

Cross-Platform C language development
How to create high-performance applications for Windows, macOS, and Linux

systems.
Version 1.4.0.4536 1

© 2015-2023 Francisco García Collado2

frang@nappgui.com
www.nappgui.com
19 October 2023

1This book has been edited in LATEXgenerated automatically by ndoc.
2All rights reserved. This book is provided for personal use only. Unauthorized use, reproduc-

tion and/or distribution strictly prohibited.

Contents

1 Users guide 3

1 Quick start 5
1.1 Quick start in Windows 5
1.2 Quick start on macOS 7
1.3 Quick start on Linux 9
1.4 MIT License 9
1.5 Previous knowledge 10
1.6 And now what? 10

2 Welcome to NAppGUI 13
2.1 Original APIs 15
2.2 C-based 15
2.3 No visual editors 17
2.4 Dependencies 18
2.5 Low and high level 21

3 Hello World! 23
3.1 The complete program 23
3.2 The skeleton 26
3.3 The constructor 27
3.4 The main panel 28
3.5 The destructor 28
3.6 Launch the window 28
3.7 Layout format 29
3.8 Exiting the program 30
3.9 Button Events 30

4 Use of C 31
4.1 Basic types 32
4.2 Structures and unions 34
4.3 Control 35
4.4 Functions 37
4.5 Scopes 38
4.6 Pointers 39
4.7 Preprocessor 40

Contents

4.8 Comments 41
4.9 Input/Output 42
4.10 Mathematical algorithms 43

5 Use of C++ 45
5.1 Encapsulation 46
5.2 Class callbacks 46
5.3 Combine C and C++ modules 48

5.3.1 Using C from C++ 48
5.3.2 Using C++ from C 48

5.4 new and delete overload 49
5.5 Hello C++ complete 50
5.6 Math templates 53

6 Error management 57
6.1 Exhaustive tests 57
6.2 Static analysis 58

6.2.1 Standards 58
6.2.2 Compiler warnings 61

6.3 Dynamic analysis 61
6.3.1 Disabling Asserts 62
6.3.2 Debugging the program 63
6.3.3 Error log 63
6.3.4 Memory auditor 64

7 Generate NAppGUI binaries 65
7.1 Generate static libraries 66
7.2 Generate dynamic libraries 67
7.3 More about CMakeLists.txt 69
7.4 Why nine independent libraries? 70

8 Compilers and IDEs 73
8.1 Windows compilers 74

8.1.1 Platform toolset 76
8.1.2 Visual C++ Redistributable 78
8.1.3 WindowsXP support 78
8.1.4 SSE support 79

8.2 macOS compilers 80
8.2.1 Base SDK and Deployment Target 82
8.2.2 xcode-select 83
8.2.3 macOS ARM 84
8.2.4 macOS 32bits 85

Contents

8.3 Linux compilers 86
8.3.1 GTK+3 89
8.3.2 Multiple versions of GCC 90
8.3.3 Linux 32bits 91
8.3.4 Linux ARM 92
8.3.5 Eclipse CDT 92
8.3.6 Visual Studio Code 93

8.4 Configurations 95

9 Create new application 99
9.1 Desktop applications 99
9.2 Adding files 102
9.3 Command line applications 103
9.4 C/C++ Standard 104

10 Create new library 107
10.1 Static libraries 107
10.2 Dynamic libraries 114

10.2.1 Advantages of DLLs 116
10.2.2 Disadvantages of DLLs 117
10.2.3 Check links with DLLs 118
10.2.4 Loading DLLs at runtime 121
10.2.5 Location of DLLs 123

10.3 Symbols and visibility 124
10.3.1 Export in DLLs 125
10.3.2 Checking in DLLs 127

11 Resources 129
11.1 Types of resources 129
11.2 Create resources 131
11.3 Internationalization (i18n) 132
11.4 Runtime translation 134
11.5 Edit resources 136
11.6 Manual management 136
11.7 Resource processing 137
11.8 Resource distribution 137
11.9 nrc warnings 139
11.10 Application icon 140

2 Introduction to the API 143

12 NAppGUI SDK 145

Contents

12.1 NAppGUI API 145
12.2 Online resources 147
12.3 A little history 147

13 Sewer library 149
13.1 Sewer 149

13.1.1 The C standard library 150
13.2 Asserts 153
13.3 Pointers 154
13.4 Unicode 155

13.4.1 UTF encodings 157
13.4.2 UTF-32 157
13.4.3 UTF-16 157
13.4.4 UTF-8 158
13.4.5 Using UTF-8 159

13.5 Maths 160
13.5.1 Random numbers 160

13.6 Standard functions 160
13.7 Standard I/O 161
13.8 Memory 162

13.8.1 Stack Segment 162
13.8.2 Heap Segment 163

14 Osbs library 165
14.1 Osbs 166
14.2 Processes 167

14.2.1 Launching processes 167
14.2.2 Multi-processing examples 168

14.3 Threads 170
14.3.1 Throwing threads 171
14.3.2 Shared variables 171
14.3.3 Multi-thread example 172

14.4 Mutual exclusion 175
14.4.1 Locks 175

14.5 Loading libraries 175
14.5.1 Library search paths 176
14.5.2 Search order in Windows 176
14.5.3 Search order on Linux/macOS 177

14.6 Files and directories 177
14.6.1 File System 177
14.6.2 Files and data streams 178
14.6.3 Filename and pathname 178

Contents

14.6.4 Home and AppData 179
14.7 Sockets 179

14.7.1 Client/Server example 180
14.8 Time 183
14.9 Log 184

15 Core library 185
15.1 Core 187
15.2 Heap - Memory manager 188

15.2.1 Multi-thread memory 189
15.2.2 How Heap Works 189

15.3 Buffers 192
15.4 Strings 192
15.5 Streams 193

15.5.1 Stream Types 193
15.5.2 File stream 194
15.5.3 Socket stream 194
15.5.4 Block stream 195
15.5.5 Memory stream 195
15.5.6 Standard stream 196
15.5.7 Null stream 197
15.5.8 Binary stream 197
15.5.9 Text stream 198
15.5.10 Tokens 199
15.5.11 Identifiers 200
15.5.12 Strings 201
15.5.13 Numbers 202
15.5.14 Symbols 202
15.5.15 Comentarios 203
15.5.16 Stream advantages 203
15.5.17 Unify serialization 203
15.5.18 More elegance 204
15.5.19 Higher productivity 205
15.5.20 Higher performance 206
15.5.21 Byte order 206
15.5.22 Stream state 207

15.6 Arrays 208
15.6.1 Registers or pointers 209
15.6.2 Type check 210
15.6.3 Constructors 211
15.6.4 Array loops 212
15.6.5 Copy objects 213

Contents

15.6.6 Serialization 213
15.6.7 Destructors 214
15.6.8 Sort and search 216
15.6.9 Arrays of basic types 217

15.7 Arrays (pointers) 217
15.8 Binary search trees 217

15.8.1 Iterators 220
15.8.2 Arrays vs Sets comparative 221

15.9 Binary search trees (pointers) 222
15.10 Regular expressions 222

15.10.1 Define patterns 223
15.10.2 Regular languages and automata 224

15.11 Data binding 225
15.11.1 Synchronization with graphical interfaces 227
15.11.2 Read and write JSON 227
15.11.3 Serialization with DBind 228
15.11.4 Default constructor 228
15.11.5 Numerical ranges 229

15.12 Events 230
15.13 Keyboard buffer 231
15.14 File operations 231
15.15 Resource packs 233
15.16 Dates 233
15.17 Clocks 233

16 Geom2D library 235
16.1 Geom2D 235
16.2 2D Vectors 237

16.2.1 CW and CCW angles 238
16.2.2 Vector projection 238

16.3 2D Size 240
16.4 2D Rectangles 240
16.5 2D Transformations 241

16.5.1 Elementary transformations 241
16.5.2 Composition of transformations 242
16.5.3 Decomposition and inverse 245

16.6 2D Segments 246
16.7 2D Circles 247
16.8 2D Boxes 247
16.9 2D Oriented Boxes 247
16.10 2D Triangles 249

Contents

16.11 2D Polygons 250
16.11.1 Polygon center 251
16.11.2 Polygon decomposition 252

16.12 2D Collisions 253

17 Draw2D library 255
17.1 Draw2D 256
17.2 2D Contexts 257

17.2.1 Reference systems 259
17.2.2 Cartesian systems 262
17.2.3 Antialiasing 263
17.2.4 Retina displays 264

17.3 Drawing primitives 265
17.3.1 Line drawing 265
17.3.2 Figures and borders 266
17.3.3 Gradients 267
17.3.4 Gradient transformation 269
17.3.5 Gradients in lines 270
17.3.6 Gradient Limits 271
17.3.7 Drawing text 271
17.3.8 Drawing images 274
17.3.9 Default parameters 275

17.4 Geom2D Entities Drawing 276
17.5 Colors 277

17.5.1 HSV space 278
17.6 Palettes 279

17.6.1 Predefined palette 280
17.7 Pixel Buffer 280

17.7.1 Pixel formats 281
17.7.2 Procedural images 282
17.7.3 Copy and conversion 283

17.8 Images 283
17.8.1 Load and view images 284
17.8.2 Generate images 285
17.8.3 Pixel access 285
17.8.4 Save images: Codecs 286

17.9 Typography fonts 288
17.9.1 Create fonts 288
17.9.2 System font 290
17.9.3 Font characteristics 291
17.9.4 Size in points 291
17.9.5 Bitmap and Outline fonts 292

Contents

17.9.6 Unicode and glyphs 293

18 Gui library 295
18.1 Gui 297

18.1.1 Declarative composition 298
18.1.2 Anatomy of a window. 299
18.1.3 GUI Events 300

18.2 Label 302
18.3 Button 304

18.3.1 RadioGroup 305
18.4 PopUp 306
18.5 Edit 307

18.5.1 Filter texts 308
18.6 Combo 309
18.7 ListBox 309
18.8 UpDown 310
18.9 Slider 311
18.10 Progress 311
18.11 View 312

18.11.1 Draw in views. 313
18.11.2 Scrolling views 314
18.11.3 Using the mouse 315
18.11.4 Using the keyboard 316

18.12 TextView 317
18.12.1 Character format 317
18.12.2 Paragraph format 318
18.12.3 Document format 319

18.13 ImageView 319
18.14 TableView 320

18.14.1 Data connection 320
18.14.2 Data cache 323
18.14.3 Multiple selection 324
18.14.4 Configure columns 325
18.14.5 Grid drawing 326

18.15 SplitView 326
18.15.1 Add controls 327
18.15.2 Split modes 328

18.16 Layout 329
18.16.1 Natural sizing 330
18.16.2 Margins and format 331
18.16.3 Alignment 332
18.16.4 Sub-layouts 333

Contents

18.16.5 Cell expansion 335
18.16.6 Tabstops 335

18.17 Cell 337
18.18 Panel 338

18.18.1 Understanding panel sizing 339
18.19 Window 344

18.19.1 Window size 345
18.19.2 Closing the window 346
18.19.3 Modal windows 347
18.19.4 Hotkeys 349

18.20 GUI Data binding 349
18.20.1 Basic type binding 349
18.20.2 Limits and ranges 353
18.20.3 Nested structures 353
18.20.4 Notifications and calculated fields 357

18.21 Menu 359
18.22 MenuItem 360
18.23 Common dialogs 361

19 OSApp library 365
19.1 OSApp 365
19.2 main() and osmain() 365
19.3 Synchronous applications 369
19.4 Multi-threaded tasks 370

20 INet library 373
20.1 INet 373
20.2 HTTP 373
20.3 JSON 375

20.3.1 JSON parsing and conversion to data in C 377
20.3.2 Mapping between Json and C 380
20.3.3 Convert from C to JSON 380

20.4 URL 383
20.5 Base64 384

3 Sample Applications 385

21 Die 387
21.1 Use of sublayouts 388
21.2 Use of Custom Views 390
21.3 Parametric drawing 391

Contents

21.4 Resizing 393
21.5 Use of resources 395
21.6 Die and Dice 396
21.7 The complete Die program 397

22 Bricks 403

23 Fractals 411

24 Bode 421

25 Products 429
25.1 Specifications 430
25.2 Model-View-Controller 432
25.3 Model 432

25.3.1 JSON WebServices 433
25.3.2 Write/Read on disk 434
25.3.3 Add/Delete records 436

25.4 View 436
25.4.1 Multi-layout panel 438
25.4.2 Hide columns 439
25.4.3 Bar graphs 439
25.4.4 Translations 441
25.4.5 Dark Mode themes 442

25.5 Controller 443
25.5.1 Multi-threaded login 444
25.5.2 Synchronize Model and View 445
25.5.3 Change the image 447
25.5.4 Memory management 448

25.6 The complete program 449

26 Hello GUI! 489
26.1 Hello Label! 489
26.2 Hello Button! 494
26.3 Hello PopUp and Combo! 497
26.4 Hello Edit and UpDown! 499
26.5 Hello ListBox! 503
26.6 Hello Slider and Progress! 505
26.7 Hello TextView! 507
26.8 Hello TableView! 510
26.9 Hello SplitView! 517
26.10 Hello Modal Window! 519
26.11 Hello Gui Binding! 524

Contents

26.12 Hello Struct Binding! 528
26.13 Hello Sublayout! 535
26.14 Hello Subpanel! 539
26.15 Hello Multi-layout! 540
26.16 Hello Scroll-Panel! 542
26.17 Hello IP-Input! 544

27 Hello Draw2d! 547

28 Hello 2D Collisions! 565

29 Drawing on an image 609

30 Scroll drawings 619

31 Images from URLs 631

32 Color table 639

33 Read/Write Json 645

34 Alternative to STL 653

4 Library reference 661

35 Sewer library 663
35.1 Types and Constants 663
35.2 Functions 668

36 Osbs library 721
36.1 Types and Constants 721
36.2 Functions 727

37 Core library 759
37.1 Types and Constants 759
37.2 Functions 770

38 Geom2D library 913
38.1 Types and Constants 913
38.2 Functions 920

39 Draw2D library 987
39.1 Types and Constants 987

Contents 1

39.2 Functions 992

40 Gui library 1045
40.1 Types and Constants 1045
40.2 Functions 1058

41 OSApp library 1167
41.1 Functions 1167

42 INet library 1171
42.1 Types and Constants 1171
42.2 Functions 1172

2 Contents

Part 1

Users guide

3

1C
ha

pt
er

Quick start

“...the number of UNIX installations has grown to 10, with more expected...”

Dennis Ritchie and Ken Thompson - June 1972

1.1 Quick start in Windows 5
1.2 Quick start on macOS 7
1.3 Quick start on Linux 9
1.4 MIT License 9
1.5 Previous knowledge 10
1.6 And now what? 10

NAppGUI is an SDK to develop software projects, that work on any desktop platform
(Windows, macOS or Linux), using the C programming language (Figure 1.1). C++ is
allowed, but not indispensable. We can write a complete program using only ANSI-C.

1.1. Quick start in Windows

Before starting you need to have these tools installed (Figure 1.2):

• Visual Studio1 to compile under Windows. Microsoft offers the free Community
version.

• CMake2. Cross-platform tool to create compilation projects automatically, from
source code. Be careful to select Add CMake to the system PATH for all
users during installation (Figure 1.3).

1https://visualstudio.microsoft.com/vs/
2https://cmake.org/download/

https://visualstudio.microsoft.com/vs/
https://cmake.org/download/

6 Chapter 1 - Quick start

C programC program

NAppGUI SDKNAppGUI SDK

Win32
GDI+

Win32
GDI+

Cocoa
Quartz2D

Cocoa
Quartz2D

GTK+3
Cairo

GTK+3
Cairo

Figure 1.1: NAppGUI allows the easy port of applications written in ANSI C.

• Git3. For download the project from GitHub.

Figure 1.2: Basic tools in Windows.

Figure 1.3: Access to CMake from the command line.

From a console on Windows:
git clone depth 1 https://github.com/frang75/nappgui_src.git
cd nappgui_src
cmake S ./src B ./build
cmake build ./build config Debug

3https://gitscm.com/

https://git-scm.com/

1.2 - Quick start on macOS 7

Once compiled, you will be able to run the existing example applications in the demo
and howto directories (Figure 1.4).

.\build\Debug\bin\Die.exe

.\build\Debug\bin\Bricks.exe

.\build\Debug\bin\Products.exe

.\build\Debug\bin\Col2dHello.exe

.\build\Debug\bin\GuiHello.exe

...

Figure 1.4: Running the Products sample program after compilation.

1.2. Quick start on macOS

Before starting, make sure you have installed and configured Xcode4, an essential envi-
ronment for development under macOS. You will also need to download and install CMake
from www.cmake.org5 (Figure 1.5).

By default, CMake does not configure command line access on macOS. You can create
symbolic links with sudo “/Applications/CMake.app/Contents/bin/cmake-gui”
–install.

4https://developer.apple.com/xcode/
5https://www.cmake.org

https://developer.apple.com/xcode/
https://www.cmake.org

8 Chapter 1 - Quick start

Figure 1.5: Xcode and CMake on
macOS.

Open a terminal in macOS:

git clone depth 1 https://github.com/frang75/nappgui_src.git
cd nappgui_src
cmake G Xcode S ./src B ./build
cmake build ./build config Debug

Once compiled, you can run the existing sample applications in the directories demo
and howto (Figure 1.6).

./build/Debug/bin/Die.app/Contents/MacOS/Die

./build/Debug/bin/Bricks.app/Contents/MacOS/Bricks

./build/Debug/bin/Products.app/Contents/MacOS/Products

./build/Debug/bin/Col2dHello.app/Contents/MacOS/Col2dHello

./build/Debug/bin/GuiHello.app/Contents/MacOS/GuiHello

...

Figure 1.6: Running the Bricks sample program after compilation.

1.3 - Quick start on Linux 9

1.3. Quick start on Linux

Before starting, make sure you have the necessary compilers, tools and libraries in-
stalled:

// Development tools
sudo aptget install buildessential
sudo aptget install git
sudo aptget install cmake

// Development libraries
sudo aptget install libgtk3dev
sudo aptget install libglu1mesadev freeglut3dev mesacommondev
sudo aptget install libcurl4openssldev

NAppGUI requires at least gcc 4.6, gtk3 (for desktop applications), OpenGL (if your
application uses 3D graphics) and Curl (for Web protocols). All this is included as of
Ubuntu 12.04 LTS or similar distributions.

Open a terminal:

git clone depth 1 https://github.com/frang75/nappgui_src.git
cd nappgui_src
cmake S ./src B ./build DCMAKE_BUILD_CONFIG=Debug
cmake build ./build j 4

Once compiled, you will be able to launch the existing example applications in the demo
and howto directories (Figure 1.7).

./build/Debug/bin/Die

./build/Debug/bin/Bricks

./build/Debug/bin/Products

./build/Debug/bin/Col2dHello

./build/Debug/bin/GuiHello

...

1.4. MIT License

NAppGUI is distributed under the MIT license, which essentially means that you have
complete freedom to use this software freely and for free, both in commercial and free
projects. The only restriction is that you must include a copy of this License6 in every
substantial part of the software you distribute.

6https://www.nappgui.com/en/legal/license.html

https://www.nappgui.com/en/legal/license.html

10 Chapter 1 - Quick start

Figure 1.7: Running the Col2dHello sample program after compilation.

1.5. Previous knowledge

This book is not intended for beginners. Although the NAppGUI project is aimed
at simplifying the construction of cross-platform applications, it requires certain prior
knowledge on the part of the user. You will need, at least, to be fluent in C or C++ since
at no time we will stop to explain basic programming concepts. If you come from Java
or C#, you should review pointers. You will also need some skill with Visual Studio
and Xcode development environments, and Unix tools such as gcc, make or the command
interpreter.

On the other hand, if you are an advanced user, you will find a simple system to
create very fast and small C applications that will compile without changes in all desktop
environments. You will also have at your disposal a set of precompiled C libraries to create
user interfaces or command line applications, without the need to mess up your projects
with the cumbersome class templates that stl or boost provide.

1.6. And now what?

• In “Welcome to NAppGUI” (page 13) we continue with the tutorial.

• In “Hello World!” (page 23) we see the minimal code of a desktop application.

1.6 - And now what? 11

• In “Generate NAppGUI binaries” (page 65) we see how to compile the static or
dynamic version.

• In “Compilers and IDEs” (page 73) you will have information about porting.

• In “Create new application” (page 99) you will start creating your own applications.

• In “NAppGUI API” (page 145) you have the documentation of the libraries and
functions.

• In “Products” (page 429) you have the source code of a medium-sized application.

12 Chapter 1 - Quick start

2C
ha

pt
er

Welcome to NAppGUI

While others were content to write programs that just solved problems, early hackers were obsessed
with writing programs that solved problems well. A new program that achieved the same result as
an existing one but used fewer punch cards was considered better, even if it did the same thing.
The fundamental difference was how the program achieved its result. - elegance.

Jon Erickson - Hacking: The Art of Exploitation

2.1 Original APIs 15
2.2 C-based 15
2.3 No visual editors 17
2.4 Dependencies 18
2.5 Low and high level 21

NAppGUI is an SDK for creating cross-platform native applications in C. By native
software we understand that which is compiled/assembled using the specific instructions
of the CPU (it is not interpreted or used bytecode) and by cross-platform the ability to
build versions for Windows, macOS, and Linux using the same (Figure 2.1) source code
base. Since its first functions written in August 2010, the main objective of NAppGUI
has been to simplify as much as possible the arduous task of creating applications with
a graphical interface in C. Although different solutions already exist, we have opted for
simplicity by creating a light abstraction layer that encapsulates native technologies, unifies
them under the same API and adds some logic for task management and automation.
Being somewhat more specific, the philosophy on which the project is based and some of
its characteristics are:

• Rapid prototyping, evolution and maintenance in real applications, apart from the
simple examples we find in the literature and the Internet.

