();
label text (labelO, TWIN CODE) ;
label text(labell, TWIN DESC) ;
edit phtext (edit0, TWIN TYPE CODE);
edit phtext(editl, TWIN TYPE DESC);
)
)

’

edit bgcolor focus(edit0, kEDITBG
edit bgcolor focus(editl, kEDITBG
edit phcolor(edit0O, kHOLDER);
edit phcolor(editl, kHOLDER);

(

(

’

edit_phstyle edit0, ekFITALIC | ekFUNDERLINE) ;
editiphstyle editl, ekFITALIC | ekFUNDERLINE) ;
layout label (layout, labelO, 0, 0);

layout edit(layout, editO, 0, 1);
layout label (layout, labell, 0, 2);
layout edit (layout, editl, 0, 3);

layout vmargin(layout, 1, 10);

layout vexpand(layout, 3);

ctrl code cell(ctrl, layout cell (layout, 0, 1)),
ctrl desc cell(ctrl, layout cell (layout, 0, 3));
return layout;

static Layout *i type(void)

{
Layout *layout = layout create(4, 1);
Button *button0 = button radio();
Button *buttonl button radio();
Button *button?2 button radio();
Button *button3 button radio();
button text (button0, TWIN CPU);
button text (buttonl, TWIN GPU) ;

27.7 - The complete program 519

button_text(button2, TWIN HDD) ;
button text (button3, TWIN SCD);

layout button (layout, button0O, 0, 0);
layout button(layout, buttonl, 1, 0);
layout button(layout, button2, 2, 0);
layout button (layout, button3, 3, 0);

return layout;

static Layout *i n_img(Ctrl *ctrl)
{
Layout *layout = layout create(l, 2);
Label *label = label create();
ImageView *view = imageview create();
label align(label, ekCENTER);
layout halign(layout, 0, 0, ekJUSTIFY);
layout label (layout, label, 0, 0);
layout imageview(layout, view, 0, 1);
layout vexpand(layout, 1);
ctrl counter cell(ctrl, layout cell (layout, 0, 0));
ctrl image cell(ctrl, layout cell(layout, 0, 1));
return layout;

static Layout *i price(void)

{
Layout *layout = layout create(2, 1);
Edit *edit = edit create();
Font *font = font system (18, ekFBOLD);
UpDown *updown = updown create();
edit phtext (edit, TWIN TYPE PRICE);
edit font (edit, font);
edit align(edit, ekRIGHT);
edit color(edit, kTXTRED);
edit bgcolor focus(edit, kEDITBG);
edit phcolor(edit, kHOLDER) ;
editiphstyle(edit, ekFITALIC | ekFUNDERLINE) ;
layout edit(layout, edit, 0, 0);
layout updown (layout, updown, 1, 0);
layout hsize(layout, 1, 24);
layout hexpand(layout, 0);
font destroy(&font);
return layout;

520 Chapter 27 - Products

static Layout *i product (Ctrl *ctrl)

{
Layout *layout = layout create(2, 3);
Layout *layout0 = i code desc(ctrl);
Layout *layoutl = i type();
Layout *layout2 i n img(ctrl);
Layout *layout3 = i price();
Label *label0 = label create();
Label *labell = label create();
label text(label0O, TWIN TYPE);
label text(labell, TWIN PRICE);
layout layout (layout, layoutO, 0, 0);
layout label (layout, labelO, 0, 1);
layout layout (layout, layoutl, 0, 2);
layout layout (layout, layout2, 1, 0);
layout label (layout, labell, 1, 1);
layout layout (layout, layout3, 1, 2);
layout halign(layout, 1, 1, ekRIGHT);
layout hsize (layout, 1, 200);
layout vsize(layout, 0, 200);
layout hmargin(layout, 0, 10);
layout vmargin(layout, 0, 10);
layout margin4 (layout, 0, 10, 10, 10);
layout vexpand(layout, 0);
ctrl type cell(ctrl, layout cell(layout, 0, 2)
ctrl price cell(ctrl, layout cell(layout, 1, 2
return layout;

static Layout *i form(Ctrl *ctrl)