14 Chapter 2 - Welcome to NAppGUI

Figure 2.1: Native cross-platform development with NAppGUI.

• The user interface is described using ANSI-C functions, completely eliminating visual
design. This fact facilitates the creation of dynamic interfaces, guarantees portability
and enables access to the API from any programming language.

• Windows are automatically laid out and sized, without the programmer having to
explicitly specify the coordinates and size of the controls.

• It is possible to have a complete application in a single .c file, by removing the usual
resource files (*.rc, *.xvid , etc) and their associated controllers. The programmer
has complete freedom when defining his own file structure.

• Automatic synchronization of internal data structures with the interface or with I/O
channels. “Data binding” (page 225).

• Unified management of resources which facilitates internationalization. “Resources”
(page 129).

• Translations between languages at runtime without the need to restart the applica-
tion. “Runtime translationRuntime translation” (page 134).

• The compiled version of NAppGUI occupies less than 1Mb, and is distributed in
several static libraries that generate very small executables. This is a great advantage
over other solutions that require the distribution of heavy .DLLs, sometimes larger
than the application itself.

• Native Appearance: The applications will be integrated into each system respecting
their original aesthetic (Figure 2.2).

• Backends. The NAppGUI core provides structures and objects for creating highly
efficient command-line applications on Windows or Linux servers.

2.1 - Original APIs 15

Figure 2.2: Native appearance of the Hello, World! demo.

2.1. Original APIs
Microsoft, Apple and GNU/Linux propose different APIs to interact with their systems.

This means that the same application must be rewritten to work correctly on each platform.
NAppGUI provides a unified set of functions for creating graphical user interfaces and
allowing direct access to machine resources (memory, disk, network, etc.) (Figure 2.3).
Each implementation takes into account the particular conditions of the target platform
and uses the appropriate native commands to perform the task in the most optimal way
possible.

2.2. C-based
Despite the fact that today we have a large number of programming languages, the

C language is still the most powerful and portable in the world. The core of Windows,
macOS, Linux, Android, iOS, and other major programs are largely written in C. In the
world of apps, its use has waned a bit in favor of more glamour. Perhaps this is one of the

16 Chapter 2 - Welcome to NAppGUI

CreateWindowEx();

[NSButton alloc];

gtk_button_new();

my_buttons(
 "Ok",
 "Cancel",
 "Reset");

Figure 2.3: Calls to the native APIs, from the source code itself.

reasons why Wirth’s law1 is more and more true every day.

“Software slows down faster than hardware speeds up.”

NAppGUI is written, almost entirely, in C language with small parts in C++ and
Objective-C. This language is widely supported and cross-platform compatible. In its
development we have dispensed with minority, proprietary or brand-linked languages such
as: C#, Swift, Java or Objective-C. Also interpreted (such as Python or JavaScript)
and those based on virtual machines (Java and C#) due to the performance penalty
(Figure 2.4). Finally, we have not used C++, since we do not present NAppGUI as
a hierarchy of classes but as a library of functions. Our goals have been to minimize
the impact of the SDK, simplify programming, increase readability, and produce high-
performance binaries.

Figure 2.4: Interpreter, virtual ma-
chine, and binary code. The closer
we get to machine language, the more
performance we will get from the soft-
ware.

1https://en.wikipedia.org/wiki/Wirth%27s_law

https://en.wikipedia.org/wiki/Wirth%27s_law

2.3 - No visual editors 17

2.3. No visual editors
The creation of graphical interfaces can become a tedious process, since it is difficult

to know in advance the final size of elements that contain text or images, such as buttons.
On the other hand, windows are dynamic entities subject to changes at runtime (size,
translation, changing subpanels, hidden areas, etc.). When using a visual editor, we have
to place elements at the exact (Figure 2.5) position and size. This is a mouse-intensive
task, which slows down the connection between GUI objects and event handlers. In the
development cycle, if the texts or other elements change (and of course they will), we
will have to relocate the components by hand again. This problem grows in multilingual
solutions. Keeping developers moving pixels and filling property forms is expensive for
companies and very boring for them. This is not to mention that all of these visual designs
will not be cross-platform compatible (.rc Windows, .xib macOS, .glade GTK/Gnome,
etc.).

Figure 2.5: Resource editors are not good friends for creating complex dynamic interfaces.

Many programmers prefer not to move their hands from the keyboard, since they
consider it much more productive.

NAppGUI uses a declarative strategy, where it is only necessary to indicate the cell
where the element will be located within a rectangular grid (Layout). The final size and
position will be calculated at runtime, performing a recursive composition of the layouts
and sublayouts based on their (Listing 2.1) content .

Listing 2.1: Creating a window.
Panel *panel = panel_create();
Layout *layout = layout_create(1, 3);
Label *label = label_create();
Button *button = button_push();

18 Chapter 2 - Welcome to NAppGUI

TextView *view = textview_create();
Window *window = window_create(ekWINDOW_STD);
label_text(label, "Hello!, I'm a label");
button_text(button, "Click Me!");
layout_label(layout, label, 0, 0);
layout_button(layout, button, 0, 1);
layout_textview(layout, view, 0, 2);
layout_hsize(layout, 0, 250);
layout_vsize(layout, 2, 100);
layout_margin(layout, 5);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);
panel_layout(panel, layout);
window_panel(window, panel);
window_title(window, "Hello, World!");

Figure 2.6: Declarative composition is fast, adaptable, and portable.

2.4. Dependencies

NAppGUI does not use third-party libraries, it only connects with the native APIs of
each operating system. This fact, together with the use of C and static linking, makes it
possible to:

• Applications don’t need additional runtimes like Python, Java, or C# do. They go
directly to the CPU via the system scheduler.

• The entire application can be contained in a single .exe file. As little code as possible
is linked and no additional .dll need to be distributed.

As of version 1.3, NAppGUI supports the generation of dynamic libraries.

• Applications take up very little disk space, since all their dependencies are naturally
present on the systems where they run.

2.4 - Dependencies 19

• The performance is maximum, since they are compiled in native machine code, using
the highest level of optimization that each CPU supports.

• They can be edited, compiled and run on obsolete platforms today like a Pentium
III with Visual Studio 2005 and WindowsXP.

• With NAppGUI we can move them from Windows to macOS or Linux, without
touching a single line of source code. See “Compilers and IDEs” (page 73).

Three packages within the SDK will act as technology wrappers (Figure 2.7), hiding
platform-specific details under a common interface, without causing overhead to the pro-
gram.

Figure 2.7: Different
technologies at the base of
NAppGUI. In “NAppGUI
API” (page 145) you have the
complete schematic.

guigui draw2ddraw2d osbsosbs

Windows ApiWindows Api

CocoaCocoa

GTK+GTK+

GDI+GDI+

Quartz 2DQuartz 2D

CairoCairo

Windows ApiWindows Api

Unix callsUnix calls

Unix callsUnix calls

C stdlibC stdlib

• “Osbs” (page 166): Operating System Basic Services. API about files and directories,
processes, threads, memory, etc.

• “Draw2D” (page 256): API for 2d vector drawing, images and fonts.

20 Chapter 2 - Welcome to NAppGUI

• “Gui” (page 297): API about graphical interfaces: Windows, controls and menus.

• Unix system calls: In Unix-like systems (Linux, macOS) it is the way in which
a program communicates with the kernel to perform some task related to files, pro-
cesses, memory, network or hardware usually.

• Windows API: It is the lowest level API provided by Microsoft for programming
under Windows. It is very broad and integrates different aspects of development:

• kernel32.dll: The equivalent of Unix calls (files, processes, memory, etc).

• ws2_32.dll: Provides TCP/IP network functions (Unix calls include TCP/IP
support).

• user32.dll, comctl32.dll, comdlg32.dll, uxtheme.dll: Implements standard con-
trols for graphical user interfaces (labels, edit boxes, combos, progress bars,
common dialogs, etc.).

• Cocoa: Object-oriented programming API for Mac OSX (now macOS) systems. It
is written in Objective-C, therefore it is not directly accessible from “pure” C. Cocoa
is based on OpenStep, the API of NeXTSTEP, the operating system created by Steve
Jobs when he was fired from Apple. In 1996, Apple buys NeXT and gets Jobs back,
using Jobs’ technology as the basis for the new Macintosh. Many classes in Cocoa
still retain the NS prefix as NeXTSTEP inheritance. Although there is a lower level
C-based API called Carbon, it has been discontinued since Mac OSX 10.4 Tiger.
It does not have access to all system functionality nor is it compatible with 64-bit
applications. Thus, Cocoa is the current lowest level API for Apple systems.

• Gtk+: Acronym for GIMP ToolKit. It is a high-level library for creating graphical
interfaces with a multitude of predefined objects (called widgets). It is one of the most
widespread in GNU/Linux systems, but it is actually multiplatform with versions for
Windows and macOS. Desktop environments like Gnome, Xfce or applications like
GIMP are based on GTK.

• GDI+: It is the evolution of GDI (Graphics Device Interface), a 2d vector drawing
API developed by Microsoft for the first 16-bit version of Windows. GDI+ was
introduced with Windows XP as a set of C++ classes and is encapsulated in the .NET
platform via the System.Drawing namespace. It is also accessible directly from C
via the GDI+ Flat API, but Microsoft recommends using it via C++ classes. It
incorporates substantial improvements over GDI, such as floating point coordinates,
affine transformations, anti-aliasing, gradient shading, and support for image formats
such as JPG, PNG, or GIF. Drawing with masks and incompatibility with PDF
are the two most notable drawbacks compared to Quartz 2D and Cairo, its direct
“competitors” on other platforms.

• Quartz 2D: It is the trade name of Core Graphics, the powerful drawing API

2.5 - Low and high level 21

of macOS. Like Cocoa, Core Graphics is an evolution of the NeXTSTEP graphics
libraries and came to Apple after the NeXT acquisition. Quartz 2D is based on
Adobe PostScript and PDF formats, incorporating alpha channel and anti-aliasing.
Classic Macs (pre-NeXT) used the QuickDraw library, originally developed by Bill
Atkinson for the Apple Lisa. Modern macs still have QuickDraw built in, but Xcode
no longer provides headers, so it can’t be used in new projects. Core Graphics is a
C-based API and all of its functions begin with the CG prefix.

• Cairo: Cairo is a C-based 2d vector drawing library. Unlike GDI+ or Quartz 2D,
it is cross-platform, can be downloaded independently and incorporated into any
project (under LGPL license) . Since version 3, GTK+ uses Cairo for all widget
drawing tasks. GTK+2 also used Cairo to generate PDF documents for printing.
NAppGUI uses Cairo to implement the draw2d API on the GNU/Linux platform,
as this library is found naturally in all GTK+ based desktop environments: Gnome,
Cinnamon, LXDE, Mate, Pantheon , Sugar or Xfce. Technically, Cairo is quite
advanced, matching Quartz 2D in terms of functionality. It supports affine trans-
formations, image masks, bezier curves, text processing, and drawing on PDF and
PostScript surfaces.

• C stdlib: C is a beautiful little language, but it doesn’t provide any additional
support functions. During the 1970s, the C language became very popular and users
began to share ideas on how to solve common and repetitive tasks. With its stan-
dardization in the 1980s, some of these ideas became the C standard library, which
provides a basic set of mathematical functions, string manipulation, type conver-
sions, and input/output. NAppGUI integrates in one way or another the function-
ality of the standard library, so we do not recommend its use in final applications
(see “Sewer” (page 149)).

2.5. Low and high level

During its design and implementation, NAppGUI has tried to maintain a balanced
balance between low-level and high-level programming. Low-level lovers will find a kind of
extended and cross-platform C library to access the system, interface elements and drawing
commands. However, they will still retain the power to create optimized code and direct
memory access. Remember, we are in C!

On the other hand, NAppGUI integrates some high-level solutions such as resource
management, interface composition, automatic translations or data binding, among others.
NAppGUI also incorporates CMake scripts for automated project creation in Visual Studio,
Xcode, or Eclipse/Make.

Finally, it is the developers who decide which libraries to link with according to the needs
of the project and the degree of automation they wish to adopt. Each application based on

22 Chapter 2 - Welcome to NAppGUI

NAppGUI performs a static link of all its dependencies, so neither the executable nor its
final distribution will have traces of unnecessary binary code. In this way, we will produce
small self-contained executables that will not require an installer or include megabytes of
dependencies in the form of .DLLs.

3C
ha

pt
er

Hello World!

Once upon a time, there was a company called Taligent. Taligent was created by IBM and Apple
to develop a set of tools and libraries like Cocoa. About the time Taligent reached the peak of its
mindshare, Aaron met one of its engineers at a trade show and asked him to create a simple
application: A window appears with a button. When the button is clicked, the words “Hello,
World!” appear in a text field. The engineer created a project and started subclassing madly,
subclassing the window and the button and the event handler. Then he started generating code:
dozens of lines to get the button and the text field onto the window. After 45 minutes, he was still
trying to get the app to work. A couple of years later, Taligent quietly closed its doors forever.

Hillegass, Preble & Chandler - Cocoa Programming for OSX.

3.1 The complete program 23
3.2 The skeleton 26
3.3 The constructor 27
3.4 The main panel 28
3.5 The destructor 28
3.6 Launch the window 28
3.7 Layout format 29
3.8 Exiting the program 30
3.9 Button Events 30

There is little we can say about the meaning of the Hello World! program every time
we are faced with a new technology or programming methodology. So, let’s get down to
business.

3.1. The complete program

24 Chapter 3 - Hello World!

Figure 3.1: Windows 10 y Windows XP.

Figure 3.2: macOS 10.14 Mojave and MacOSX 10.6 Snow Leopard.

Figure 3.3: GTK+3 Ambiance (Ubuntu) and Adwaita Dark (Raspbian).

Listing 3.1: demo/hello/main.c
/* NAppGUI Hello World */

#include <nappgui.h>

typedef struct _app_t App;

3.1 - The complete program 25

struct _app_t
{

Window *window;
TextView *text;
uint32_t clicks;

};

/**/

static void i_OnButton(App *app, Event *e)
{

String *msg = str_printf("Button click (%d)\n", app>clicks);
textview_writef(app>text, tc(msg));
str_destroy(&msg);
app>clicks += 1;
unref(e);

}

/**/

static Panel *i_panel(App *app)
{

Panel *panel = panel_create();
Layout *layout = layout_create(1, 3);
Label *label = label_create();
Button *button = button_push();
TextView *text = textview_create();
app>text = text;
label_text(label, "Hello!, I'm a label");
button_text(button, "Click Me!");
button_OnClick(button, listener(app, i_OnButton, App));
layout_label(layout, label, 0, 0);
layout_button(layout, button, 0, 1);
layout_textview(layout, text, 0, 2);
layout_hsize(layout, 0, 250);
layout_vsize(layout, 2, 100);
layout_margin(layout, 5);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);
panel_layout(panel, layout);
return panel;

}

/**/

static void i_OnClose(App *app, Event *e)
{

osapp_finish();
unref(app);
unref(e);

26 Chapter 3 - Hello World!

}

/**/

static App *i_create(void)
{

App *app = heap_new0(App);
Panel *panel = i_panel(app);
app>window = window_create(ekWINDOW_STD);
window_panel(app>window, panel);
window_title(app>window, "Hello, World!");
window_origin(app>window, v2df(500, 200));
window_OnClose(app>window, listener(app, i_OnClose, App));
window_show(app>window);
return app;

}

/**/

static void i_destroy(App **app)
{

window_destroy(&(*app)>window);
heap_delete(app, App);

}

/**/

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

3.2. The skeleton

A NAppGUI application starts at osmain, a cross-platform macro that unifies the
startup of a desktop program under different systems. It is defined in #include "osmain
.h" and will receive four parameters: constructor, destructor, arguments (char_t), and
the object type. In this way, any basic skeleton looks like this:
#include "nappgui.h"

typedef struct _app_t App;
struct _app_t
{

Window *window;
};

static App *i_create(void)
{

App *app = heap_new0(App);
return app;

3.3 - The constructor 27

}

static void i_destroy(App **app)
{

heap_delete(app, App);
}

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

The #include "nappgui.h" directive, includes much of NAppGUI with a single state-
ment. If you prefer, you can choose to include the headers separately as needed. In this
case, we should replace a single #include with eleven. In the Reference Manual, it is
indicated which header to include according to the function module that we are going to
use.

#include "gui.h"
#include "button.h"
#include "heap.h"
#include "label.h"
#include "layout.h"
#include "listener.h"
#include "panel.h"
#include "strings.h"
#include "v2d.h"
#include "vtext.h"
#include "window.h"

3.3. The constructor

The first parameter of osmain is the application constructor. As soon as the program
starts, certain internal structures must be initialized, as well as starting the message loop
inherent to all desktop applications. When everything is ready, the constructor will be
called to create the application object. This object can be of any type and does not
need to be derived from any class Application or similar, we are in C ;-). Because of
the simplicity of this example, the application object contains only one window.

static App *i_create(void)
{

App *app = heap_new0(App);
Panel *panel = i_panel(app);
app>window = window_create(ekWINDOW_STD);
window_panel(app>window, panel);
return app;

}

28 Chapter 3 - Hello World!

3.4. The main panel
To create the main window, we need the main panel, a container that integrates all

the interface controls that are displayed in the window. The space inside the panel is
arranged in an invisible grid called Layout. Each panel can have multiple layouts and
switch between them, but at least one is required. Within its cells we will locate the
different interface controls.
static Panel *i_panel(App *app)
{

Panel *panel = panel_create();
Layout *layout = layout_create(1, 3);
Label *label = label_create();
Button *button = button_push();
TextView *text = textview_create();
label_text(label, "Hello!, I'm a label");
button_text(button, "Click Me!");
layout_label(layout, label, 0, 0);
layout_button(layout, button, 0, 1);
layout_textview(layout, text, 0, 2);
panel_layout(panel, layout);
return panel;

}

3.5. The destructor
When the application terminates, osmain will call the destructor (macro’s second pa-

rameter) to free the application object and everything that depends on it, in order to
perform a clean exit from the program. We’ll put a lot of emphasis on this, as failure
to properly free all memory will be considered a serious programming error.
static void i_destroy(App **app)
{

window_destroy(&(*app)>window);
heap_delete(app, App);

}

3.6. Launch the window
By default, NAppGUI creates all hidden windows, so you need to show them explicitly.

We set a title, an initial position and launch it with window_show. We note that in this
first version our window does not look very aesthetic (Figure 3.4). In a moment we will
format it.
static App *i_create(void)
{

3.7 - Layout format 29

...
window_title(app>main_window, "Hello World!");
window_origin(app>main_window, v2df(500, 200));
window_show(app>main_window);
...

}

Figure 3.4: First version of Hello,
World! (without format).

3.7. Layout format

To improve the appearance of our window, let’s format the layout a bit. Specifically,
we are going to set a column width and a height for the third row (text control). Then we
will leave a margin on the edge and a separation between rows. (Figure 3.5).

layout_hsize(layout, 0, 200);
layout_vsize(layout, 2, 100);
layout_margin(layout, 5);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);

hsize

vsize

margin

vmargin

Figure 3.5: Hello World! after Layout formatting.

30 Chapter 3 - Hello World!

3.8. Exiting the program
When we press the button to close the main window, the program does not end its

execution. This is typical of macOS applications, where they still run in the Dock even
though no window is open. NAppGUI follows the same criteria of not closing the program,
so we must make an explicit call to the osapp_finish function. To do this, we will capture
the button event, through the listener macro.
static void i_OnClose(App *app, Event *e)
{

osapp_finish();
}

static App *i_create(void)
{

window_OnClose(app>main_window, listener(app, i_OnClose, App));
}

3.9. Button Events
Finally, we’ll catch the click event of the button and print a message in the text box

each time it’s clicked. We are going to implement the i_OnButton handler, responsible for
composing and displaying the message, and connect it to the Button control we created
earlier.
static void i_OnButton(App *app, Event *e)
{

String *msg = str_printf("Button click (%d)\n", app>clicks);
text_insert(app>vtext, tc(msg));
str_destroy(&msg);
app>clicks += 1;

}
...
button_OnClick(button, listener(app, i_OnButton, App));

An event is an action that occurs during the execution of the program. The operating
system captures it and sends it to us via its controller (defined in listener()). More
at “Events” (page 230).

4C
ha

pt
er

Use of C

Most programming languages contain good parts and bad parts. I discovered that I could be a
better programmer by using only the good parts and avoiding the bad parts. After all, how can you
build something good out of bad parts?

Douglas Crockford - JavaScript: The Good Parts.

4.1 Basic types 32
4.2 Structures and unions 34
4.3 Control 35
4.4 Functions 37
4.5 Scopes 38
4.6 Pointers 39
4.7 Preprocessor 40
4.8 Comments 41
4.9 Input/Output 42
4.10 Mathematical algorithms 43

Programming fast, reducing the probability of error, ensuring portability and generating
optimized binaries have been the main purposes of NAppGUI since its inception and that
includes a revision of the C language itself. A subset> has been used as a base ANSI-
C90 with fixed-size integers <stdint.h>, a feature introduced in C99. We recommend
that applications based on this SDK follow the same philosophy. Going into more detail,
the objectives pursued have been these:

• Maximum portability: Even on already outdated compilers like MSVC 8.0 (Visual
Studio 2005) or GCC 4.2 (Xcode 3). The latest language features may not be avail-

32 Chapter 4 - Use of C

able on platforms where you must port your code (think embedded devices). You
also ensure that such code will be compatible with future versions of major compilers.

• Focus attention: On the “what” and not on the “how”. There are times when we
make the simple complicated just to justify the use of that new “cool” feature. It is
also possible that you are a “hip” addict, which will force you to “modernize” the
code to adapt it to a new version of the standard. Focus on solving the problem
at hand and, if you can, spend more time on lowering the asymptotic complexity of
your solution. NAppGUI will make sure that your applications work wherever they
are needed.

• Avoid irrelevant features: Like C11’s multi-threading support (<threads.h>). This
is solved with system calls. See “Threads” (page 170).

• Fast compilation: Certain C constructs are nothing more than a kind of “portable
assembler”, which the compiler can interpret and translate incredibly efficiently.

• Small and fast binaries: Derived from the previous one, the generated code will
require few assembly statements and will be very easy for the compiler to optimize.

Evidently, this is not the place to learn C nor is it our intention. The core of the
language is small and easy to remember, but programming well requires years of practice.
What we will do here is show the minimum expression of the language that we use daily.
In short, these are our standards.

4.1. Basic types

• Void: void.

• Boolean: bool_t. 8-bit type with only two possible values TRUE (1) and FALSE (0).

• Integers: uint8_t, uint16_t, uint32_t, uint64_t, int8_t, int16_t, int32_t,
int64_t. Fixed-size integers were introduced in C99 by <stdint.h>. We consider
it an advantage to know that our variables will have the same size in all systems.
The use of int, long, short or unsigned is prohibited, with the sole exception of
the comparison functions .
static int i_cmp_cir(const Cir2Dd *cir1, const Cir2Dd *cir2)
{

return (cir1>r < cir2>r) ? 1 : 1;
}

arrst_sort(circles, i_cmp_cir, Cir2Dd);

• Floating point: real32_t, real64_t. float and double are not used for consis-
tency with integer types.

4.1 - Basic types 33

• Character: char_t (8 bits). The UTF8 representation is used “de facto” through-
out the SDK, so random access to elements of a string is prohibited, since it is a
variable-length encoding. Functions included in “Unicode” (page 155) or “Strings”
(page 192) must be used to manipulate arrays of characters. The types wchar_t,
char16_t, char32_t are not used (or recommended). However, if you have wide-
char strings you will need to convert them to UTF8 before using them in any
NAppGUI functions.

Using UTF8 strings
/* Error! */
const char_t *mystr = "Ramón tiene un camión";
while (mystr[i] != '\0')
{

if (mystr[i] == 'ó')
{

/* Do something */
}
else
{

i += 1;
}

}

/* Correct! */
const char_t *it = mystr;
uint32_t cp = unicode_to_u32(it, ekUTF8);
while (cp != '\0')
{

if (cp == 'ó')
{

/* Do something */
}
else
{

it = unicode_next(it, ekUTF8);
cp = unicode_to_u32(it, ekUTF8);

}
}

/* Avoid using wchar_t constants (when possible).
wchar_t uses UTF16 encoding */

const wchar_t *mywstr = L"Ramón tiene un camión";
char_t mystr[512];

unicode_convers((const char_t*)mywstr, mystr, ekUTF16, ekUTF8, sizeof(
↪→ mystr));

/* This is a NAppGUI function (UTF8Encoding) */
label_text(label, mystr);

34 Chapter 4 - Use of C

• Enumerated: Their main task is to manage the specialization and they will be
evaluated exclusively within a switch. It is forbidden to assign random values to
the elements of an enum, except 1 to the first one. Consider 0 as not initialized
and ENUM_MAX(align_t) as invalid.

Defining enumerated types
typedef enum _align_t
{

ekTOP = 1,
ekBOTTOM,
ekLEFT,
ekRIGHT

} align_t;

4.2. Structures and unions

Definition of structures and unions
typedef struct _layout_t Layout;
typedef union _attr_t Attr;

struct _layout_t
{

Cell *parent;
Panel *panel;
bool_t is_row_major_tab;
ArrSt(Cell) *cells;
ArrPt(Cell) *cells_dim[2];
real32_t dim_margin[2];
color_t bgcolor;
color_t skcolor;

};

union _attr_t
{

struct _bool_
{

bool_t def;
} boolt;

struct _int_
{

int64_t def;
int64_t min;
int64_t max;
int64_t incr;
String *format;

} intt;

4.3 - Control 35

struct _real32_
{

real32_t def;
real32_t min;
real32_t max;
real32_t prec;
real32_t incr;
uint32_t dec;
String *format;

} real32t;
};

In general, structure definitions will not be public and will remain hidden in the *.
c. This means that automatic variables cannot be declared in the “Stack SegmentStack
Segment” (page 162) and will only be accessible by functions that accept opaque dynamic
objects.

Use of opaque pointers
Layout *layout = layout_create(2, 2);
layout_edit(layout, edit, 0, 0);
layout_label(layout, label, 0, 1);
...
panel_layout(panel, layout);

/* Layout definition is hidden
We do not know the content of Layout */

Layout layout; /* Compiler error! */

Normally, all dynamic objects will have a destroy function. If it does not exist, it is
because said object only makes sense as part of another object. For example, there
is no layout_destroy() or panel_destroy(), but there is window_destroy which will
destroy the entire hierarchy of panels and associated layouts to the window.

4.3. Control
• if/else. They always open a {...} block, unless ALL paths consist of a single

statement. Using functions as arguments to if/else is generally avoided with the
exception of pure functions.

Use of if/else
if (x == 1)

i_do_something(j);
else

i_do_nothing();

if (x == 1)

36 Chapter 4 - Use of C

{
j += 2;
i_do_something(j);

}
else
{

i_do_nothing();
}

if (bmath_sqrtf(sqlen) < 20.5f)
i_do_something(j);

• while. Nothing to comment.

• do/while. Not allowed. Use for or while.

• for. For infinite loops, use for(;;) instead of while(TRUE), as it avoids warnings in
some compilers. Since there are ANSI-C based compilers, such as MSVC++ 8.0, we
do not use variable declarations inside the for(), a feature that was introduced
in C99.

Use of for
/* Infinite loop */
for(;;)
{

...
}

/* Will not work in some compilers (not used) */
for (uint32_t i = 0; i < 1024; ++i)
{

...
}

/* Ok */
uint32_t i = 0;
...
for (i = 0; i < 1024; ++i)
{

...
}

• switch. It is only used to discriminate between the values of an enum. Any other
data type will NEVER be evaluated in a switch nor will an enum be discriminated
within an if/else construct. The compiler can drastically optimize the performance
of a build with these features.

Use of switch

4.4 - Functions 37

switch(align) {
case ekTOP:

...
break;

case ekBOTTOM:
...
break;

case ekLEFT:
...
break;

case ekRIGHT:
...
break;

cassert_default();
}

4.4. Functions
• A function can return nothing (void), a basic type, or a pointer.

• Input parameters are always const even if they are simple types passed by value.

• Any input parameter that is not of basic type will be passed by pointer. Never a
structure by value.

• For the output parameters, pointers will always be used. In C there are no references.

Parameters in functions.
uint32_t myfunc(const uint32_t input1, const Layout *input2, V2Df *output1

↪→ , real32_t *output2);

• The number of public functions should be kept to a minimum, which will be declared
in the *.h and defined in the *.c.

• Supporting (or private) functions will be defined static, inside the *.c module and
will have no declaration.

Public function.
/* layout.h */
void layout_hsize(Layout *layout, const uint32_t col, const real32_t wid);

/* layout.c */
void layout_hsize(Layout *layout, const uint32_t col, const real32_t wid)
{

38 Chapter 4 - Use of C

i_LineDim *dim = NULL;
cassert_no_null(layout);
cassert_msg(wid >= 0.f, "Column 'width' must be positive.");
dim = arrst_get(layout>lines_dim[0], col, i_LineDim);
cassert_no_null(dim);
dim>forced_size = wid;

}

Private function. It can only be called inside layout.c.
/* layout.c */
static Cell *i_get_cell(Layout *lay, const uint32_t c, const uint32_t r)
{

register uint32_t position = UINT32_MAX;
cassert_no_null(lay);
cassert(c < arrst_size(lay>lines_dim[0], i_LineDim));
cassert(r < arrst_size(lay>lines_dim[1], i_LineDim));
position = r * arrst_size(lay>lines_dim[0], i_LineDim) + c;
return arrst_get(lay>cells, position, Cell);

}

4.5. Scopes

Variables are declared at the beginning of a block and cannot be mixed with statements,
unless we open a new scope. Declarations mixed with statements is a C++ feature added
to the C99 standard, but not all C compilers support it. Yes, it is allowed to initialize a
variable by calling a function.

Variable scopes in C
{

/* Ok! */
uint32_t var1 = 5;
uint32_t var2 = i_get_value(stm);
uint32_t var3 = i_get_value(stm);

i_add_values(var1, var2, var3);

/* Error in C90 compilers */
uint32_t var4 = 6;

/* Ok! */
{

uint32_t var4 = 6;
....

}
}

4.6 - Pointers 39

4.6. Pointers

Apart from the advantages of using pointer arithmetic when implementing certain al-
gorithms, in NAppGUI pointers are used essentially in two situations:

• Passing parameters to a function, when said parameter is not a basic type.

Passing of parameters through pointers.
V2Df v1 = v2df(10, 43.5f);
V2Df v2 = v2df(4.8f, val);
V2Df v3 = v2d_addf(&v1, &v2);

/* v2d.h */
V2Df v2d_addf(const V2Df *v1, const V2Df *v2);

• Handling opaque objects. Where the definition of the struct is not available and
therefore the only way to communicate with the object is through functions that
accept a pointer to it.

Use of opaque objects.
const V2Df pt[] = { {4,1}, {2,5}, {3,5}, {4,2}, {0,3} };
Pol2Df *pol = pol2d_createf(pt, 5);
real32_t a = pol2d_areaf(pol);

...
pol2d_destroyf(&pol);

/* pol2d.h */
Pol2Df* pol2d_createf(const V2Df *points, const uint32_t n);

void pol2d_destroyf(Pol2Df **pol);

real32_t pol2d_areaf(const Pol2Df *pol);

Special mention should be made of the function pointers that are widely used in C,
but less so in C++ as the language hides them inside vtables. However, a strategically
placed function pointer can make it easier for us to add specialized functionality to existing
objects, without having to adopt a more purist object-oriented design.

Listing 4.1: Use of function pointers.
typedef struct _shape_t Shape;
typedef void(*FPtr_draw)(const Shape*, DCtx *ctx);

struct _shape_t
{

ArrSt(V2Df) *points;
Material *material;

40 Chapter 4 - Use of C

...
FPtr_draw func_draw;

};

static void i_draw_conceptual(const Shape *shape, DCtx *ctx)
{

/* Do simple drawing */
}

static void i_draw_realistic(const Shape *shape, DCtx *ctx)
{

/* Do complex drawing */
}

Shape *shape[N];
Shape *shape[0] = heap_new(Shape);
Shape *shape[1] = heap_new(Shape);
shape[0]>func_draw = i_draw_conceptual;
shape[1]>func_draw = i_draw_realistic;
...

for (i = 0; i < N; ++i)
shape[i]>func_draw(shape[i], ctx);

4.7. Preprocessor

Our standards make heavy use of the preprocessor, especially for type checking at
compile time. This helps to detect errors in the code before running the program (static
analysis), as opposed to the C++ RTTI that does it once it is running (dynamic analysis).

Using the preprocessor to check types.
#define arrst_destroy(array, func_remove, type)\

((void)((array) == (ArrSt(type)**)(array)),\
FUNC_CHECK_REMOVE(func_remove, type),\
array_destroy_imp((Array**)(array), (FPtr_remove)func_remove, (const char_t

↪→ *)(ARRST#type)))

ArrSt(Product) *products = arrst_create(Product);
...
static void i_remove_product(Product *product)
{

}
...

/* 'products' and 'i_remove_product' will be checked at compile time */
arrst_destroy(&products, i_remove_product, Product);

4.8 - Comments 41

Dynamic typing is not necessarily good. You get static errors at runtime, which really
should be catchable at compile time. Rob Pike.

4.8. Comments

In general, the use of comments will be reduced as much as possible. A comment will
be placed at the beginning of each file as a general description. We also use a comment
line as a separator when implementing functions.

stream.c
/* Data streams. Manage connectionoriented communication */

#include "stream.h"
#include "stream.inl"
#include "bfile.h"
#include "bmem.h"
...

/**/

static void i_func1(void)
{

/* Do something */
}

/**/

static void i_func2(void)
{

/* Do something */
}

C++ comments //Comment... are NOT allowed, as they generate warnings in certain
gcc std=gnu90 compilers.

Another aspect that is totally prohibited is the inclusion of documentation blocks
within the source code, not even in the headers themselves. NAppGUI uses ndoc for
documentation tasks, a utility that allows you to create html/pdf documents enriched
with images, cross-references, examples, etc. and that uses its own files totally separated
from the code. Another added advantage is the cleanliness of the *.h headers of all the
modules, where it is very easy to locate what we are looking for.

Documentation blocks are NOT allowed.
/* Forbidden, non used */

42 Chapter 4 - Use of C

/*! Gets the area of the polygon.
\param pol The polygon.
\return The area.

*/
real32_t pol2d_areaf(const Pol2Dd *pol);

Header example in NAppGUI.
/* 2d convex polygon */

#include "geom2d.hxx"

__EXTERN_C

Pol2Df* pol2d_createf(const V2Df *points, const uint32_t n);

Pol2Df* pol2d_copyf(const Pol2Df *pol);

void pol2d_destroyf(Pol2Df **pol);

void pol2d_transformf(Pol2Df *pol, const T2Df *t2d);

const V2Df *pol2d_pointsf(const Pol2Df *pol);

uint32_t pol2d_nf(const Pol2Df *pol);

real32_t pol2d_areaf(const Pol2Df *pol);

bool_t pol2d_ccwf(const Pol2Df *pol);

bool_t pol2d_convexf(const Pol2Df *pol);

__END_C

All comments in NAppGUI are made in English language.

4.9. Input/Output
Input/output is not part of the C language as such. As the language spread in the mid-

1970s, a number of useful routines were grouped together into what became the Standard
C Library. NAppGUI encapsulates all its functionality in “Sewer” (page 149), “Osbs”
(page 166) or “Core” (page 187) generally implementing it as much more direct and efficient
calls to the operating system.

Use of safe I/O functions.
/* Do not use cstdlib in applications */
#include <stdio.h>

4.10 - Mathematical algorithms 43

FILE *fp = fopen("/tmp/test.txt", "w+");
fprintf(fp, "This is testing for fprintf...\n");
fclose(fp);

/* Use NAppGUI functions */
#include "stream.h"
Stream *stm = stm_to_file("/tmp/test.txt", NULL);
stm_printf(stm, "This is testing for stm_printf...\n");
stm_close(&stm);

Use of the Standard C Library is not recommended. Look for the equivalent function
in Sewer, Osbs, or Core.

4.10. Mathematical algorithms
NAppGUI uses C++ templates to implement any function or mathematical algorithm.

With this it is possible to offer float and double versions in an elegant way and with
easy maintenance. The templates are hidden and not exposed in the API, so that their
use remains ANSI-C90 compliant. For more information “Math templatesMath templates”
(page 53).

NAppGUI makes internal use of C++98 template<> to implement everything related
to mathematical calculation.

44 Chapter 4 - Use of C

5C
ha

pt
er

Use of C++

Web servers are written in C, and if they’re not, they’re written in Java or C++, which are C
derivatives, or Python or Ruby, which are implemented in C.

Rob Pike

5.1 Encapsulation 46
5.2 Class callbacks 46
5.3 Combine C and C++ modules 48

5.3.1 Using C from C++ 48
5.3.2 Using C++ from C 48

5.4 new and delete overload 49
5.5 Hello C++ complete 50
5.6 Math templates 53

Object-oriented programming (encapsulation, inheritance and polymorphism) is a very
powerful tool for modeling certain kinds of problems. However, at NAppGUI we believe
that it is wrong to impose a class hierarchy at the SDK level, as this is too low a level. The
SDK is closer to the operating system and the machine than to the real-world problems
solved by applications, where an object-oriented approach may (or may not) be more
successful.

Although NAppGUI has been designed to create applications in “pure” C, it is possible
to use C++ or mix both languages. We’ll give some advice, porting our “Hello World!”
(page 23) application to C++ .

46 Chapter 5 - Use of C++

Figure 5.1: Migration from Hello, world! to C++.

5.1. Encapsulation

NAppGUI does not enforce any class hierarchy, leaving the programmer the freedom
to encapsulate using their own classes. Of course, since C++ includes C, we can call any
SDK C function inside a member function. For example, we can encapsulate the main
window like this.
class MainWindow
{
public:

MainWindow();
~MainWindow();

private:
static void i_OnClose(MainWindow *window, Event *e);
static void i_OnButton(MainWindow *window, Event *e);
Panel *i_panel(void);

Window *window;
TextView *text;
uint32_t clicks;

};

As you can see, relative to the C version, i_panel no longer needs parameters, as it
uses the implicit this pointer to access class members.

5.2. Class callbacks

Event handlers are C functions whose first parameter is a pointer to the object that
receives the message. This works the same way using static functions within a C++ class:
...
static void i_OnClose(MainWindow *window, Event *e);

5.2 - Class callbacks 47

...
window_OnClose(this>window, listener(this, i_OnClose, MainWindow));
...

However, we may want to use member functions as event handlers, using the this pointer
as the receiver. To do this, we derive our MainWindow from the IListener interface and
use the listen macro instead of listener() .
class MainWindow : public IListener
{
...

void i_OnClose(Event *e);
void i_OnButton(Event *e);

...
};

void MainWindow::i_OnButton(Event *e)
{

String *msg = str_printf("Button click (%d)\n", this>clicks);
...

}
...
button_OnClick(button, listen(this, MainWindow, i_OnButton));
...

IListener is a C++ interface that allows you to use class member methods as event
handlers.

It is also possible to direct the event to a different object (and of a different class) than
the control owner. To do this, we indicate the receiver as the first parameter of listen,
as we see below. The click of the close button will be processed in the App class and not
in MainWindow.
class App : public IListener
{
public:

App();
~App();
void i_OnClose(Event *e);

private:
MainWindow *main_window;

};

class MainWindow : public IListener
{
public:

MainWindow(App *app);

48 Chapter 5 - Use of C++

}

MainWindow::MainWindow(App *app)
{

...
window_OnClose(this>window, listen(app, App, i_OnClose));
...

}

void App::i_OnClose(Event *e)
{

osapp_finish();
}

We can establish as event receiver, any object that implements the IListener interface.

5.3. Combine C and C++ modules

A C/C++ project selects the compiler based on the file extension. For *.c the C
compiler will be used and for *.cpp the C++ compiler. The same project can combine
modules in both languages if we consider the following.

5.3.1. Using C from C++
There is no problem if the C header function declarations are between the macros:

__EXTERN_C and __END_C.
__EXTERN_C

real32_t mymaths_add(const real32_t a, const real32_t b);

real32_t mymaths_sub(const real32_t a, const real32_t b);

__END_C

__EXTERN_C and __END_C are aliases for extern "C"{}. This tells the C++ compiler
not to use name manglinga with C functions.

ahttps://en.wikipedia.org/wiki/Name_mangling

5.3.2. Using C++ from C
C does not understand the class keyword and will give a compile error when including

C++ headers. It is necessary to define an interface in C over C++ code.

https://en.wikipedia.org/wiki/Name_mangling

5.4 - new and delete overload 49

mywindow.h
__EXTERN_C

typedef struct _mywin_t MyWindow;

MyWindow *mywindow_create();

void mywindow_move(MyWindow *window, const real32_t x, const real32_t y);

__END_C

mywindow.cpp
class MainWindow
{
public:

MainWindow();
void move(const real32_t x, const real32_t y);

};

MyWindow *mywindow_create()
{

return (MyWindow*)new MainWindow();
}

void mywindow_move(MyWindow *window, const real32_t x, const real32_t y)
{

((MainWindow*)window)>move(x, y);
}

5.4. new and delete overload
C++ uses the new and delete operators to create dynamic instances of objects. We

can make reservations through Heap, the “Heap - Memory manager” (page 188) manager
that NAppGUI incorporates, in order to optimize C++ and control Memory Leaks.
class MainWindow : public IListener
{

...
void *operator new(size_t size)
{

return (void*)heap_malloc((uint32_t)size, "MainWindow");
}

void operator delete(void *ptr, size_t size)
{

heap_free((byte_t**)&ptr, (uint32_t)size, "MainWindow");
}
...