{
Layout *layout = layout create(l, 3);
Layout *layout0 = i toolbar(ctrl);
Layout *layoutl = i product(ctrl);
Slider *slider = slider create();
Cell *cell = NULL;
layout layout (layout, layoutO, 0, 0);
layout slider (layout, slider, 0, 1);
layout layout (layout, layoutl, 0, 2);
layout vexpand(layout, 2);
cell = layout cell (layout, 0, 1);
cell padding4(cell, 0, 10, 0, 10);
ctrl slider cell(ctrl, cell);
return layout;

static Layout *i login(Ctrl *ctrl)

27.7 - The complete program 521

Layout *layout = layout create(l, 10);

Label *labelO label create();

Label *labell = label create();

Label *label?2 label create();

Label *label3 label create();

PopUp *popup0 popup create();

ImageView *view(= imageview create();

Edit *editO0 = edit create();

Edit *editl = edit create();

Button *button = button push();

label multiline (labell, TRUE);

label text(labelO, TWIN SETLANG) ;

label text(labell, TWIN LOGIN MSG);

label text (label2, TWIN USER);

label text(label3, TWIN PASS);

popup_add elem(popupO, ENGLISH, cast const (USA PNG, Image));
popup_add elem(popupO, SPANISH, cast const (SPAIN PNG, Image)):;
popup_ add elem(popup0O, PORTUGUESE, cast const (PORTUGAL PNG, Image));
popup_add elem(popup0, ITALIAN, cast const (ITALY PNG, Image));
(
(

popup_add elem(popupO, VIETNAMESE, cast const (VIETNAM PNG, Image));
popup_add elem(popup0O, RUSSIAN, cast const (RUSSIA PNG, Image));
popup_add elem(popup0O, JAPANESE, cast const (JAPAN PNG, Image));
popup_tooltip (popupO, TWIN SETLANG) ;

imageview image (view(O, cast const (USER PNG, Image));

edit passmode (editl, TRUE);

button text (button, TWIN LOGIN) ;

layout label (layout, labelO, 0, 0);

layout popup (layout, popupO, 0, 1);

layout label (layout, labell, 0, 2);

layout imageview(layout, view0O, 0, 3);

layout label (layout, label2, 0, 4);

layout edit (layout, editO, 0, 5);

layout label (layout, label3, 0, 6);

layout edit(layout, editl, 0, 7);

layout button (layout, button, 0, 9);

layout vmargin (layout, 0, 5);

layout vmargin(layout, 1, 10);
layout vmargin(layout, 2, 10);
layout vmargin (layout, 5, 5);
layout vmargin (layout, 8, 5);
layout margin4 (layout, 5, 10, 10, 10);

layout hsize (layout, 0, 200);

layout vexpand(layout, 8);

ctrl lang cell(ctrl, layout cell(layout, 0, 1
ctrl user cell(ctrl, layout cell (layout, 0, 5
ctrl pass_cell(ctrl, layout cell (layout, 0, 7
ctrl login cell(ctrl, layout cell(layout, O,
return layout;

522 Chapter 27 - Products

static Layout *i logout (Ctrl *ctrl)

{
Layout *layout = layout create(l, 6);
ImageView *view = imageview create();
Label *label0 = label create();
Label *labell = label create();
View *cview = view create();
Button *button = button push();
label align(label0, ekCENTER);
label align(labell, ekCENTER);
button_text(button, TWIN LOGOUT) ;
view size(cview, s2df (160, 160));
layout imageview (layout, view, 0, 0);
layout label (layout, labelO, 0, 1);
layout label (layout, labell, 0, 2);
layout view(layout, cview, 0, 3);
layout button(layout, button, 0, 5);
layout halign(layout, 0, 1, ekJUSTIFY);
layout halign(layout, 0, 2, ekJUSTIFY);
layout halign(layout, 0, 3, ekCENTER);
layout vmargin(layout, 0, 5)
layout vmargin(layout, 2, 5)
layout vexpand(layout, 4);
layout hsize(layout, 0, 200);
layout margin (layout, 10);
ctrl stats cell(ctrl, layout cell(layout, 0, 3));
ctrl logout cell(ctrl, layout cell(layout, 0, 5));
return layout;