50 Chapter 5 - Use of C++

};

5.5. Hello C++ complete

Listing 5.1: demo/hellocpp/main.cpp
/* NAppGUI C++ Hello World */

#include <nappgui.h>

class App;

class MainWindow : public IListener
{
public:

MainWindow(App *app);
~MainWindow();

void *operator new(size_t size) { return (void*)heap_malloc((uint32_t)size,
↪→ "MainWindow"); }

void operator delete(void *ptr, size_t size) { heap_free((byte_t**)&ptr, (
↪→ uint32_t)size, "MainWindow"); }

private:
void i_OnButton(Event *e);
Panel *i_panel(void);

Window *window;
TextView *text;
uint32_t clicks;

};

/**/

class App : public IListener
{
public:

App();
~App();
void i_OnClose(Event *e);
void *operator new(size_t size) { return (void*)heap_malloc((uint32_t)size,

↪→ "App"); }
void operator delete(void *ptr, size_t size) { heap_free((byte_t**)&ptr, (

↪→ uint32_t)size, "App"); }

private:
MainWindow *main_window;

};

/**/

5.5 - Hello C++ complete 51

void MainWindow::i_OnButton(Event *e)
{

String *msg = str_printf("Button click (%d)\n", this>clicks);
textview_writef(this>text, tc(msg));
str_destroy(&msg);
this>clicks += 1;
unref(e);

}

/**/

Panel *MainWindow::i_panel(void)
{

Panel *panel = panel_create();
Layout *layout = layout_create(1, 3);
Label *label = label_create();
Button *button = button_push();
TextView *textv = textview_create();
this>text = textv;
label_text(label, "Hello!, I'm a label");
button_text(button, "Click Me!");
button_OnClick(button, IListen(this, MainWindow, i_OnButton));
layout_label(layout, label, 0, 0);
layout_button(layout, button, 0, 1);
layout_textview(layout, textv, 0, 2);
layout_hsize(layout, 0, 250);
layout_vsize(layout, 2, 100);
layout_margin(layout, 5);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);
panel_layout(panel, layout);
return panel;

}

/**/

void App::i_OnClose(Event *e)
{

osapp_finish();
unref(e);

}

/**/

MainWindow::MainWindow(App *app)
{

Panel *panel = i_panel();
this>window = window_create(ekWINDOW_STD);
this>clicks = 0;
window_panel(this>window, panel);

52 Chapter 5 - Use of C++

window_title(this>window, "Hello, C++!");
window_origin(this>window, v2df(500, 200));
window_OnClose(this>window, IListen(app, App, i_OnClose));
window_show(this>window);

}

/**/

MainWindow::~MainWindow()
{

window_destroy(&this>window);
}

/**/

App::App(void)
{

this>main_window = new MainWindow(this);
}

/**/

App::~App()
{

delete this>main_window;
}

/**/

static App *i_create(void)
{

return new App();
}

/**/

static void i_destroy(App **app)
{

delete *app;
*app = NULL;

}

/**/

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

5.6 - Math templates 53

5.6. Math templates

In NAppGUI there are two versions for all (Listing 5.2) functions and math types: float
(real32_t) and double (real64_t). We can use one or the other as appropriate in

each case.

Listing 5.2: Cabecera bmath.h (parcial).
/* Math funcions */

#include "osbs.hxx"

__EXTERN_C

real32_t bmath_cosf(const real32_t angle);

real64_t bmath_cosd(const real64_t angle);

real32_t bmath_sinf(const real32_t angle);

real64_t bmath_sind(const real64_t angle);

extern const real32_t kBMATH_PIf;
extern const real64_t kBMATH_PId;
extern const real32_t kBMATH_SQRT2f;
extern const real64_t kBMATH_SQRT2d;

__END_C

All single-precision functions and types end with the suffix “f” and double-precision
types end with “d”.

When we implement more complex geometric or algebraic functions, it is not easy to be
clear in advance what the correct precision is. When in doubt, we can always choose to use
double, but this will have an impact on performance, especially due to the use of memory
bandwidth. Consider the case of 3D meshes with thousands of vertices. It would be great
to have both versions and be able to use one or the other according to each specific case.

Unfortunately the “pure” C language does not allow programming with generic types,
apart from using horrible and endless macros. We will have to implement both versions
(float and double), with the associated maintenance cost. C++ solves the problem
thanks to templates (template<>). The downside is that, normally, we must “open” the
implementation and include it in the .h header, since the compiler does not know how to
generate the machine code until the template is instantiated with a specific data type. .
This is in direct conflict with our “StandardsStandards” (page 58), especially in the part
related to information encapsulation. Next we will see how to use C++ templates to get

54 Chapter 5 - Use of C++

the best of both cases: Generic programming, hiding implementations and keeping headers
“clean”.

Just as there is a *.h header for every math module, there is a counterpart *.hpp
usable only from C++ (Listing 5.3) modules.

Listing 5.3: Header bmath.hpp (partial).
/* Math funcions */

#include "osbs.hxx"

template<typename real>
struct BMath
{

static real(*cos)(const real angle);

static real(*sin)(const real angle);

static const real kPI;
static const real kSQRT2;

};

These templates contain pointers to functions, whose implementations are hidden in
bmath.cpp. In (Listing 5.4) we have an example of use.

Listing 5.4: Implementation of a generic algorithm.
#include "bmath.hpp"

template<typename real>
static void i_circle(const real r, const uint32_t n, V2D<real> *v)
{

real a = 0, s = (2 * BMath<real>::kPI) / (real)n;
for (uint32_t i = 0; i < n; ++i, a += s)
{

v[i].x = r * BMath<real>::cos(a);
v[i].y = r * BMath<real>::sin(a);

}
}

This algorithm is implemented within a C++ module (Listing 5.5), but we want to be
able to call it from other modules, both C and C++. To do this we will define the two
types of headers: *.h (Listing 5.6) and *.hpp (Listing 5.7).

Listing 5.5: mymath.cpp. Implementation.
#include "mymath.h"
#include "mymath.hpp"
#include "bmath.hpp"

5.6 - Math templates 55

template<typename real>
static void i_circle(const real r, const uint32_t n, V2D<real> *v)
{

real a = 0, s = (2 * BMath<real>::kPI) / (real)n;
for (uint32_t i = 0; i < n; ++i, a += s)
{

v[i].x = r * BMath<real>::cos(a);
v[i].y = r * BMath<real>::sin(a);

}
}

void mymath_circlef(const real32_t r, const uint32_t n, V2Df *v)
{

i_circle<real32_t>(r, n, (V2D<real32_t>*)v);
}

void mymath_circled(const real64_t r, const uint64_t n, V2Dd *v)
{

i_circle<real64_t>(r, n, (V2D<real64_t>*)v);
}

template<>
void(*MyMath<real32_t>::circle)(const real32_t, const uint32_t, V2D<real32_t>*)

↪→ = i_circle<real32_t>;

template<>
void(*MyMath<real64_t>::circle)(const real64_t, const uint32_t, V2D<real64_t>*)

↪→ = i_circle<real64_t>;

Listing 5.6: mymath.h. Cabecera C.
#include "geom2d.hxx"

__EXTERN_C

void mymath_circlef(const real32_t r, const uint32_t n, V2Df *v);

void mymath_circled(const real64_t r, const uint64_t n, V2Dd *v);

__END_C

Listing 5.7: mymath.hpp. Cabecera C++.
#include "v2d.hpp"

template<typename real>
struct MyMath
{

void (*circle)(const real r, const uint32_t n, V2D<real> *v);
};

56 Chapter 5 - Use of C++

Now we can use our math library in C and C++, both in float and double precision
(Listing 5.8).

Listing 5.8: Using mymaths in generic C++ algorithms.
#include "mymath.hpp"
#include "t2d.hpp"

template<typename real>
static void i_ellipse(const real r1, const real r2, const uint32_t n, V2D<real>

↪→ *v)
{

T2D<real> transform;
T2D<real>::scale(&transform, r1, r2);

MyMath<real>::circle(1, n, v);

for (uint32_t i = 0; i < n; ++i)
T2D<real>::vmult(&transform, &v[i]);

}

6C
ha

pt
er

Error management

There is always one more bug to fix.

Ellen Ullman

6.1 Exhaustive tests 57
6.2 Static analysis 58

6.2.1 Standards 58
6.2.2 Compiler warnings 61

6.3 Dynamic analysis 61
6.3.1 Disabling Asserts 62
6.3.2 Debugging the program 63
6.3.3 Error log 63
6.3.4 Memory auditor 64

Developing software of a certain size and complexity can become a hellish task, if we
do not adopt concrete measures to prevent and quickly locate programming bugs. Next
we will talk about some strategies that we have used in the development of NAppGUI and
that you can apply in your own projects.

6.1. Exhaustive tests
Ensuring that our software is bug free is as “easy” as running a test for each and every

case the (Figure 6.1) program will face.

Already from trivial theoretical examples, we see that we are dealing with an exponential
problem (Figure 6.2), which will overwhelm the resources of any system with relatively
few input variables. Therefore, we can intuit that it will be impossible to guarantee that

58 Chapter 6 - Error management

Figure 6.1: Exhaustive tests
use all possible combinations of
the input data. r=498

a∈(0..12..99)

our software is free of errors since it will not be feasible to reproduce all its use cases.
However, we can define a strategy that helps us minimize the impact that these will have
on the final product, detecting and correcting them as soon as possible.

Figure 6.2: With only 9 input vari-
ables (in range 0..99) the computa-
tional resources will overflow. 1 2 3 4 5 6 7 8 9 Inputs

1009 = 1e+18

6.2. Static analysis
Static analysis is the one that is carried out before executing the program and

consists of two parts: The use of standards where rules and quality controls are applied
during the writing of the code itself. And the compiler warnings that will help us locate
potential compile-time errors.

6.2.1. Standards
The use of standards, understood as rules that we follow when programming, is essential

when it comes to maintaining minimum levels of quality in our (Figure 6.3) projects. If
they are not applied, a program of a certain size will become anarchic, unreadable, difficult
to maintain and difficult to understand. In this scenario it will be easy to add new bugs
as we manipulate the source code.

In reality, it is difficult to differentiate between good and bad standards, since they will
depend on the type of project, programming languages, company philosophy and objectives

6.2 - Static analysis 59

Figure 6.3: Using standards
will reduce the probability of
bugs.

to prioritize. We can see them as a Style Guide that evolves over time hand in hand with
experience. What is truly important is to become aware of their usefulness, define and
apply them. For example, if we decide to name variables with descriptive identifiers in
English and an underscore (product_code), all our code should follow this rule without
exception. Let’s take a look at some of the standards we apply within NAppGUI. They
are not the best nor do they have to adapt to all cases. They are only ours:

• Use a small subset of the language, as we’ve seen in “Use of C” (page 31). For exam-
ple, expressions of the type *((int*)block + i++)= i+1, are totally prohibited.
They are perfectly valid in C but poorly readable and confusing. Some programmers
think that cryptic and compact code is much more maintainable, but we think they
are wrong.

• Comments are prohibited, except on rare occasions and very justified. If something
needs a comment, rewrite it. A comment that even slightly contradicts the code it
is intended to clarify causes more confusion than help. And it is very easy for them
to become obsolete.

• Reduced and clean public interfaces. Header files (*.h) represent a high level of ab-
straction as they reduce the connections between software components (Figure 6.4).
They allow condensing, as an index, hundreds or thousands of lines of code in just
fifteen or twenty public functions. It is completely forbidden to include type defini-
tions (they will go in the *.hxx), comments (of course) and documentation blocks
in .h files.

• Opaque objects. Object definitions (struct _object_t) will be made inside the
implementation files (*.c) and never in the *.h. The objects will be manipulated
with public functions that accept pointers to them, always hiding the fields that
compose them. This point, together with the previous one on interfaces, perfectly
defines the barriers between modules, clearly marking when one problem ends and

60 Chapter 6 - Error management

.c

.h

main.c

.exe

(a)

(b)

(c)

Figure 6.4: The *.h headers provide a high level of abstraction hiding the com-
plexity of the (a) solution. They facilitate horizontal, problem-based development,
as opposed to vertical learning based on (b) APIs. They help the linker reduce the
size of the (c) executable.

another begins.

The first two rules help reduce the internal complexity of a module by making it as
readable and less cryptic as possible. We could enrich them with others about indentation,
style, variable naming, etc. We more or less strictly follow the advice of the great book
The Practice of Programming (Figure 6.5).

Figure 6.5: The Practice of Pro-
gramming by Brian W. Kernighan
and Rob Pike is a good source of in-
spiration for defining your own pro-
gramming style.

6.3 - Dynamic analysis 61

6.2.2. Compiler warnings
The compiler is our great ally when it comes to examining the code for possible (Fig-

ure 6.6) errors. Enabling the highest possible level of warnings is essential to reduce errors
caused by type conversions, uninitialized variables, unreachable code, etc. All projects
built with NAppGUI will trigger the highest level of warnings possible, equivalent to
Wall Wpedantic on all (Figure 6.7) platforms.

Figure 6.6: Fixing all compiler warnings should be a priority.

6.3. Dynamic analysis

Dynamic analysis is performed once the program is running. Here our main weapon
is self-validations, implemented as “Asserts” (page 153) statements. Asserts are checks
distributed throughout the source code, which are evaluated at runtime each time the
program goes through them. If a statement resolves to FALSE, processing will stop and an
(Figure 6.8) informational window will be displayed.

void layout_set_row_margin(Layout *layout, const uint32_t row, const real32_t
↪→ margin)

{
cassert_no_null(layout);
cassert_msg(row < layout>num_rows, "'row' out of range");
...

}

It is also possible to redirect assert statements to standard output or to the Log file.

62 Chapter 6 - Error management

Figure 6.7: NAppGUI enables the
highest level of warnings possible.

Figure 6.8: Window displayed
after activating an assert.

6.3.1. Disabling Asserts
Within the NAppGUI SDK code, more than 5000 assertions have been distributed,

located at strategic points, which constantly evaluate the coherence and integrity of the
software. Obviously, this number will grow after each revision, as more functionality
is integrated. This turns the SDK into a real minefield, where any error in the use of

6.3 - Dynamic analysis 63

the API functions will be automatically notified to the programmer. Depending on the
configuration we are using, the assertions will be activated or deactivated:

• Debug: Assert statements are enabled.

• Release: The sentences assert are disabled.

• ReleaseWithAssert: As the name suggests, turns on all Release optimizations, but
leaves assert statements on.

6.3.2. Debugging the program
When an assert is activated, the program stops right at the check point, showing the

assert confirmation window. If we press the [Debug] button, we will access the call stack
(Figure 6.9), which is the current function call stack, from the main() itself to the current
breakpoint “Stack SegmentStack Segment” (page 162). By browsing the stack we can check
the values of variables and objects at any call level. This will help us identify the source
of the error, as the cause may be a few levels below detection.

Figure 6.9: Call stack while debugging the assertion from the previous example.

6.3.3. Error log
An execution “Log” (page 184) is a file where the program dumps information about

its status or anomalies detected. It can be very useful to know the cause of a failure when
the software has already been distributed and it is not possible to debug it. NAppGUI
automatically creates a log file for each application located in the application data direc-
tory APP_DATA\APP_NAME\log.txt, for example C:\Users\USER\AppData\Roaming\
HelloWorld\log.txt.
[15:42:29] Starting log for 'HelloWorld'
[15:42:29] TextView created: [0x6FFC7A30]

64 Chapter 6 - Error management

[15:42:32] Assertion failed (c:\\nappgui_1_0\\src\\gui\\layout.c:638): "'row'
↪→ out of range"

[15:42:32] Assertion failed (c:\\nappgui_1_0\\src\\core\\array.c:512): "Array
↪→ invalid index"

[15:42:34] You have an execution log in: 'C:\\Users\\USUARIO\\AppData\\Roaming
↪→ \\HelloWorld\\log.txt'

As you can see, the assertions are automatically redirected to the log file. It is possible
to disable this writing by unchecking the 'Write assert info in log' check in the
info window. You can also add your own messages using the log_printf method.
log_printf("TextView created: [0x%X]", view);

6.3.4. Memory auditor
NAppGUI’s memory manager “Heap - Memory manager” (page 188) has an associated

auditor that checks for leaks memory after each execution of each application that uses the
SDK. This is a great advantage over using external utilities, as dynamic memory checks
are being performed always and not in isolated phases of development.
[18:57:33] [OK] Heap Memory Staticstics
[18:57:33] ============================
[18:57:33] Total a/dellocations: 652962, 652962
[18:57:33] Total bytes a/dellocated: 18085221250, 18085221250
[18:57:33] Max bytes allocated: 238229150
[18:57:33] Effective reallocations: (0/1169761)
[18:57:33] Real allocations: 32776 pages of 65536 bytes
[18:57:33] 13271 pages greater than 65536 bytes
[18:57:33] ============================
[18:57:33] Config: Debug
[18:57:33] You have an execution log in: 'C:\Users\USUARIO\AppData\Roaming\

↪→ EuroPlane\log.txt'code.

7C
ha

pt
er

Generate NAppGUI binaries

7.1 Generate static libraries 66
7.2 Generate dynamic libraries 67
7.3 More about CMakeLists.txt 69
7.4 Why nine independent libraries? 70

In “Quick start” (page 5) we already saw how to download, compile and run the ex-
amples from the source code. In this chapter and the next, we’ll dive deeper into the
build process and cross-platform portability. The entire build system of NAppGUI centers
around a single src/CMakeLists.txt (Listing 7.1) script. It will define a solution with
several related projects, as well as their dependencies.

Listing 7.1: src/CMakeLists.txt
cmake_minimum_required(VERSION 2.8.12)
project(NAppGUI)

NAppGUI Build Scripts
get_filename_component(ROOT_PATH ${CMAKE_CURRENT_SOURCE_DIR} PATH)
include(${ROOT_PATH}/prj/CMakeNAppGUI.cmake)

Static libraries
staticLib("sewer" "sewer" "" NRC_NONE)
staticLib("osbs" "osbs" "sewer" NRC_NONE)
staticLib("core" "core" "osbs" NRC_NONE)
staticLib("geom2d" "geom2d" "core" NRC_NONE)
staticLib("draw2d" "draw2d" "geom2d" NRC_NONE)
staticLib("osgui" "osgui" "draw2d" NRC_NONE)
staticLib("gui" "gui" "draw2d" NRC_EMBEDDED)
staticLib("inet" "inet" "core" NRC_NONE)
staticLib("osapp" "osapp" "osgui;gui" NRC_NONE)

66 Chapter 7 - Generate NAppGUI binaries

Executables
desktopApp("Fractals" "demo/fractals" "osapp" NRC_EMBEDDED)
desktopApp("HelloWorld" "demo/hello" "osapp" NRC_EMBEDDED)
desktopApp("HelloCpp" "demo/hellocpp" "osapp" NRC_EMBEDDED)
...

generateSolution()

7.1. Generate static libraries

By default, the CMakeLists.txt will create the static version of the NAppGUI libraries.
If you want to use NAppGUI externally in your projects, you just have to follow these steps:
git clone depth 1 https://github.com/frang75/nappgui_src.git
cd nappgui_src

// Windows
cmake S ./src B ./build
cmake build ./build config Debug
cmake install ./build prefix ./install config Debug

// macOS
cmake G Xcode S ./src B ./build
cmake build ./build config Debug
cmake install ./build prefix ./install config Debug

// Linux
cmake S ./src B ./build DCMAKE_BUILD_CONFIG=Debug
cmake build ./build j 4
cmake install ./build prefix ./install config Debug

In the install folder you will have the binaries and headers:
install
|
+ inc
| |
| + core
| ... |
| + array.h
| ...
+ lib
| |
| + v143_x64
| |
| + Debug
| |
| + core.lib
| ...

7.2 - Generate dynamic libraries 67

+ bin
|
+ v143_x64

|
+ Debug

|
+ Bode.exe
...

• In /install/inc you will find the header files of each library.

• In /install/lib you will find the static libraries (.lib, .a).

• In /install/bin you will find the sample executables.

• v143_x64 identifies the compiler and architecture. See “Compilers and IDEs”
(page 73) for more information about supported compilers, platforms, and archi-
tectures.

• Debug is one of three possible configurations: Debug, Release, ReleaseWithAssert
. “ConfigurationsConfigurations” (page 95)

If you don’t want to compile the sample applications, remove the desktopApp lines
from the script.

7.2. Generate dynamic libraries

To generate the dynamically linked versions (.dll, .so, .dylib) of NAppGUI, edit CMakeLists
.txt, replacing the staticLib commands with dynamicLib . Once this is done, compile
and install using cmake in the same way as in the static case.
cmake_minimum_required(VERSION 2.8.12)
project(NAppGUI)

NAppGUI Build Scripts
get_filename_component(ROOT_PATH ${CMAKE_CURRENT_SOURCE_DIR} PATH)
include(${ROOT_PATH}/prj/CMakeNAppGUI.cmake)

Dynamic libraries
dynamicLib("sewer" "sewer" "" NRC_NONE)
dynamicLib("osbs" "osbs" "sewer" NRC_NONE)
dynamicLib("core" "core" "osbs" NRC_NONE)
dynamicLib("geom2d" "geom2d" "core" NRC_NONE)
dynamicLib("draw2d" "draw2d" "geom2d" NRC_NONE)
dynamicLib("osgui" "osgui" "draw2d" NRC_NONE)
dynamicLib("gui" "gui" "draw2d" NRC_EMBEDDED)
dynamicLib("inet" "inet" "core" NRC_NONE)
dynamicLib("osapp" "osapp" "osgui;gui" NRC_NONE)

68 Chapter 7 - Generate NAppGUI binaries

Executables
desktopApp("Fractals" "demo/fractals" "osapp" NRC_EMBEDDED)
desktopApp("HelloWorld" "demo/hello" "osapp" NRC_EMBEDDED)
desktopApp("HelloCpp" "demo/hellocpp" "osapp" NRC_EMBEDDED)
...

generateSolution()

After installation:

• In /install/inc you will find the header files of each library.

• In /install/lib the symbol import libraries of the .dll (.lib) will be stored,
only on Windows.

• In /install/bin the dynamic libraries .dll, .so, .dylib will be stored together
with the example executables.
11Dec22 19:42 <DIR> .
11Dec22 19:42 <DIR> ..
11Dec22 19:42 <DIR> res
11Dec22 19:42 217,088 osgui.dll
11Dec22 19:42 93,184 casino.dll
11Dec22 19:41 119,808 osbs.dll
11Dec22 19:42 241,152 core.dll
11Dec22 19:42 100,864 osapp.dll
11Dec22 19:42 118,784 inet.dll
11Dec22 19:42 222,208 draw2d.dll
11Dec22 19:42 250,880 gui.dll
11Dec22 19:42 329,728 geom2d.dll
11Dec22 19:41 229,376 sewer.dll
11Dec22 19:42 462,336 DrawImg.exe
11Dec22 19:42 188,416 DrawHello.exe
11Dec22 19:42 129,024 DrawBig.exe
11Dec22 19:42 483,840 GuiHello.exe
11Dec22 19:42 138,240 HelloCpp.exe
11Dec22 19:42 123,904 HelloWorld.exe
11Dec22 19:42 132,096 Die.exe
11Dec22 19:42 124,928 Dice.exe
11Dec22 19:42 152,576 Col2dHello.exe
11Dec22 19:42 126,464 Bricks.exe
11Dec22 19:42 153,088 Products.exe
11Dec22 19:42 159,744 Bode.exe
11Dec22 19:42 127,488 Fractals.exe
11Dec22 19:42 128,000 UrlImg.exe

If you are going to use these libraries in third-party projects, not generated using
CMakeLists.txt, you must previously define these macros in order for the symbols to be
imported correctly.

7.3 - More about CMakeLists.txt 69

#define OSAPP_IMPORT
#define OSGUI_IMPORT
#define DRAW2D_IMPORT
#define GEOM2D_IMPORT
#define CORE_IMPORT
#define OSBS_IMPORT
#define SEWER_IMPORT
#define GUI_IMPORT
#define INET_IMPORT

7.3. More about CMakeLists.txt
NAppGUI simplifies the use of CMake by providing high-level functions, located in

the /prj folder of the distribution. The CMakeLists.txt defines a solution where differ-
ent libraries and related executables coexist through dependencies. After being processed
by CMake this script will create, in the /build folder, the build projects for each plat-
form (VisualStudio, Xcode, Make). Within the script we will work with essentially four
commands:

• staticLib: To create “Static librariesStatic libraries” (page 107).

• dynamicLib: To create “Dynamic librariesDynamic libraries” (page 114).

• desktopApp: To create “Desktop applicationsDesktop applications” (page 99).

• commandApp: To create “Command line applicationsCommand line applications”
(page 103).

In the following example we define a solution that contains a dynamic library and two
applications, one desktop and one command line. Both make use of (depend on) said
dynamic library and NAppGUI (static libraries) for the graphical interface and cross-
platform support.

CMakeLists.txt
#
CMake build script
Copyright (C) 2023 PhysicsLab
See LICENSE.txt for details
#
cmake_minimum_required(VERSION 2.8.12)
project(PhysicsSimulator)

NAppGUI Build Scripts
get_filename_component(ROOT_PATH ${CMAKE_CURRENT_SOURCE_DIR} PATH)
include(${ROOT_PATH}/prj/CMakeNAppGUI.cmake)

NAppGUI static libraries

70 Chapter 7 - Generate NAppGUI binaries

staticLib("sewer" "sewer" "" NRC_NONE)
staticLib("osbs" "osbs" "sewer" NRC_NONE)
staticLib("core" "core" "osbs" NRC_NONE)
staticLib("geom2d" "geom2d" "core" NRC_NONE)
staticLib("draw2d" "draw2d" "geom2d" NRC_NONE)
staticLib("osgui" "osgui" "draw2d" NRC_NONE)
staticLib("gui" "gui" "draw2d" NRC_EMBEDDED)
staticLib("osapp" "osapp" "osgui;gui" NRC_NONE)
staticLib("inet" "inet" "core" NRC_NONE)

User dynamic library
dynamicLib("physics" "physics" "geom2d" NRC_NONE)

Exes
desktopApp("PhysicsSim" "phsim" "osapp;physics" NRC_EMBEDDED)
commandApp("PhysicsTest" "phtest" "core;physics" NRC_NONE)

generateSolution()

• Line 6: Minimum required version of CMake.

• Line 7: Name of the project or solution.

• Lines 10-11: Includes the NAppGUI CMake scripts, located in /prj.

• Lines 14-22: Generate the static libraries that make up NAppGUI.

• Line 25: Generates a dynamic library with the user’s own functions.

• Line 28: Generates a desktop application.

• Line 29: Generates an application by command line.

• Line 31: Processes the solution. This command should be the last one in the script.

7.4. Why nine independent libraries?

NAppGUI provides full cross-platform support at various levels. It is not necessary
to create an application with a graphical interface to take advantage of the advantages it
offers us in terms of code portability. We can develop powerful server-oriented command
line back-end applications. Depending on the level of assistance that each project requires,
we can choose to link these libraries. More information in “NAppGUI API” (page 145).

• “Sewer” (page 149): Basic types, assertions, Unicode, math functions, wrapper on
top of the C standard library.

• “Osbs” (page 166): Operating system services. Portable API on files, directories,
processes, threads, memory, etc.

7.4 - Why nine independent libraries? 71

• “Core” (page 187): Commonly used non-graphical utilities. Memory auditor, data
structures, strings, streams, regular expressions, resources, etc.

• “Geom2D” (page 235): 2D geometry. Transformations, vectors, polygons, collisions,
etc.

• “Draw2D” (page 256): Portable vector drawing API, images and fonts. It can be
used in command line applications, since it is possible to draw in memory and
export to a file or transmit over the network.

• osgui: Low-level access to the user interface elements (widgets or controls) of each
operating system. It is not documented and it is not recommended to use it directly.

• “Gui” (page 297): Composer of user interfaces. Use osgui to render.

• “OSApp” (page 365): Implements the message loop of a desktop application. Only
use it to build applications from scratch. If you only need to create windows in
an existing application, gui will be the top-level dependency.

• “INet” (page 373): Use it if your application is going to use Internet protocols like
HTTP. Valid for command line or desktop applications.

72 Chapter 7 - Generate NAppGUI binaries

8C
ha

pt
er

Compilers and IDEs

It’s hard to write software that runs correctly and efficiently. So once a program works in one
environment, you don’t want to repeat much of the effort if you move it to a different compiler or
processor or operating system. Ideally, it should need no changes whatsoever.

Kernighan & Pike - The Practice of Programming.

8.1 Windows compilers 74
8.1.1 Platform toolset 76
8.1.2 Visual C++ Redistributable 78
8.1.3 WindowsXP support 78
8.1.4 SSE support 79

8.2 macOS compilers 80
8.2.1 Base SDK and Deployment Target 82
8.2.2 xcode-select 83
8.2.3 macOS ARM 84
8.2.4 macOS 32bits 85

8.3 Linux compilers 86
8.3.1 GTK+3 89
8.3.2 Multiple versions of GCC 90
8.3.3 Linux 32bits 91
8.3.4 Linux ARM 92
8.3.5 Eclipse CDT 92
8.3.6 Visual Studio Code 93

8.4 Configurations 95

74 Chapter 8 - Compilers and IDEs

We understand by portability the ability to compile and debug our programs on
platforms other than those on which they were written, without having to touch a single
line of code. By platform we understand the combination of a compiler and a CPU
architecture. For example, v143_x64 refers to Visual Studio 2022 and Intel 64bit. In
(Figure 8.1) we see the different steps in the code migration process.

Git / SVN / Usb drive

C:\nappgui

/Users/fran/nappgui

/home/fran/nappgui

Update / Pull / Copy CMake Build Run / Test / Debug

Figure 8.1: Stages in porting code between platforms.

• Working copy: A copy of the project’s source code must exist on each machine.
Normally this will be done through a version control system (SVN, Git, etc).

• CMake: will create or update a build project from source code using /src/CMakeLists
.txt and the scripts in the /prj directory. This will be done fully automatically.

• Compile: Using Visual Studio, Xcode or GCC, the solution will be compiled and
the libraries and executables included in it will be generated.

• Run/Debug: The binaries can now be run and debugged on the target platform.

8.1. Windows compilers
We can use any version of Visual Studio from 2005 to compile under Windows (Ta-

ble 8.1). As we already saw in “Quick start” (page 5), the first thing we have to do is
launch CMake on the source code:

8.1 - Windows compilers 75

Compiler Platform Minimum O.S.

Visual Studio 2022 v143_x64 (x86) Vista

Visual Studio 2019 v142_x64 (x86) Vista

Visual Studio 2017 v141_x64 (x86) Vista

Visual Studio 2015 v140_x64 (x86) Vista

Visual Studio 2013 v120_x64 (x86) Vista

Visual Studio 2012 v110_x64 (x86) Vista

Visual Studio 2010 v100_x64 (x86) XP

Visual Studio 2008 v90_x64 (x86) XP

Visual Studio 2005 v80_x64 (x86) XP

Table 8.1: Versions of Visual Studio supported by NAppGUI.

cmake G "Visual Studio 16 2019" A x64 T v120 S ./src B ./build

• G is the version of the compiler (or generator in CMake jargon).
G "Visual Studio 17 2022"
G "Visual Studio 16 2019"
G "Visual Studio 15 2017"
G "Visual Studio 14 2015"
G "Visual Studio 12 2013"
G "Visual Studio 11 2012"
G "Visual Studio 10 2010"
G "Visual Studio 9 2008"
G "Visual Studio 8 2005"

• A is Intel 32 or 64 bit architecture:
A x64
A Win32

• T is the Platform Toolset. If you omit this parameter, the last one supported by
the compiler will be taken.
T v143
T v142
T v141
T v140
T v120
T v110

76 Chapter 8 - Compilers and IDEs

// For XP compatibility
T v141_xp
T v140_xp
T v120_xp
T v110_xp
T v100
T v90
T v80

• S: Path where the CMakeLists.txt is located. Usually in the /src directory of
the SDK.

• B: Path where the build projects, binaries and temporary files will be generated.

Support for Visual Studio 8 2005 was removed in CMake 3.12. You must use an
older version of CMake if you are still using VS2005. NAppGUI does NOT work with
versions prior to VS2005.

NAppGUI does not offer support for non-x86, x64 architectures on Windows: ARM,
Itanium, etc.

After running CMake, a VisualStudio solution will appear in the /build folder, NAppGUI
.sln or whatever name is configured in project(NAppGUI) of the CMakeLists.txt.
Open that solution and from Visual Studio, Build>Build Solution to compile Debug
>Start Debugging to debug (Figure 8.2).

To change the version of Visual Studio, select another builder in CMake -G “Visual
Studio 15 2017”, close and reopen the solution.

8.1.1. Platform toolset
Starting with Visual Studio 2010, there is a decoupling between the editor and the

compiler. The term Plaform Toolset identifies the compiler itself, which can continue to
be used with more modern IDEs. If we do not specify anything, CMake will use the default
toolset included in each version of VS, but it can be changed using the T parameter of
CMake (Table 8.2). For example, we can combine Visual Studio 15 2017 with the
VS2013 toolset for Windows XP v120_xp:
cmake G "Visual Studio 16 2019" A Win32 T v120_xp S ./src B ./build

8.1 - Windows compilers 77

Figure 8.2: Debugging application Die in Visual Studio 2010.

Toolset (-T) VS version

v143 Visual Studio 2022

v142 Visual Studio 2019

v141 Visual Studio 2017

v141_xp Visual Studio 2017 (con soporte XP)

v140 Visual Studio 2015

v140_xp Visual Studio 2015 (con soporte XP)

v120 Visual Studio 2013

v120_xp Visual Studio 2013 (con soporte XP)

v110 Visual Studio 2012

v110_xp Visual Studio 2012 (con soporte XP)

v100 Visual Studio 2010

v90 Visual Studio 2008

v80 Visual Studio 2005

78 Chapter 8 - Compilers and IDEs

Toolset (-T) VS version

Table 8.2: Toolset included in every version of VS.

You need to have each version of Visual Studio installed to use its toolset. There are
“light” versions that install the build tools without the development environment.

8.1.2. Visual C++ Redistributable
By default, Visual Studio dynamically links the functions of the C standard library,

which means that the .exe may not work on machines that do not have the VC++ DLLs
(Figure 8.3). This forces applications to include a copy of MSVCRT.dll, VCRUNTIME.dll
, ... or to install the famous Visual C++ Redistributable packages. to ensure that the
application can run smoothly.

Figure 8.3: Error due to missing VC++ .dll.

NAppGUI uses a reduced set of the C library, since it directly accesses the Windows
API whenever possible. For this reason, all applications created with NAppGUI perform a
static link (option /MT) of the necessary functions of the stdlib, avoiding dependencies at
the cost of slightly increasing (a few Kb) the size of the executable. final. This ensures that
applications will run smoothly on all Windows machines without the need for additional
DLLs and without having to install the VC++ Redistributable.

NAppGUI applications do not require the Visual C++ Redistributable. They also do
not use the MFC “Microsoft Foundation Classes” or the .NET platform.

8.1.3. WindowsXP support
Starting with VS2012, the Platform Toolset generates executables that are not compat-

ible with WindowsXP. If we want our applications to run on this system, we must select
the alternative toolset ending in _xp: v141_xp, v140_xp, v120_xp, v110_xp. Or v100,
v90 or v80 (VS2010, 2008, 2005), which do directly support XP (Figure 8.4) .

WindowsXP support has been permanently removed in Visual Studio 2019. There is
no Platform Toolset v142_xp.

8.1 - Windows compilers 79

Figure 8.4: Debugging application Die on WindowsXP with VS2005 (toolset v80).

Cannot create applications with NAppGUI that work on Windows prior to XP.

8.1.4. SSE support
With the Pentium III, Intel introduced an additional instruction set for floating point

operations called SSE Streaming SIMD Extensions. This allows you to optimize mathe-
matical calculations at the cost of losing compatibility, since applications that use SSE
will not work on Pentium II or earlier models. In NAppGUI the v80_x86 and v90_x86
toolsets have been reserved for building applications compatible with older (Table 8.3)
processors. Starting with v100_x86, SSE2 will be used in all toolsets.

Toolset SSE Minimum CPU

v80_x86 x87 (no SSE) Pentium II/AMD K6

v90_x86 SSE Pentium III/AMD Duron

v100_x86 SSE2 Pentium IV/AMD Sempron

v110_x86 SSE2 Pentium IV/AMD Sempron

... SSE2 ...

80 Chapter 8 - Compilers and IDEs

Toolset SSE Minimum CPU

Table 8.3: SSE support

SSE support is only disabled on 32-bit (x86) architectures. All 64-bit (x64) CPUs
incorporate SSE2.

8.2. macOS compilers

To compile for Apple iMac, macBook and macMini we will need CMake and Xcode1

starting with version 3.2.6 (Table 8.4). NAppGUI allows you to build applications that
work on MacOSX 10.6 Snow Leopard and later:

Compiler Minimum O.S. Platform

Xcode 14.1 Ventura sdk13_1_x64 (arm)

Xcode 13.4.1 Monterey sdk12_3_x64 (arm)

Xcode 12.5.1 Big Sur sdk11_5_x64 (arm)

Xcode 11.7 Catalina sdk10_15_x64

Xcode 10.3 Mojave sdk10_14_x64

Xcode 9.4.1 High Sierra sdk10_13_x64

Xcode 8.3.3 Sierra sdk10_12_x64

Xcode 7.3.1 El Capitan sdk10_11_x64

Xcode 6.4 Yosemite sdk10_10_x64

Xcode 6.2 Mavericks sdk10_9_x64

Xcode 5.1.1 Mountain Lion sdk10_8_x64

Xcode 4.6.3 Lion sdk10_7_x64

Xcode 3.2.6 Snow Leopard sdk10_6_x64 (x86)

Table 8.4: Xcode versions supported by NAppGUI.

cmake G "Xcode" DCMAKE_DEPLOYMENT_TARGET="11.0" DCMAKE_ARCHITECTURE="arm64"
↪→ S ./src B ./build

1https://developer.apple.com/xcode/

https://developer.apple.com/xcode/

8.2 - macOS compilers 81

• G always "Xcode". Use xcodeselect to toggle if you have multiple versions
installed.

• DCMAKE_DEPLOYMENT_TARGET. Minimum operating system that will be supported.
Omitting it will set the Base SDK included in the Xcode version.
DCMAKE_DEPLOYMENT_TARGET="13.1" // Ventura
DCMAKE_DEPLOYMENT_TARGET="13.0" // Ventura
DCMAKE_DEPLOYMENT_TARGET="12.4" // Monterey
DCMAKE_DEPLOYMENT_TARGET="12.3" // Monterey
DCMAKE_DEPLOYMENT_TARGET="12.2" // Monterey
DCMAKE_DEPLOYMENT_TARGET="12.0" // Monterey
DCMAKE_DEPLOYMENT_TARGET="11.5" // Big Sur
DCMAKE_DEPLOYMENT_TARGET="11.4" // Big Sur
DCMAKE_DEPLOYMENT_TARGET="11.3" // Big Sur
DCMAKE_DEPLOYMENT_TARGET="11.2" // Big Sur
DCMAKE_DEPLOYMENT_TARGET="11.1" // Big Sur
DCMAKE_DEPLOYMENT_TARGET="11.0" // Big Sur
DCMAKE_DEPLOYMENT_TARGET="10.15" // Catalina
DCMAKE_DEPLOYMENT_TARGET="10.14" // Mojave
DCMAKE_DEPLOYMENT_TARGET="10.13" // High Sierra
DCMAKE_DEPLOYMENT_TARGET="10.12" // Sierra
DCMAKE_DEPLOYMENT_TARGET="10.11" // El Capitan
DCMAKE_DEPLOYMENT_TARGET="10.10" // Yosemite
DCMAKE_DEPLOYMENT_TARGET="10.9" // Mavericks
DCMAKE_DEPLOYMENT_TARGET="10.8" // Mountain Lion
DCMAKE_DEPLOYMENT_TARGET="10.7" // Lion
DCMAKE_DEPLOYMENT_TARGET="10.6" // Snow Leopard

• DCMAKE_ARCHITECTURE. arm64, x64, i386. The arm64 architecture is included
starting with SDK 11.0 Big Sur. i386 was deprecated in macOS 10.13 High Sierra.
DCMAKE_ARCHITECTURE="arm64"
DCMAKE_ARCHITECTURE="x64"
DCMAKE_ARCHITECTURE="i386"

NAppGUI does not support the creation of Apple’s Fat binaries. You must indicate
a single value in this field.

• S: Path where the CMakeLists.txt is located. Usually in the /src directory of
the SDK.

• B: Path where the build projects, binaries and temporary files will be generated.

After running CMake, an Xcode solution will appear in the /build folder, NAppGUI.
xcodeproj or whatever name is configured in project(NAppGUI) of the CMakeLists.
txt. Opening the Xcode solution, we see the different projects that make it up, including
Die and Dice. Select Die in the top left dropdown and then click Play or Product>Run

82 Chapter 8 - Compilers and IDEs

(Figure 8.5). This will compile the program and launch it in debug mode, where we can
set breakpoints to inspect the stack and the values of the variables.

Figure 8.5: Debugging application Die in Xcode.

8.2.1. Base SDK and Deployment Target
Every year, Apple releases a new version of macOS, accompanied by a new SDK and

an update to Xcode that includes the SDK. This is called the Base SDK.

Base SDK is the version included in each new major version of Xcode, which matches
the latest version of the macOS system released on the market.

Apple has a much more restrictive policy than Microsoft regarding the compatibility
of applications with previous versions of the operating system. By default, a program
compiled with SDK 10.14 (macOS Mojave) will not work on the immediately preceding
macOS High Sierra (Figure 8.6).

To avoid this problem, and for applications to work on older macOS, there is the
Deployment Target parameter. Using it will trigger a macro that will override the new
features of the Base SDK. This will allow the program to run on older versions at the cost,
of course, of not having access to the latest iMac features. You will be able to select the
Deployment Target required by your project through the DCMAKE_DEPLOYMENT_TARGET
parameter, as we have already seen in the previous section.

Xcode 14 deprecates Deployment Targets below 10.13 (Figure 8.7). Use Xcode 13 if
you want compatibility with Mac OSX 10.12 Sierra and earlier.

8.2 - macOS compilers 83

Figure 8.6: Die with Base SDK
10.14 will not work on High Sierra.

Figure 8.7: Deployment Target
10.12 deprecated as of Xcode 14.

Xcode 8 deprecates Deployment Targets below 10.9 (Figure 8.8). Use Xcode 7 if you
want compatibility with Mac OSX 10.8 Mountain Lion and earlier.

Figure 8.8: Deployment Target 10.8
deprecated as of Xcode 8.

8.2.2. xcode-select
We have already seen that CMake only offers one generator for Xcode (G "Xcode"),

although it is possible to have multiple versions installed on the same machine, each within
its own bundle Xcode.app. There will always be a default Xcode on the system (the most
recent one) but it can be changed using the xcodeselect utility:

Query the current version of Xcode.
xcodeselect p
/Applications/Xcode.app/Contents/Developer

Changing the active version of Xcode.
sudo xcodeselect s /Applications/Xcode8.app/Contents/Developer

Set the default version of Xcode.
sudo xcodeselect r

84 Chapter 8 - Compilers and IDEs

You will need to run cmake -G “Xcode”... again each time you use xcodeselect
for your project to update the compiler change.

8.2.3. macOS ARM
In November 2020 Apple launches its new line of desktop and laptop computers (iMac,

macBook and macMini) based on the Apple M1 processor with ARM (Figure 8.9) archi-
tecture. Although they are capable of running programs compiled for Intel x64 using the
Rosetta 2 (Figure 8.10) program, the ideal would be to compile our applications for the
new architecture in order to optimize the executables as much as possible.

Figure 8.9: Procesadores M1 de Ap-
ple.

Figure 8.10: Warning Rosetta 2 when trying to run x64 code on an Apple M1.

NAppGUI supports building for the Apple ARM architecture. You just need to include
the DCMAKE_ARCHITECTURE="arm64" option in CMake, as we saw in the previous section.

8.2 - macOS compilers 85

You can compile the M1 architecture from Intel x64 machines, but you won’t be able
to debug the executables.