’
’

static Panel *i login panel (Ctrl *ctrl)
{
Panel *panel = panel create();
Layout *layoutO = i login(ctrl);
Layout *layoutl = i logout (ctrl);
panel layout (panel, layoutO);
panel layout (panel, layoutl);
ctrl_login_panel(ctrl, panel) ;
return panel;

static Layout *i status bar(Ctrl *ctrl)

{
Layout *layout = layout create(2, 1);
ImageView *view = imageview create();

27.7 - The complete program 523

Label *label = label create();
imageview size(view, s2df (16, 16));
layout imageview (layout, view, 0, 0);
layout label (layout, label, 1, 0);
layout halign(layout, 1, 0, ekJUSTIFY);
layout hexpand(layout, 1);
layout hmargin (layout, 0, 5);
layout margin(layout, 5);
layout bgcolor (layout, kSTATBG)
layout skcolor (layout, kSTATSK);
ctrl status layout(ctrl, layout);
return layout;

’

static Layout *i layout (Ctrl *ctrl)

{
Layout *layout = layout create(l, 2);
Layout *layout0O = layout create(2, 1);
Layout *layoutl = i form(ctrl);
Layout *layout2 = i status bar(ctrl);
Panel *panell = i login panel(ctrl);
layout layout (layoutO, layoutl, 0, 0);
layout panel (layoutO, panell, 1, 0);
layout layout (layout, layoutO, 0, 0);
layout layout (layout, layout2, 0, 1);
ctrl main layout(ctrl, layoutO);
return layout;

Window *prview create(Ctrl *ctrl)

{
Panel *panel = panel create();
Layout *layout = i layout(ctrl);
Window *window = NULL;
ctrl theme images(ctrl);
panel layout (panel, layout);
window = window create (ekWINDOW STD) ;
window panel (window, panel);
window title(window, TWIN TITLE);
ctrl window(ctrl, window);
return window;

Listing 27.29: demo/products/prmenu.c

/* Products Menu */

524 Chapter 27 - Products

#include "prmenu.h"
#include "prctrl.h"
#include "res products.h"
#include <gui/guiall.h>

#if defined(APPLE)

static Menu *

{

i app(Ctrl *ctrl)

Menu *menu = menu create();

Menultem *item0 = menuitem create();
Menultem *iteml = menuitem separator();
Menultem *item2 = menuitem create();
Menultem *item3 = menuitem separator();
Menultem *item4 = menuitem create();
menuitem text (item0, TMEN ABOUT) ;

menuitem text (item2, TMEN PREFERS) ;
menuitem text (item4, TMEN QUIT);
menu_add item(menu, item0);
menu_add item(menu, iteml);
)
)

menu_add item(menu, item2);
menu_add item(menu, item3
menu_add item(menu, itemd);

ctrl about item(ctrl, itemO);
ctrl exit item(ctrl, itemd);

return menu;

’

}
#endif

static Menu *i file(Ctrl *ctrl)

{
Menu *menu = menu create();
Menultem *item0O = menuitem create();
Menultem *iteml = menuitem create();
menuitem text (item0, TMEN IMPORT) ;
menuitem text (iteml, TMEN_ EXPORT) ;
menu_add item(menu, itemO);
menu_add item(menu, iteml);

#if !defined(APPLE)
{
Menultem *item2 = menuitem separator();
Menultem *item3 = menuitem create();
menuitem text (item3, TMEN EXIT);
menuitem image (item3, cast const (EXIT PNG, Image)):;
menu_add item(menu, item2);
menu_add item(menu, item3);
ctrl exit item(ctrl, item3);

27.7 - The complete program 525

}
#endif

ctrl import item(ctrl, itemO);
ctrl export item(ctrl, iteml);
return menu;

static Menu *i navigate (Ctrl *ctrl)

{

Menu *men

u = menu create();