M1 architecture is only available for Big Sur system (macOS 11.0) and later.

8.2.4. macOS 32bits
Since the macOS High Sierra release, Apple has declared the 32-bit architecture obso-

lete2, issuing notices to users in the case of detecting i386 (Figure 8.11) executables. As
of Xcode 10, (Figure 8.12) cannot be compiled on this architecture.

Figure 8.11: macOS warnings in 32bit applications.

Figure 8.12: Xcode 10 error when trying to compile in 32bit.

Support for 32bit applications is gone for good in macOS Catalina, which only allows
running 64bit applications.

2https://support.apple.com/enus/HT208436

https://support.apple.com/en-us/HT208436

86 Chapter 8 - Compilers and IDEs

This makes some sense since all Intel-based iMac models feature 64-bit processors,
except for a few 2006 models in white polycarbonate that mounted the 32-bit Intel Core
Duo (Figure 8.13) . These iMacs supported Mac OSX 10.6 Snow Leopard at most, with a
64-bit CPU being a fundamental requirement as of 10.7 Lion. To compile without problems
in 32bits you must use, at most, Xcode 6 (Figure 8.14).

Figure 8.13: Only Apple models with Intel 32bit processor.

Figure 8.14: Compilación en 32bits con Xcode 3.2.6 (Snow Leopard).

8.3. Linux compilers

For Linux versions, we will use the gcc (Table 8.5) compiler and the make tool to
generate the binaries, but there is no development environment “ official” as it happens in
Windows and macOS. To carry out an elementary configuration of our equipment, type

8.3 - Linux compilers 87

the following commands in a terminal:
// Development tools
sudo aptget install buildessential
sudo aptget install git
sudo aptget install cmake

// Development libraries
sudo aptget install libgtk3dev
sudo aptget install libglu1mesadev freeglut3dev mesacommondev
sudo aptget install libcurl4openssldev

// GTK Inspector (Ctrl+D when debugging)
gsettings set org.gtk.Settings.Debug enableinspectorkeybinding true

// Check system libraries version
pkgconfig modversion gtk+3.0
3.24.20

pkgconfig modversion libcurl
7.68.0

Minimum O.S. Compiler Toolkit Platform

Ubuntu 22.04 LTS GCC 11.2.0 GTK 3.24.33 gcc11_gtk3_x64

Ubuntu 20.04 LTS GCC 9.3 GTK 3.24.20 gcc9_gtk3_x64

Ubuntu 18.04 LTS GCC 7.5 GTK 3.22.30 gcc7_gtk3_x64

Ubuntu 16.04 LTS GCC 5.4 GTK 3.18.9 gcc5_gtk3_x64 (x86)

Ubuntu 14.04 LTS GCC 4.8.4 GTK 3.10.8 gcc4_8_gtk3_x64 (x86)

Ubuntu 12.04 LTS GCC 4.6.3 GTK 3.4.2 gcc4_6_gtk3_x64 (x86)

Raspbian 11 Bullseye GCC 10.2.1 GTK 3.24.24 gcc10_gtk3_arm64

Raspbian 10 Buster GCC 8.3.0 GTK 3.24.5 gcc8_gtk3_arm

Raspbian 9.1 Strech GCC 6.3.0 GTK 3.22.11 gcc6_gtk3_arm

Raspbian 8.0 Jessie GCC 4.9.2 GTK 3.14.5 gcc4_9_gtk3_arm

Table 8.5: GCC versions supported by NAppGUI.

Just like we did on Windows and macOS, we run cmake to generate the build project:
cmake G "Unix Makefiles" DCMAKE_BUILD_CONFIG="Debug" DCMAKE_ARCHITECTURE="

↪→ x64" DCMAKE_TOOLKIT="GTK3" S ./src B ./build

88 Chapter 8 - Compilers and IDEs

• G always "Unix Makefiles". Additionally, you can create projects for the main
IDEs available in Linux:
G "Unix Makefiles"
G "CodeBlocks Unix Makefiles"
G "CodeLite Unix Makefiles"
G "Sublime Text 2 Unix Makefiles"
G "Kate Unix Makefiles"
G "Eclipse CDT4 Unix Makefiles"

• DCMAKE_BUILD_CONFIG. Unlike Visual Studio and Xcode, Make does not support
the creation of multi-configuration projects. It must be indicated at the time of
generation:
DCMAKE_BUILD_CONFIG="Debug"
DCMAKE_BUILD_CONFIG="Release"
DCMAKE_BUILD_CONFIG="ReleaseWithAssert"

• DCMAKE_ARCHITECTURE. x64, i386, arm, arm64. Cross-compiling is not allowed
on Linux. We must select the same architecture as the host machine. This parameter
can be omitted, it will be set automatically.
DCMAKE_ARCHITECTURE="x64" // Only in Linux Intel 64bits hosts
DCMAKE_ARCHITECTURE="i386" // Only in Linux Intel 32bits hosts
DCMAKE_ARCHITECTURE="arm" // Only in Linux ARM 32bits hosts
DCMAKE_ARCHITECTURE="arm64" // Only in Linux ARM 64bits hosts

• DCMAKE_TOOLKIT. As of today, the only option available is "GTK3", since NAppGUI
does not support other graphical toolkits. This parameter can be omitted, it will be
set automatically.
DCMAKE_TOOLKIT="GTK3"

• S: Path where the CMakeLists.txt is located. Usually in the /src directory of
the SDK.

• B: Path where the build projects, binaries and temporary files will be generated.

After executing cmake we will have, in the /build folder, a series of Makefiles ready
to compile the project.
cmake build ./build j 4

...
[93%] Linking CXX executable ../../Debug/bin/DrawBig
[93%] Linking CXX executable ../../Debug/bin/GuiHello

8.3 - Linux compilers 89

[93%] Built target DrawBig
[94%] Building C object howto/drawhello/CMakeFiles/DrawHello.dir/resgen/

↪→ res_drawhello.c.o
[94%] Linking CXX executable ../../Debug/bin/Col2dHello
[98%] Built target GuiHello
[98%] Building C object howto/drawimg/CMakeFiles/DrawImg.dir/resgen/

↪→ res_drawimg.c.o
[98%] Linking CXX executable ../../Debug/bin/UrlImg
[98%] Linking CXX executable ../../Debug/bin/DrawHello
[98%] Built target Col2dHello
[98%] Linking CXX executable ../../Debug/bin/ColorView
[98%] Built target UrlImg
[98%] Built target DrawHello
[99%] Linking CXX executable ../../Debug/bin/DrawImg
[100%] Built target ColorView
[100%] Built target DrawImg

Once the compilation is finished, we can launch the executables directly from the ter-
minal:

Launch application Die.
./build/demo/die/Debug/Die

If you’re fairly comfortable with gdb, you can try debugging the code directly from the
(Figure 8.15) terminal. Later we will see how to do it using Eclipse and Visual Studio
Code.

Debugging Die with gdb
gdb ./build/demo/die/Debug/Die
(gdb) run
...

8.3.1. GTK+3
Unlike Windows and macOS, Linux supports a multitude of desktop environments based

on different libraries (or toolkits), GTK and Qt being the two most famous. NAppGUI
uses GTK+3 for the graphical part since it is the base of the Gnome, Xfce, Lxde, etc,
(Table 8.6) environments present in many of the most widespread distributions. GTK+3
will be present naturally in all of them, with no other additional dependencies being
necessary. Of course, to compile under GTK+3 we will have to install the developer
version, as we saw at the beginning of this section.

90 Chapter 8 - Compilers and IDEs

Figure 8.15: Debugging Die with GDB from the terminal.

Environment Distributions

Gnome Ubuntu, Debian, Fedora, Red Hat, CentOS, Manjaro, Suse, Arch, ...

Xfce Xubuntu, Debian, Fedora, Manjaro, ...

Lxde Lubuntu, Raspbian, Debian, Fedora, Mandriva, ...

Cinnamon Mint, Debian, Ubuntu, Fedora, OpenSuse, ...

Mate Ubuntu Mate, Mint, Debian, Fedora, OpenSuse, ...

Pantheon Elementary OS

Sugar

Table 8.6: Gtk-based desktop environments.

8.3.2. Multiple versions of GCC
Although every Linux distribution comes with a “canonical” version of GCC, it is possi-

ble to have several installed on the same machine and switch between them much like we did
on macOS with xcodeselect. To do this we will use the Linux updatealternatives
command. We assume that we are on Ubuntu 18.04 LTS:

Version of gcc installed.
gcc version
gcc 7.5.0

8.3 - Linux compilers 91

Install gcc-6
sudo aptget install gcc6 g++6

Register gcc-7 and gcc-6
sudo updatealternatives install /usr/bin/gcc gcc /usr/bin/gcc7 60 slave /

↪→ usr/bin/g++ g++ /usr/bin/g++7
sudo updatealternatives install /usr/bin/gcc gcc /usr/bin/gcc6 50 slave /

↪→ usr/bin/g++ g++ /usr/bin/g++6

Switch to gcc-6.
sudo updatealternatives set gcc /usr/bin/gcc6
gcc version
gcc 6.5.0
g++ version
g++ 6.5.0

Return to the default version of gcc.
sudo updatealternatives auto gcc
gcc version
gcc 7.5.0
g++ version
g++ 7.5.0

8.3.3. Linux 32bits
To compile 32bit applications from a 64bit Ubuntu system it is necessary to install the

multilib package:

sudo aptget install gccmultilib

But there are currently problems3 with cross-compiling that includes the GTK+ library,
so it won’t be possible to use the same machine development to build on both architectures,
just like it does on Windows. Console applications or libraries that do not access GTK
can be compiled in 32bit from a 64bit computer.

It is not possible to compile in 32bits from a 64bit Ubuntu system applications that use
GTK+3. You must use a 32-bit Linux system for this.

3https://ubuntuforums.org/showthread.php?t=2038875

https://ubuntuforums.org/showthread.php?t=2038875

92 Chapter 8 - Compilers and IDEs

8.3.4. Linux ARM
The ARM 4 Advanced RISC Machine architecture is the predominant one in the market

for embedded devices such as smartphones and tablets. Currently, NAppGUI does not offer
support for the development of iOS/Android mobile applications, but it does support other
types of boards that support “desktop” versions of Linux ARM, such as the Raspberry
PI. To port our code to the Raspberry Pi we must follow the same steps as in Ubuntu
Linux (Figure 8.16). Both distributions are based on Debian, so GCC, CMake and Make
are available directly via aptget.

Figure 8.16: Debugging the application Die on a Raspberry Pi.

8.3.5. Eclipse CDT
Working directly with the terminal gives us great flexibility when configuring our own

tools. Going back to the console and typing cmake build ./build j 4 will recom-
pile everything you need. However, using GDB directly will be quite tedious, so the use
of an integrated debugger (or IDE) becomes almost essential. For the development of
NAppGUI we intensively use Eclipse CDT5. This environment will allow us to program
with a methodology similar to that of Visual Studio and Xcode: Set breakpoints, inspect
the stack and variables, search for files within the code directory, multiple edits, massive
searches, etc.

The only difference is that we will have to use the G "Eclipse CDT4 Unix Makefiles
" generator in CMake which, in addition to the Makefile, will create the . cproject
and .project required to import the project into Eclipse.

Open Eclipse and do File>Import>Existing Projects into Workspace. A di-
4https://en.wikipedia.org/wiki/ARM_architecture
5https://www.eclipse.org/cdt/

https://en.wikipedia.org/wiki/ARM_architecture
https://www.eclipse.org/cdt/

8.3 - Linux compilers 93

alog box will appear where we indicate the build directory that we have configured in
CMake (/build). Eclipse will open the project, placing a tree with all the files on the left
and we will compile with Project>Build All. When debugging (Die in this case) we
will create a profile from Run>Debug Configurations>C/C++ Application. Click
[Search Project...] and select Die from the dropdown list. Finally we press [Debug]
to debug the application interactively (Figure 8.17).

Figure 8.17: Debugging application Die with Eclipse.

Some interesting Eclipse CDT options under Window>Preferences.

• Run/Debug->Launching->Terminate and Relaunch while launching.

Using Eclipse is only a recommendation. You have total freedom to use the tools that
you consider best.

8.3.6. Visual Studio Code
Another interesting environment to develop on Linux is Visual Studio Code. With the

appropriate extensions, it is possible to work in C/C++ with CMake in a very comfortable
and fluid way. To install it:
sudo aptget install code

We added, at a minimum, the C/C++ Extension Pack which will also include
support for CMake (Figure 8.18).

We open our project with Open Folder. Later, we run CMake from the environment

94 Chapter 8 - Compilers and IDEs

Figure 8.18: C/C++ Extension Pack.

itself: [F1]>CMake:Configure. The first time, VSCode will ask for the location of the
CMakeLists.txt main (Figure 8.19) (/src/CMakeLists.txt).

Figure 8.19: Selection of the main CMakeLists.txt of the project.

After the configuration we can compile with [F1]>CMake:Build. In the Output tab
of VSCode we will see the evolution of the process:
[build] [97%] Building C object demo/die/CMakeFiles/Die.dir/resgen/res_die.c.o
[build] [98%] Built target Bode
[build] [98%] Building C object demo/products/CMakeFiles/Products.dir/products

8.4 - Configurations 95

↪→ .c.o
[build] [98%] Built target Fractals
[build] [98%] Building C object demo/products/CMakeFiles/Products.dir/prview.c

↪→ .o
[build] [99%] Linking CXX executable ../../Debug/bin/Die
[build] [100%] Building C object demo/products/CMakeFiles/Products.dir/resgen/

↪→ res_products.c.o
[build] [100%] Built target Die
[build] [100%] Linking CXX executable ../../Debug/bin/Products
[build] [100%] Built target Products

To debug, the first thing is to select the target (or executable) with [F1]>CMake:Set
Debug Target (Figure 8.20).

Figure 8.20: Selection of the executable to debug.

And we launch the debugger with [F1]>CMake:Debug (Figure 8.21).

8.4. Configurations
A NAppGUI application can be compiled in three different configurations, depending

on the level of debugging we need.

• Debug: Includes debugging information in the binaries and does not perform code
optimizations. It is the developer version.

• Release: Remove debug information and perform all possible optimizations. It is the
version for the user.

• ReleaseWithAssert: It is the Release version, but leaving the “Asserts” (page 153)
statements active. It is aimed at the end user, but in cases where it is necessary to

96 Chapter 8 - Compilers and IDEs

Figure 8.21: Debugging application Die from Visual Studio Code.

obtain detailed information on possible anomalies, at the cost of a decrease in the
overall performance of the program.

Both Visual Studio and Xcode are multi-configuration environments, that is, we can
switch between one and the other directly from the editor itself. In Visual Studio we have
a dropdown at the top of the (Figure 8.22) editor.

Figure 8.22: Config change in Visual Studio.

In Xcode it is a bit more hidden. We do Product>Scheme>Edit Scheme. A popup
window will appear. Select Run>Info>Build Configuration (Figure 8.23).

Unfortunately, Unix make does not support multiple configurations. This forces us to
pass the CMAKE_BUILD_CONFIG (Figure 8.24) property to set the configuration in CMake
before building the Makefiles. We must re-run cmake S ./src B ./build if we
change the configuration, for the new configuration to take effect.

8.4 - Configurations 97

Figure 8.23: Config change in Xcode.

Figure 8.24: Change configuration in CMake (Unix Makefile).

98 Chapter 8 - Compilers and IDEs

9C
ha

pt
er

Create new application

I consider myself a technical person who chose a great project and an excellent way to carry it out.

Linus Torvalds.

9.1 Desktop applications 99
9.2 Adding files 102
9.3 Command line applications 103
9.4 C/C++ Standard 104

In “Quick start” (page 5) and “Generate NAppGUI binaries” (page 65) we have seen
how to obtain the SDK, as well as compile and run the sample applications. Also, in “Hello
World!” (page 23), we learned the basic structure of an application based on NAppGUI.
The time has come to create our own applications, taking advantage of the CMake scripts
included in the /prj folder of the distribution.

If your goal is to use NAppGUI as an external library in your projects, you can skip
this chapter.

9.1. Desktop applications

To create a new desktop application, open the file /src/CMakeLists.txt and add the
following line after # Your projects here!:

src/CMakeLists.txt
Your projects here!
desktopApp("MyNewApp" "myapp" "osapp" NRC_EMBEDDED)

100 Chapter 9 - Create new application

Then, rebuild the solution with CMake and open it with the corresponding IDE:
cmake S ./src B ./build
cmake open ./build

The cmake –open command only works with the Visual Studio and Xcode generators.
In Linux you will have to open it manually with the editor of your choice.

In case the solution was already open, it is possible that the IDE warns you that there
have been changes, for example Visual Studio (Figure 9.1).

Figure 9.1: Warning Visual Studio to reload the solution.

You will see that CMake has created a new project called MyNewApp inside the (Fig-
ure 9.2) solution.

If you compile and run MyNewApp, you’ll notice that it’s nothing but the Hello, World!
(Figure 9.3), since this is the default template for each new desktop application. An
“Application iconApplication icon” (page 140) has also been assigned by default, but we
can customize it later.

Looking in detail at the syntax of the desktopApp command that we just added to the
CMakeLists.txt, we have:
desktopApp("MyNewApp" "myapp" "osapp" NRC_EMBEDDED)

desktopApp(appName path depends nrcMode)

• appName: The name of the application.

• path: Path relative to /src where the project will be located (in this case nappgui_src
/src/myapp). Any path depth is supported. For example, "games/myapp" will
create the project in nappgui_src/src/games/myapp and "demo/games/myapp"
in nappgui_src/src/demo/games/myapp.

• depends: Libraries on which the application depends. At a minimum you will have to
include osapp since this is a desktop application. If the application needs additional

9.1 - Desktop applications 101

Figure 9.2: Project MyNewApp
just added to the solution.

Figure 9.3: Result of compiling and
running MyNewApp.

dependencies, such as self-created libraries, we will write them below separated by
semicolons (eg "osapp;physics;render"). In “Create new library” (page 107) you
have an example of applications with dependencies. Important: You only need to
indicate the first level dependencies. CMake will recursively add the dependencies
of the dependencies.

• nrcMode: How the application’s resources will be managed. For now, we specify
NRC_EMBEDDED. We’ll go deeper into them in the “Resources” (page 129) chapter.

You can create as many applications within the same solution as you want. You just
have to repeat the process, adding new desktopApp() to the CMakeLists.txt script.

102 Chapter 9 - Create new application

9.2. Adding files

Going back to the MyNewApp project, we see that by default only one source code file
(mynewapp.c) is created that contains the entire application. It is very likely that you
want to split the code between different files. Create a pair of new files myfunc.c and
myfunc.h inside nappgui_src/src/myapp from the IDE or directly from the browser.
Open them and add these lines:

myfunc.h
// Example of new header

#include "core.hxx"

real32_t myadd_func(real32_t a, real32_t b);

myfunc.c
// Example of new c file

#include "myfunc.h"

real32_t myadd_func(real32_t a, real32_t b)
{

return a + b;
}

Open mynewapp.c and edit the function i_OnButton.

mynewapp.c
...
static void i_OnButton(App *app, Event *e)
{

real32_t res = myadd_func(56.4f, 23.3f);
textview_printf(app>text, "Button click (%d%.2f)\n", app>clicks, res);
app>clicks += 1;
unref(e);

}
...

Rebuild the solution with cmake S ./src B ./build. The IDE, Visual Studio in
this case, informs us again that there have been changes in the MyNewApp (Figure 9.4)
project. Just press [Reload All].

Recompile and run MyNewApp to see the changes you just made. You can create as
many files and subfolders inside the src/myapp directory as you need to better organize
your code. Always remember to run cmake S ./src B ./build whenever you add or

9.3 - Command line applications 103

Figure 9.4: Visual Studio warns about new files. Press [Reload All].

remove files from the project. CMake will update the solution by “cloning” the directory
structure within the project (MyNewApp in this case).

At this point we recommend that you spend some time researching, compiling, and
testing the examples in the demo and howto folders.

9.3. Command line applications
Similar to the desktop apps seen above, you will be able to create console apps. Open

/src/CMakeLists.txt and add this line after # Your projects here!:

src/CMakeLists.txt
Your projects here!
commandApp("myutil" "utils/myutil" "core" NRC_NONE)

When regenerating the solution with cmake S ./src B ./build, Visual Studio will
prompt you to reload the solution, just like our previous application did. A new project
will have been created in nappgui_src/src/utils/myutil, but this time if you compile
and run it no window will appear. You will only see a message in the Visual Studio console:
Hello world!

If you open myutil.c you will find the code that generated the above output:
/* NAppGUI Console Application */

#include "coreall.h"

int main(int argc, char *argv[])
{

unref(argc);
unref(argv);

104 Chapter 9 - Create new application

core_start();
bstd_printf("Hello world!\n");
core_finish();
return 0;

}

Which is the typical template of a C program, to which the support of the core library
has been included. From here, we can already modify the code and compile. CMake has
already configured everything for us. Let’s go back to the src/CMakeLists.txt to review
the previous line:

src/CMakeLists.txt
commandApp("myutil" "utils/myutil" "core" NRC_NONE)

commandApp(appName path depends nrcMode)

• appName: The name of the application.

• path: Path relative to /src where the project will be located (in this case nappgui_src
/src/utils/myutil).

• depends: Dependencies. A command line application does not require any “mini-
mal” dependencies, as desktop applications do. We recommend including a depen-
dency on “Core” (page 187) (“core”) as it contains a variety of functions that can
make our task easier. However, you can set “Osbs” (page 166) (“osbs”) or even
“Sewer” (page 149) (“sewer”) as minimum requirements.

• nrcMode: NRC_NONE, NRC_EMBEDDED or NRC_PACKED. “Resource distributionRe-
source distribution” (page 137).

It goes without saying that we can add new files and subfolders to the project in a
similar way as we did in desktop applications.

9.4. C/C++ Standard

NAppGUI has been created, almost entirely, in C90 language, adding the fixed type in-
tegers uint32_t, int16_t, ... (<stdint.h>) of C99. For certain parts of the project,
C++98 has been used, but always encapsulated under a C90 interface. Therefore, an ap-
plication or library can be created using only C90, which provides great portability
between platforms and compilers.

In general, compilers allow you to check that your code conforms to certain C/C++
standards, issuing warnings or errors when it doesn’t. By default, each new project created
with desktopApp() or commandApp() will set C90 and C++98 as standards. This way,

9.4 - C/C++ Standard 105

they will be compatible with the entire list of “Compilers and IDEs” (page 73) supported
by NAppGUI.

However, you may want to use a more modern standard for your new projects. In this
case, you must indicate it at the end of the desktopApp or commandApp commands:
desktopApp("MyNewApp" "myapp" "osapp" NRC_EMBEDDED "C17;C++17")

In this case we will indicate that the application MyNewApp will use the C17 and C++17
standards instead of C90 and C++98, which are the default values.

• For the C compiler, the options will be: C90, C99, C11, C17, and C23.

• For the C++ compiler, the options will be: C++98, C++11, C++14, C++17, C++20
and C++23.

If the compiler does not support the indicated language version, the highest supported
one will be set. It is the programmer’s responsibility to use the compilers appropriate
to the chosen standard.

106 Chapter 9 - Create new application

10C
ha

pt
er

Create new library

The only thing that you absolutely have to know, is the location of the library.

Albert Einstein

10.1 Static libraries 107
10.2 Dynamic libraries 114

10.2.1 Advantages of DLLs 116
10.2.2 Disadvantages of DLLs 117
10.2.3 Check links with DLLs 118
10.2.4 Loading DLLs at runtime 121
10.2.5 Location of DLLs 123

10.3 Symbols and visibility 124
10.3.1 Export in DLLs 125
10.3.2 Checking in DLLs 127

The use of libraries will allow us to share common code between several projects. Take
the NAppGUI SDK for example, which has been organized into various static or dynamic
link libraries. For example “Core” (page 187) implements functions related to strings,
streams and data structures that can be reused in different applications.

10.1. Static libraries

To illustrate the use of libraries, we will use two applications included in the NAppGUI
examples: Die (Figure 10.1) and Dice (Figure 10.2). In both you must be able to draw
the silhouette of a dice.

108 Chapter 10 - Create new library

Figure 10.1: Aplicación Die.

Figure 10.2: Application Dice.

The source code for both applications is available at src/demo/diea and src/demo/diceb.
ahttps://github.com/frang75/nappgui_src/tree/main/src/demo/die
bhttps://github.com/frang75/nappgui_src/tree/main/src/demo/dice

It is not very difficult to intuit that we could reuse the parametric drawing routine in
both projects. One way to do this would be to copy the routine from Die to Dice, but
this is not recommended as we would have two versions of the same code to maintain.

https://github.com/frang75/nappgui_src/tree/main/src/demo/die
https ://github.com/frang75/nappgui_src/tree/main/src/demo/dice

10.1 - Static libraries 109

Another option, the most sensible, is to move the drawing function to a library and link
it in both applications. This is very easy to do thanks, again, to CMake. If we open the
src/CMakeLists.txt we will see these three lines:
staticLib("casino" "demo/casino" "draw2d" NRC_EMBEDDED)
desktopApp("Die" "demo/die" "osapp;casino" NRC_EMBEDDED)
desktopApp("Dice" "demo/dice" "osapp;casino" NRC_EMBEDDED)

Where we have used the staticLib() command, which is analogous to desktopApp().
staticLib(libName path depends nrcMode)

• libName: The name of the library.

• path: Path relative to /src where the project will be located (in this case nappgui_src
/src/demo/casino). Just like we saw when creating new apps, any path depth is
supported.

• depends: Library dependencies. As in applications, it is only necessary to indicate
the highest level ones (draw2d in this case). Each library is responsible for linking
with the ones below it. draw2d will include geom2d and so on. In “NAppGUI API”
(page 145) you have the complete dependency graph.

• nrcMode: How the library’s resources will be managed. For now, we specify NRC_EMBEDDED
. We’ll go deeper into them in the “Resources” (page 129) chapter.

• standard: Optionally, you can indicate the “C/C++ StandardC/C++ Standard”
(page 104).

Both Die and Dice have added a dependency on casino (Figure 10.3) via the depends
parameter of the desktopApp() command. In this way, CMake knows that it must link,
in addition to osapp, the casino library, which is where the common code of both projects
is found.

Rebuilding with cmake S ./src B ./build adds the casino library to our solution,
as well as a link to it in both (Figure 10.4) applications.

As it happened when creating a new application, when a library is created, several files
appear by default, which are:

casino.def: File that will define the _casino_api macro needed to export symbols.
More information in “Symbols and visibilitySymbols and visibility” (page 124).

Listing 10.1: demo/casino/casino.def
/* casino library import/export */

#if defined(NAPPGUI_SHARED)
#if defined(NAPPGUI_BUILD_CASINO_LIB)

110 Chapter 10 - Create new library

Figure 10.3: Application
dependency tree, centered
on the casino library.

casinocasino

draw2ddraw2d

DieDie DiceDice

osapposapposapposapp

Figure 10.4: Static casino library,
integrated into the solution.

#define NAPPGUI_CASINO_EXPORT_DLL
#else

#define NAPPGUI_CASINO_IMPORT_DLL
#endif

#endif

#if defined(__GNUC__)
#if defined(NAPPGUI_CASINO_EXPORT_DLL)

#define _casino_api __attribute__((visibility("default")))
#else

10.1 - Static libraries 111

#define _casino_api
#endif

#elif defined(_MSC_VER)
#if defined(NAPPGUI_CASINO_IMPORT_DLL)

#define _casino_api __declspec(dllimport)
#elif defined(NAPPGUI_CASINO_EXPORT_DLL)

#define _casino_api __declspec(dllexport)
#else

#define _casino_api
#endif

#else
#error Unknown compiler

#endif

casino.hxx: Here we will define public types, such as enum or struct. At the moment
casino does not contain public types.

Listing 10.2: demo/casino/casino.hxx
/* casino */

#ifndef __CASINO_HXX__
#define __CASINO_HXX__

#include <draw2d/draw2d.hxx>
#include "casino.def"

/* TODO: Define data types here */

#endif

casino.h: Header file. Here we will write the declaration of general functions. By default,
CMake creates two: casino_start() and casino_finish(), where we would implement
global library start and end code, if necessary.

Listing 10.3: demo/casino/casino.h
/* casino */

#include "casino.hxx"

__EXTERN_C

_casino_api void casino_start(void);

_casino_api void casino_finish(void);

__END_C

casino.c: Implementation of general functions.

112 Chapter 10 - Create new library

Listing 10.4: demo/casino/casino.c
/* casino */

#include "casino.h"

/**/

void casino_start(void)
{

/*TODO: Implement library initialization code here */
}

/**/

void casino_finish(void)
{

/*TODO: Implement library ending code here */
}

Later we create two new files inside src/demo/casino, ddraw.c and ddraw.h where
we will implement the drawing function to to share. We already saw how to “Adding
filesAdding files” (page 102).

Listing 10.5: demo/casino/ddraw.h
/* Die drawing */

#include "casino.hxx"

_casino_api void die_draw(
DCtx *ctx,
const real32_t x,
const real32_t y,
const real32_t width,
const real32_t height,
const real32_t padding,
const real32_t corner,
const real32_t radius,
const uint32_t face);

_casino_api extern const real32_t kDEF_PADDING;

_casino_api extern const real32_t kDEF_CORNER;

_casino_api extern const real32_t kDEF_RADIUS;

Listing 10.6: demo/casino/ddraw.c
/* Die drawing */

10.1 - Static libraries 113

#include "ddraw.h"
#include <draw2d/draw2dall.h>

/**/

static const real32_t i_MAX_PADDING = 0.2f;
const real32_t kDEF_PADDING = .15f;
const real32_t kDEF_CORNER = .15f;
const real32_t kDEF_RADIUS = .35f;

/**/

void die_draw(DCtx *ctx, const real32_t x, const real32_t y, const real32_t
↪→ width, const real32_t height, const real32_t padding, const real32_t
↪→ corner, const real32_t radius, const uint32_t face)

{
color_t white = color_rgb(255, 255, 255);
color_t black = color_rgb(0, 0, 0);
real32_t dsize, dx, dy;
real32_t rc, rr;
real32_t p1, p2, p3;

dsize = width < height ? width : height;
dsize = bmath_floorf(2.f * dsize * padding * i_MAX_PADDING);
dx = x + .5f * (width dsize);
dy = y + .5f * (height dsize);
rc = dsize * (.1f + .3f * corner);
rr = dsize * (.05f + .1f * radius);
p1 = 0.5f * dsize;
p2 = 0.2f * dsize;
p3 = 0.8f * dsize;

draw_fill_color(ctx, white);
draw_rndrect(ctx, ekFILL, dx, dy, dsize, dsize, rc);
draw_fill_color(ctx, black);

if (face == 1 || face == 3 || face == 5)
draw_circle(ctx, ekFILL, dx + p1, dy + p1, rr);

if (face != 1)
{

draw_circle(ctx, ekFILL, dx + p3, dy + p2, rr);
draw_circle(ctx, ekFILL, dx + p2, dy + p3, rr);

}

if (face == 4 || face == 5 || face == 6)
{

draw_circle(ctx, ekFILL, dx + p2, dy + p2, rr);
draw_circle(ctx, ekFILL, dx + p3, dy + p3, rr);

}

114 Chapter 10 - Create new library

if (face == 6)
{

draw_circle(ctx, ekFILL, dx + p2, dy + p1, rr);
draw_circle(ctx, ekFILL, dx + p3, dy + p1, rr);

}
}

What does it really mean that Die and Dice have a dependency on casino? That from
now on none of them can be compiled if there is an error in the casino code, since it is a
fundamental module for both. Within the build project (Visual Studio, Xcode, Makefile,
etc) several things have happened:

• Both applications know where casino is located, so they can do #include "casino
.h" without worrying about its location.

• The binary code of the casino functions will be included in each executable in the
linking process. CMake has already taken care of linking the library with the exe-
cutables.

• Any changes made to casino will force the applications to be recompiled due to the
previous point. Again, the build project will know how to do it in the most efficient
way possible. We just have to run cmake build ./build again to update all the
binaries.

As we noted before, casino also has a dependency on “Draw2D” (page 256), NAppGUI’s
vector drawing library. In turn draw2d depends on geom2d and so on, up to sewer, the
lowest package of the SDK. When you develop a new library you should link it with as
few dependencies as possible, or, in other words, with the lowest level libraries within
the hierarchy that include the necessary functionality. This will improve compilation and
distribution, as well as being a very good working practice.

10.2. Dynamic libraries
Dynamic libraries are essentially the same as static libraries. The only thing that

changes is the way they link to the (Figure 10.5) executable. In the static link, the library
code is added to the executable itself, so the size of the latter will grow. In dynamic linking
the library code is distributed in its own file (.dll, .so, .dylib) and is loaded just before
the executable program.

The process to create dynamic libraries is exactly the same as the static ones. All we
need to do is replace the staticLib() command with dynamicLib() in /src/CMakeLists
.txt.
dynamicLib("casino" "demo/casino" "draw2d" NRC_EMBEDDED)
desktopApp("Die" "demo/die" "osapp;casino" NRC_EMBEDDED)
desktopApp("Dice" "demo/dice" "osapp;casino" NRC_EMBEDDED)

10.2 - Dynamic libraries 115

Figure 10.5: Static or dynamic
casino link.

Die.exeDie.exe

casino.lib

Dice.exeDice.exe

casino.lib

static link

casino.dll

Die.exeDie.exe Dice.exeDice.exe
dynamic link

dynamicLib(libName path depends nrcMode)

The parameters are exactly the same as in staticLib:

• libName: The name of the library.

• path: Path relative to /src where the project will be located.

• depends: Library dependencies.

• nrcMode: How the library’s resources will be managed.

• standard: Optionally, you can indicate the “C/C++ StandardC/C++ Standard”
(page 104).

It is totally valid to create the static and dynamic version of a library. The only
condition is to rename one of them, since it is not possible to have two projects with
the same name in the same solution. Next, we’ve created two versions of casino,
linking each with an executable.

staticLib("casino" "demo/casino" "draw2d" NRC_EMBEDDED)
dynamicLib("casino_d" "demo/casino" "draw2d" NRC_EMBEDDED)

// Use the static version of 'casino'
desktopApp("Die" "demo/die" "osapp;casino" NRC_EMBEDDED)

// Use the dynamic version of 'casino'
desktopApp("Dice" "demo/dice" "osapp;casino_d" NRC_EMBEDDED)

116 Chapter 10 - Create new library

10.2.1. Advantages of DLLs
As we have been able to intuit in the previous example, using DLLs we will reduce the

size of the executables, grouping the common binary code (Figure 10.6), (Figure 10.7).
This is precisely what operating systems do. For example, Die.exe will ultimately need
to access Windows API functions. If all applications were to statically link Windows
binaries, their size would grow inordinately and a lot of space within the file system would
be wasted.

Figure 10.6: The program-
ming examples occupy 6.52 Mb
in their static version.

Figure 10.7: The program-
ming examples occupy 4.08 Mb
in their dynamic version.

Another great advantage of DLLs is memory savings at runtime. For example, if we
load Die.exe, casino.dll will be loaded at the same time. But if we then load Dice.

10.2 - Dynamic libraries 117

exe, both will share the existing copy of casino.dll in memory. However, with static
linking, there would be two copies of casino.lib in RAM: One built into Die.exe and
one from Dice.exe.

10.2.2. Disadvantages of DLLs
The main drawback of using DLLs is the incompatibility that can arise between the

different versions of a library. Suppose we release a first version of the three products:

casino.dll 102,127 (v1)
Die.exe 84,100 (v1)
Dice.exe 73,430 (v1)

A few months later, we released a new version of the Dice.exe application that involves
changes to casino.dll. In that case, the layout of our suite would look like this:

casino.dll 106,386 (v2)*
Die.exe 84,100 (v1)?
Dice.exe 78,491 (v2)*

If we have not been very careful, it is very likely that Die.exe no longer works because
it is not compatible with the new version of the DLL. This problem is causing many
developers head and has been dubbed DLL Hell1. Since in this example we work on
a “controlled” environment we could solve it without too much trouble, creating a new
version of all the applications running under casino.dll(v2).

casino.dll 106,386 (v2)
Die.exe 84,258 (v2)
Dice.exe 78,491 (v2)

This will not always be possible. Now suppose that our company develops only casino.
dll and third parties work on the final products. Now each product will have its production
and distribution cycles (uncontrolled environment) so, to avoid problems, each company
will include a copy of the specific version of the DLL with which their product works. This
could lead to the following scenario:

/Apps/Die
casino.dll 114,295 (v5)
Die.exe 86.100 (v8)

/Apps/Dice
casino.dll 106,386 (v2)
Dice.exe 72,105 (v1)

1https://en.wikipedia.org/wiki/DLL_Hell

https://en.wikipedia.org/wiki/DLL_Hell

118 Chapter 10 - Create new library

Seeing this, we intuit that the benefits of using DLLs are not so good anymore, especially
with regard to space optimization and load times. The fact is that it can get even worse.
Typically, libraries are written to be as generic as possible and to serve many applications.
On many occasions, a given application uses only a few functions from each library it links
to. By using static libraries, the size of the (Figure 10.8) executable can be considerably
reduced, since the linker knows exactly what specific functions the application uses and
adds the code that is strictly necessary. However, using DLLs, we must distribute the
entire library for very few functions that the (Figure 10.9) executable uses. In this case,
you are wasting space and unnecessarily increasing application load times.

Figure 10.8: With static li-
braries the space and load times
of this application are opti-
mized.

Die.exeDie.execasino.libcasino.lib online.libonline.lib

Figure 10.9: With dynamic li-
braries this application occupies
more than it should and its load
times increase.

casino.dllcasino.dll online.dllonline.dllDie.exeDie.exe

10.2.3. Check links with DLLs
When an executable is launched, for example Die.exe, all dynamic libraries linked to

it are loaded into memory (if they don’t already exist). If there are any problems while
loading, the executable will fail to start and the operating system will display some
kind of error.

Links on Windows

Windows will display a (Figure 10.10) error message when it cannot load a DLL asso-
ciated with an executable.

If we want to see which DLLs are linked to an executable, we will use the dumpbin
command.

10.2 - Dynamic libraries 119

Figure 10.10: Error loading
DLL casino.

dumpbin /dependents Die.exe

Dump of file Die.exe

File Type: EXECUTABLE IMAGE

Image has the following dependencies:

casino.dll
KERNEL32.dll
USER32.dll
GDI32.dll
SHELL32.dll
COMDLG32.dll
gdiplus.dll
SHLWAPI.dll
COMCTL32.dll
UxTheme.dll
WS2_32.dll

We see, at the beginning, the dependency with casino.dll. The rest are Windows
libraries related to the kernel and the user interface. In the case that we make a static link
of casino:
staticLib("casino" "demo/casino" "draw2d" NRC_EMBEDDED)
desktopApp("Die" "demo/die" "osapp;casino" NRC_EMBEDDED)

dumpbin /dependents Die.exe

Dump of file Die.exe

File Type: EXECUTABLE IMAGE

Image has the following dependencies:

KERNEL32.dll
USER32.dll
GDI32.dll
SHELL32.dll

120 Chapter 10 - Create new library

COMDLG32.dll
gdiplus.dll
SHLWAPI.dll
COMCTL32.dll
UxTheme.dll
WS2_32.dll

casino.dll no longer appears, having been statically linked inside Die.exe.

Links in Linux

In Linux something similar happens, we will get an error if it is not possible to load a
dynamic library (*.so).
:~/$./Die
./Die: error while loading shared libraries: libcasino.so: cannot open shared

↪→ object file: No such file or directory

To check which libraries are linked to an executable we use the ldd command.
~/$ ldd ./Die
linuxvdso.so.1 (0x00007fff58036000)
libcasino.so => libcasino.so (0x00007f6848bf4000)
libpthread.so.0 => /lib/x86_64linuxgnu/libpthread.so.0 (0x00007f6848bba000)
libgtk3.so.0 => /lib/x86_64linuxgnu/libgtk3.so.0 (0x00007f6848409000)
libgdk3.so.0 => /lib/x86_64linuxgnu/libgdk3.so.0 (0x00007f6848304000)
libpangocairo1.0.so.0 => /lib/x86_64linuxgnu/libpangocairo1.0.so.0 (0

↪→ x00007f68482f2000)
libpango1.0.so.0 => /lib/x86_64linuxgnu/libpango1.0.so.0 (0

↪→ x00007f68482a3000)
libcairo.so.2 => /lib/x86_64linuxgnu/libcairo.so.2 (0x00007f684817e000)
libgdk_pixbuf2.0.so.0 => /lib/x86_64linuxgnu/libgdk_pixbuf2.0.so.0 (0

↪→ x00007f6848156000)
libgio2.0.so.0 => /lib/x86_64linuxgnu/libgio2.0.so.0 (0x00007f6847f75000)
libgobject2.0.so.0 => /lib/x86_64linuxgnu/libgobject2.0.so.0 (0

↪→ x00007f6847f15000)
libglib2.0.so.0 => /lib/x86_64linuxgnu/libglib2.0.so.0 (0x00007f6847dec000)
libm.so.6 => /lib/x86_64linuxgnu/libm.so.6 (0x00007f6847c9d000)
libc.so.6 => /lib/x86_64linuxgnu/libc.so.6 (0x00007f6847aa9000)
...

Where we see that Die depends on libcasino.so. The rest are dependencies of the
Linux kernel, the C standard library, and GTK.

Links on macOS: We use the otool command.
% otool L ./Die.app/Contents/MacOS/Die
@rpath/libcasino.dylib
/System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa
/System/Library/Frameworks/UniformTypeIdentifiers.framework/Versions/A/

↪→ UniformTypeIdentifiers

10.2 - Dynamic libraries 121

/usr/lib/libc++.1.dylib
/usr/lib/libSystem.B.dylib
/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation
/System/Library/Frameworks/CoreGraphics.framework/Versions/A/CoreGraphics
/System/Library/Frameworks/CoreText.framework/Versions/A/CoreText
/System/Library/Frameworks/Foundation.framework/Versions/C/Foundation
/usr/lib/libobjc.A.dylib

10.2.4. Loading DLLs at runtime
Until now, the importation of DLL symbols is resolved at compile time, or rather at

link time. This means that:

• Executables can directly access global variables and functions defined in the DLL.
Returning to the code of Dice.exe, we have:
#include "ddraw.h"
...
static void i_OnRedraw(App *app, Event *e)
{

const EvDraw *params = event_params(e, EvDraw);
color_t green = color_rgb(102, 153, 26);
real32_t w = params>width / 3;
real32_t h = params>height / 2;
real32_t p = kDEF_PADDING;
real32_t c = kDEF_CORNER;
real32_t r = kDEF_RADIUS;
draw_clear(params>ctx, green);
die_draw(params>ctx, 0.f, 0.f, w, h, p, c, r, app>face[0]);
die_draw(params>ctx, w, 0.f, w, h, p, c, r, app>face[1]);
die_draw(params>ctx, 2 * w, 0.f, w, h, p, c, r, app>face[2]);
die_draw(params>ctx, 0.f, h, w, h, p, c, r, app>face[3]);
die_draw(params>ctx, w, h, w, h, p, c, r, app>face[4]);
die_draw(params>ctx, 2 * w, h, w, h, p, c, r, app>face[5]);

}

• Made a #include "ddraw.h", public header of casino.