Menultem *item0 = menuitem create();
Menultem *iteml = menuitem create();
Menultem *item2 = menuitem create();
Menultem *item3 = menuitem create();

menuitem text (item0, TMEN FIRST);
menuitem text (iteml, TMEN BACK) ;
menuitem text (item2, TMEN NEXT);
menuitem text (item3, TMEN LAST);

menuitem key (itemQ,
menuitem key (iteml,
menuitem key(item2,
menuitem key(item3,
menu_add item(menu,
menu_add item(menu,
menu_ add item(menu,
menu_add item(menu,
ctrl first item(ctrl
ctrl back item(ctrl,
ctrl next item(ctrl,
ctrl last item(ctrl,
return menu;

static Menu *i view (Ctrl

{

Menu *menu = menu_cCr

ekKEY F5,
ekKEY F6,
ekKEY F7,
ekKEY F8,
itemO) ;
iteml) ;

)i

)

item2
item3
, itemO) ;
iteml) ;
item2) ;
item3) ;

’

*ctrl)

eate () ;

0);
0);
0);
0);

Menultem *itemO = menuitem create();

unref (ctrl);

menuitem text (item0, TMEN LOGIN PANEL);

menuitem image (item0
menu_ add item(menu,
ctrl setting item(ct
return menu;

, cast const (SETTINGS16_ PNG,

item0) ;

rl, item0);

Image));

526 Chapter 27 - Products

static Menu *i server(Ctrl *ctrl)

{
Menu *menu = menu create();
Menultem *item0 = menuitem create();
Menultem *iteml = menuitem create();
menuitem text (item0O, TMEN LOGIN) ;
menuitem text (iteml, TMEN LOGOUT) ;
menu_add item(menu, itemO);
menu_add item(menu, iteml);
ctrl login item(ctrl, item0);
ctrl logout item(ctrl, iteml);
return menu;

static Menu *i language (Ctrl *ctrl)

{

Menu *menu = menu create();

Menultem *item0O = menuitem create();
Menultem *iteml = menuitem create();
Menultem *item2 = menuitem create();
Menultem *item3 = menuitem create();
Menultem *item4 = menuitem create();
Menultem *item5 = menuitem create();

0

’

Menultem *item6 = menuitem create
menuitem text (item0O, ENGLISH);
menuitem text (iteml, SPANISH);
menuitem text (item2, PORTUGUESE) ;
menuitem text (item3, ITALIAN);
menuitem text (item4, VIETNAMESE) ;
menuitem text (item5, RUSSIAN);
menuitem text (item6, JAPANESE) ;
menuitem image (itemO, cast const (USA PNG, Image));
menuitem image (iteml, cast const (SPAIN PNG, Image));
menuitem image (item2, cast const (PORTUGAL PNG, Image));
menuitem image (item3, cast const (ITALY PNG, Image));
menuitem image (itemd4, cast const (VIETNAM PNG, Image));
menuitem image (item5, cast const (RUSSIA PNG, Image));
menuitem image (item6, cast const (JAPAN PNG, Image));
menu_add item(menu, item0);
menu_add item(menu, iteml)
menu_add item(menu, item2)
menu_add item(menu, item3);
menu_add item(menu, item4);

)

)

)

’

’

menu_add item(menu, item5);
menu_add item(menu, item6
ctrl_lang_menu(ctrl, menu

return menu;

’

’

27.7 - The complete program 527

#if !defined(_APPLE)

static Menu *i help(Ctrl *ctrl)

{
Menu *menu = menu create();
Menultem *item0 = menuitem create();
menuitem text (item0, TMEN ABOUT) ;
menuitem image (itemO, cast const (ABOUT PNG, Image));
menu_add item(menu, item0);
ctrl about item(ctrl, itemO);
return menu;

}

#endif

Menu *prmenu create(Ctrl *ctrl)

{

Menu *menu = menu_ create();

Menultem *iteml = menuitem create();
Menultem *item2 = menuitem create();
Menultem *item3 = menuitem create();
Menultem *item4 = menuitem create();
Menultem *item5 = menuitem create();
Menu *submenul = i file(ctrl);

Menu *submenu2 = i navigate(ctrl);
Menu *submenu3 = i view(ctrl);

Menu *submenud = i_server(ctrl);
Menu *submenub = i language (ctrl);

#if defined(_ APPLE)
{

Menultem *itemO

Menu *sub