• die_draw(), kDEF_PADDING, kDEF_CORNER, kDEF_RADIUS have been used.

• The dynamic library casino.dll will be loaded automatically just before Dice.exe.

• The use of static or dynamic version of casino does not imply changes in the code
of Dice. We would just have to change the dependencies inside desktopApp() and
recompile the application.
// Source code in demo/dice has no changes

122 Chapter 10 - Create new library

// Option 1 Static link of casino
staticLib("casino" "demo/casino" "draw2d" NRC_EMBEDDED)
desktopApp("Dice" "demo/dice" "osapp;casino" NRC_EMBEDDED)

// Option 2 Dynamic link of casino
dynamicLib("casino" "demo/casino" "draw2d" NRC_EMBEDDED)
desktopApp("Dice" "demo/dice" "osapp;casino" NRC_EMBEDDED)

However, there is the possibility that the programmer is in charge of loading, unloading
and accessing the symbols of the DLLs at any time. This is known as run-time binding or
symbol-less binding. At src/demo/dice22 we have a new version of Dice:
typedef void(*FPtr_ddraw)(DCtx*, const real32_t, const real32_t, const real32_t

↪→ , const real32_t, const real32_t, const real32_t, const real32_t, const
↪→ uint32_t);

static void i_OnRedraw(App *app, Event *e)
{

const EvDraw *params = event_params(e, EvDraw);
DLib *casino = dlib_open(NULL, "casino_d");
FPtr_ddraw func_draw = dlib_proc(casino, "die_draw", FPtr_ddraw);
color_t green = color_rgb(102, 153, 26);
real32_t w = params>width / 3;
real32_t h = params>height / 2;
real32_t p = *dlib_var(casino, "kDEF_PADDING", real32_t);
real32_t c = *dlib_var(casino, "kDEF_CORNER", real32_t);
real32_t r = *dlib_var(casino, "kDEF_RADIUS", real32_t);
draw_clear(params>ctx, green);
func_draw(params>ctx, 0.f, 0.f, w, h, p, c, r, app>face[0]);
func_draw(params>ctx, w, 0.f, w, h, p, c, r, app>face[1]);
func_draw(params>ctx, 2 * w, 0.f, w, h, p, c, r, app>face[2]);
func_draw(params>ctx, 0.f, h, w, h, p, c, r, app>face[3]);
func_draw(params>ctx, w, h, w, h, p, c, r, app>face[4]);
func_draw(params>ctx, 2 * w, h, w, h, p, c, r, app>face[5]);
dlib_close(&casino);

}

• Line 6 loads the casino_d library.

• Line 7 accesses the die_draw function defined in casino_d.

• Lines 11-13 access public variables of casino_d.

• Lines 15-20 use die_draw via the func_draw pointer.

• Line 21 unloads the casino_d library from memory.

As we can see, this loading at runtime does imply changes to the source code, but it
also brings with it certain advantages that we can take advantage of.

2https://github.com/frang75/nappgui_src/tree/main/src/demo/dice2

https://github.com/frang75/nappgui_src/tree/main/src/demo/dice2

10.2 - Dynamic libraries 123

• The library is loaded when we need it, not at the start of the program. This is why
it is very important that casino_d does not appear as a dependency of Dice2.
dynamicLib("casino_d" "demo/casino" "draw2d" NRC_EMBEDDED)
desktopApp("Dice2" "demo/dice2" "osapp" NRC_EMBEDDED)

• We can have different versions of casino and choose which one to use at runtime.
This is the working mechanism of the plug-ins used by many applications. For exam-
ple, the program Rhinoceros 3D enriches its functionality thanks to new commands
implemented by third parties and added at any time through a system of plugins
(.DLLs) (Figure 10.11).

Figure 10.11: Rhinoceros 3D plug-in system, implemented using DLLs.

10.2.5. Location of DLLs
When the operating system must load a dynamic library, it follows a certain search

order. On Windows systems it searches in this order:

• The same directory as the executable.

• The current working directory.

• El directorio %SystemRoot%\System32.

124 Chapter 10 - Create new library

• The %SystemRoot% directory.

• The directories specified in the PATH environment variable.

On the other hand, on Linux and macOS:

• The directories specified in the environment variable LD_LIBRARY_PATH (Linux) or
DYLD_LIBRARY_PATH (macOS).

• The directories specified in the rpath executable.

• The system directories /lib, /usr/lib, etc.

Here we have a big difference between Windows and Unix, since in the latter it is
possible to add dependency search directories inside the executable. This variable is known
as RPATH and is not available on Windows. To query the value of the RPATH:
// In Linux
~/$ readelf d ./Die | grep RUNPATH
0x000000000000001d (RUNPATH) Library runpath: [${ORIGIN}]

// In macOS
otool l ./Die.app/Contents/MacOS/Die
...
Load command 25

cmd LC_RPATH
cmdsize 40

path @executable_path/../../.. (offset 12)
...

Executables generated by NAppGUI’s CMakeLists.txt automatically set the RPATH
to find dynamic dependencies in the same directory as executables on Linux or bundles
on macOS.

10.3. Symbols and visibility

In the linking process after the compilation of the library, those elements that can
generate machine code or occupy space in the final binary are called symbol. These are
methods, functions, and global variables. Symbols are not considered:

• Type definitions such as enum, struct, or union. They help the programmer to
organize the code and the compiler to validate it, but they do not generate any
binary code. They do not exist from the point of view of the linker.

• Local variables. These are automatically created and destroyed in the “Stack Seg-
mentStack Segment” (page 162) during program execution. They do not exist at link
time.

10.3 - Symbols and visibility 125

On the other hand, all functions and global variables declared as static inside a *.
c module will be considered private symbols not visible in link time and where the
compiler is free to perform optimizations. With this in mind, the code within NAppGUI
is organized as follows:

• *.c: Implementation file. Definition of symbols (functions and global variables).

• *.h: Public header file. Declaration of global functions and variables (extern),
available to the user of the library.

• *.hxx: Declaration of public types: struct, union and enum.

• *.inl: Declaration of functions and private variables. Only modules internal to the
library will have access to these symbols.

• *.ixx: Declaration of private types. Those shared between the modules of the library,
but not with the outside.

If a function is only needed inside a *.c module, it is not included in a *.inl. It will
be marked as static within the *.c itself. This way it will not be visible to the linker
and will allow the compiler to perform optimizations.

In the same way, types that are only used within a specific module will be declared at
the beginning of the *.c and not in the *.ixx.

In favor of code maintainability and scalability, type and function declarations will be
kept as private as possible.

10.3.1. Export in DLLs
When we generate a dynamic link library, in addition to including the public symbols

in one or more *.h headers, we must explicitly mark them as exportable. The export
macro is declared in the *.def file of each library. For example in core.def, the macro
_core_api is defined.

Listing 10.7: core.def
/* Core library import/export */

#if defined(NAPPGUI_SHARED)
#if defined(NAPPGUI_BUILD_CORE_LIB)

#define NAPPGUI_CORE_EXPORT_DLL
#else

#define NAPPGUI_CORE_IMPORT_DLL
#endif

#endif

126 Chapter 10 - Create new library

#if defined(__GNUC__)
#if defined(NAPPGUI_CORE_EXPORT_DLL)

#define _core_api __attribute__((visibility("default")))
#else

#define _core_api
#endif

#elif defined(_MSC_VER)
#if defined(NAPPGUI_CORE_IMPORT_DLL)

#define _core_api __declspec(dllimport)
#elif defined(NAPPGUI_CORE_EXPORT_DLL)

#define _core_api __declspec(dllexport)
#else

#define _core_api
#endif

#else
#error Unknown compiler

#endif

This macro must precede all functions and variables declared in the *.h. Projects based
on /src/CMakeLists.txt will automatically define the CORE_IMPORT and NAPPGUI_SHARED_LIB
macros whenever dynamic libraries are to be generated (exported) or when they are to

be used by an executable (import). In the case of third-party programs (not generated by
/src/CMakeLists.txt) the import macros must be defined (CORE_IMPORT, GUI_IMPORT
, etc) before including the headers.

stream.h
/* Data streams */

#include "core.hxx"

__EXTERN_C

_core_api Stream *stm_from_block(const byte_t *data, const uint32_t size);

_core_api Stream *stm_memory(const uint32_t size);

_core_api Stream *stm_from_file(const char_t *pathname, ferror_t *error);

...

_core_api extern Stream *kSTDIN;

_core_api extern Stream *kSTDOUT;

_core_api extern Stream *kSTDERR;

__END_C

10.3 - Symbols and visibility 127

10.3.2. Checking in DLLs
We can see, from a dynamic library binary, which public symbols it exports. On Win-

dows we will use dumpbin /exports dllname, on Linux nm D soname and on macOS
nm gU dylibname.

Public symbols from core.dll (Windows).
C:\>dumpbin /exports core.dll
2 1 00001000 array_all
3 2 00001010 array_bsearch
4 3 00001090 array_bsearch_ptr
5 4 00001120 array_clear
6 5 000011C0 array_clear_ptr
7 6 00001260 array_copy
8 7 00001340 array_copy_ptr
9 8 00001420 array_create
10 9 00001430 array_delete
11 A 00001530 array_delete_ptr
12 B 00001640 array_destopt
13 C 00001650 array_destopt_ptr
14 D 00001660 array_destroy
15 E 000016F0 array_destroy_ptr
16 F 00001790 array_esize
17 10 000017A0 array_find_ptr
18 11 000017D0 array_get
...

Public symbols from libcore.so (Linux).
$ nm D ./libcore.so
0000000000011f85 T array_all
000000000001305c T array_bsearch
000000000001316d T array_bsearch_ptr
0000000000011832 T array_clear
00000000000118a1 T array_clear_ptr
0000000000011009 T array_copy
000000000001115d T array_copy_ptr
0000000000010fdd T array_create
0000000000012649 T array_delete
000000000001276b T array_delete_ptr
0000000000011668 T array_destopt
0000000000011746 T array_destopt_ptr
00000000000115c3 T array_destroy
00000000000116ad T array_destroy_ptr
0000000000011b87 T array_esize
0000000000012dd3 T array_find_ptr
0000000000011e8c T array_get

Public symbols from libcore.dylib (macOS).

128 Chapter 10 - Create new library

% nm gU ./libcore.dylib
00000000000029f0 T _array_all
0000000000003c90 T _array_bsearch
0000000000003d60 T _array_bsearch_ptr
00000000000024c0 T _array_clear
00000000000025d0 T _array_clear_ptr
0000000000001c20 T _array_copy
0000000000001dd0 T _array_copy_ptr
0000000000001b50 T _array_create
00000000000030f0 T _array_delete
0000000000003350 T _array_delete_ptr
00000000000022f0 T _array_destopt
0000000000002470 T _array_destopt_ptr
0000000000002120 T _array_destroy
0000000000002340 T _array_destroy_ptr
00000000000028b0 T _array_esize
0000000000003980 T _array_find_ptr
00000000000028f0 T _array_get

11C
ha

pt
er

Resources

If we internationalize everything, we end up with rules that stifle freedom and innovation.

Myron Scholes

11.1 Types of resources 129
11.2 Create resources 131
11.3 Internationalization (i18n) 132
11.4 Runtime translation 134
11.5 Edit resources 136
11.6 Manual management 136
11.7 Resource processing 137
11.8 Resource distribution 137
11.9 nrc warnings 139
11.10 Application icon 140

Resources are data that are required by the application but do not reside in the area of
 the executable. In other words, they are not directly accessible through program variables,
but rather have to be pre-loaded before they can be used. The most common are the texts
and images used in the user interface, although any type of file can become a resource
(sounds, fonts, 3d models, html pages, etc). To illustrate its use with a real example, we
are going to use the Die application (Figure 11.1), included in /src/demo/die.

11.1. Types of resources

• Texts: Although it is very easy to include texts in the code as C variables, in
practice this is not advisable for two reasons: The first is that, normally, it is not

130 Chapter 11 - Resources

Figure 11.1: Die Application.

the programmers who They compose the messages that the program displays. By
separating them into a separate file, other team members can review and edit them
without having to directly access the code. The second reason is internationalization.
It is an almost essential requirement today to be able to change the language of the
program and this can involve several members of the team, as well as the fact that
several text strings refer to the same message. Therefore, extracting them from the
source code will be almost essential.

• Images: It is not usual for the program icons to change depending on the language,
although it may be the case. The tricky thing here is transforming a .jpg or .png
file into a C variable (Listing 11.1). You have to serialize the file and paste it into
the code, something very tedious and difficult for the programmer to maintain. It is
preferable to have the images in a separate folder and access them at runtime.

Listing 11.1: Png image embedded in the source code.
const uint32_t IMG_SIZE = 1262;

const byte_t IMG[] = {
0x89, 0x50, 0x4E, 0x47, 0x0D, 0x0A, 0x1A, 0x0A,
0x00, 0x00, 0x00, 0x0D, 0x49, 0x48, 0x44, 0x52,
... };

• Files: Apart from text and images, any file can become a resource. In this case, the
application will receive a block of bytes with its content, which it must know how to
interpret.

11.2 - Create resources 131

11.2. Create resources
If we go to the source directory of the application (/src/demo/die), we see that there

is a folder called /res added by CMake when creating the project. Inside are several
logo.* files with the “Application iconApplication icon” (page 140).

You can also see a folder called /res/res_die which wasn’t created by CMake,
but added later when writing the program. This subfolder is considered a resource pack
and will contain a set of texts, images or files that will be loaded “in bulk” at some point
in the execution. We can create as many packages as necessary depending on the size and
logic of our program.

In large applications, organize your resources in such a way that it is not necessary to
load all of them when starting the application. Certain resources may only be needed
when the user performs some action.

You will see that inside /res/res_die there is a strings.msg whose content is shown
below:

Listing 11.2: Die’s message file.
/* Die strings */
TEXT_FACE Face
TEXT_PADDING Padding
TEXT_CORNER Corner
TEXT_RADIUS Radius
TEXT_ONE One
TEXT_TWO Two
TEXT_THREE Three
TEXT_FOUR Four
TEXT_FIVE Five
TEXT_SIX Six
TEXT_TITLE Die Simulator
TEXT_INFO Move the sliders to change the parametric representation of the

↪→ die face.
TEXT_LANG Language
TEXT_ENGLISH English
TEXT_SPANISH Spanish

Also contains the cards.png image and the spain.png and usa.png (Figure 11.2)
icons.

Each line within the strings.msg file defines a new message consisting of an identifier
(eg TEXT_FACE) followed by the text to be displayed in the program (Face in this case).
Text is considered from the first non-blank character after the identifier to the end of the
line. You don’t need to put it in quotes ("Face") like you do in C:
BILLY Billy "the Kid" was an American Old West outlaw.

132 Chapter 11 - Resources

Figure 11.2: Resource bundle
at src/die/res/res_die.

OTHER Other text.

You also don’t have to use escape sequences (’\\’, ’\”, ...), with the single exception of
'\n' for multi-line messages:
TWO_LINES This is the first line\nAnd this is the second.

The message identifier follows the rules for C identifiers, except that letters must be up-
percase:
_ID1 Ok
0ID2 Wrong!!
id3 Wrong!!
ID3 Ok

Messages accept any Unicode character. We can split the texts into as many *.msg files
as needed and they must be stored in UTF8 format.

Visual Studio does not save files in UTF8 by default. Be sure to do so on every *.msg
that contains non-US-ASCII characters. File>Save As>Save with encoding>
Unicode (UTF8 Without Signature) Codepage 65001.

11.3. Internationalization (i18n)
We have used English as the main language in the program, but we want it to be

translated into Spanish as well. To do this we go back to the /res/res_die folder, where
we see the /es_es subdirectory that contains another strings.msg file. The identifiers in
that file are the same as in /res_die/strings.msg but the texts are in another language.
Depending on the selected language, the program will use one version or another.

Listing 11.3: Die’s message file, translated into Spanish.
/* Die strings */
TEXT_FACE Cara
TEXT_PADDING Margen
TEXT_CORNER Borde

11.3 - Internationalization (i18n) 133

TEXT_RADIUS Radio
TEXT_ONE Uno
TEXT_TWO Dos
TEXT_THREE Tres
TEXT_FOUR Cuatro
TEXT_FIVE Cinco
TEXT_SIX Seis
TEXT_TITLE Simulador de dado
TEXT_INFO Mueve los sliders para cambiar la representación paramétrica de

↪→ la cara del dado.
TEXT_LANG Idioma
TEXT_ENGLISH Inglés
TEXT_SPANISH Español

We must take into account some simple rules when locating resources:

• If the local version of a resource does not exist, the global version of the resource
will be used. CMake will warn if there is untranslated text “nrc warningsnrc
warnings” (page 139).

• Those resources only present in local folders will be ignored. It is imperative that
the global version of each exists.

• Resource “subpackages” are not allowed. Only two levels will be processed: src/
res/packname for globals and src/res/packname/local for locals.

• Resource bundles must have a unique name within the solution. One strategy might
be to prepend the project name: /appname_pack1, libname_pack2, etc.

• Existing resources in the root folder (/res) will be ignored. All resources must be
contained in a package /res/pack1/, /res/pack2/, etc.

• Localized texts must have the same identifier as their global counterpart. Otherwise
they are considered different messages.

• To create a localized version of an image or other file, include it in its corresponding
local folder (e.g. /res/res_die/es_es/cards.png) using the same file name
than the global version.

• To name the localized folders, use the two-letter language code ISO 639-11 (in, is, fr
, de, zh, ...) and, optionally, the two-letter country code ISO-31662 (en_us, en_gb,
...).

1https://en.wikipedia.org/wiki/List_of_ISO_6391_codes
2https://en.wikipedia.org/wiki/ISO_31661

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1

134 Chapter 11 - Resources

11.4. Runtime translation

For each resource bundle, CMake creates a *.h with the same name as the folder:
res_die.h in this case (Listing 11.4) . This file contains the resource identifiers, as well
as a function that allows us to access them res_die_respack(). In (Listing 11.5) we see
the actions to be carried out to use these resources in our program.

Listing 11.4: Header file res_die.h.
/* Automatic generated by NAppGUI Resource Compiler (nrcr1490) */

#include "core.hxx"

__EXTERN_C

/* Messages */
extern ResId TEXT_FACE;
extern ResId TEXT_PADDING;
extern ResId TEXT_CORNER;
extern ResId TEXT_RADIUS;
extern ResId TEXT_ONE;
extern ResId TEXT_TWO;
extern ResId TEXT_THREE;
extern ResId TEXT_FOUR;
extern ResId TEXT_FIVE;
extern ResId TEXT_SIX;
extern ResId TEXT_TITLE;
extern ResId TEXT_INFO;
extern ResId TEXT_LANG;
extern ResId TEXT_ENGLISH;
extern ResId TEXT_SPANISH;

/* Files */
extern ResId CARDS_PNG;
extern ResId SPAIN_PNG;
extern ResId USA_PNG;

ResPack *res_die_respack(const char_t *local);

__END_C

Listing 11.5: Load and use of resources.
#include "res_die.h"

gui_respack(res_die_respack);
gui_language("");
...
label_text(label1, TEXT_FACE);
imageview_image(vimg, CARDS_PNG);
...

11.4 - Runtime translation 135

static void i_OnLang(App *app, Event *e)
{

const EvButton *params = event_params(e, EvButton);
const char_t *lang = params>index == 0 ? "en_us" : "es_es";
gui_language(lang);
unref(app);

}

• Line 1 includes the (Listing 11.4) resource bundle header, which is automatically
generated by CMake.

• Line 3 registers the package in “Gui” (page 297), the library in charge of the graphical
interface. If the application had more resource packs we would add them in the same
way.

• Line 4 sets the default language (English).

• Lines 6 and 7 assign a text and an image to two controls respectively. Identifiers are
defined in "res_die.h", as we just saw.

• Line 13 translates the entire interface in response to a change in the “PopUp”
(page 306) control (Figure 11.3).

Figure 11.3: Translation of the Die application, without destroying
the window or rebooting.

Basically, a call to gui_language, involves coordinating three actions:

• Load the located resources and replace them with the current ones.

• Assign the new texts and images to all the controls and menus of the program.

• Resize the windows and menus, since changing texts and images will influence the
size of the controls.

136 Chapter 11 - Resources

11.5. Edit resources

To add new resource files or delete any of the existing ones, we just have to go to
the res/res_die folder through the file explorer and do it there directly. The *.msg
message files can be edited from within Visual Studio, as CMake includes them within the
(Figure 11.4) IDE. After making any changes to the resource folder or editing a *.msg file,
we must relaunch CMake so that these modifications are integrated back into the project.
After each update, the identifiers of the new resources will be created and those whose
associated resource has disappeared will be deleted, which will cause compilation errors
that will facilitate the correction of the code.

Figure 11.4: Editing resources within Visual Studio.

11.6. Manual management

Although the usual thing will be to delegate the management of resources to the gui
library, it is possible to access the content of the packages directly, as we see in (List-
ing 11.6).

Listing 11.6: Direct access to resources.
#include "res_die.h"

ResPack *pack = res_die_respack("es_es");
...
label_text(label1, respack_text(pack, TEXT_FACE));
imageview_image(vimg, respack_image(pack, CARDS_PNG));
...
respack_destroy(&pack);

• Line 1 includes the resource bundle header.

• Line 3 creates an object with the content of the package in the Spanish language.
Each resource pack will provide its own constructor, whose name will start with the

11.7 - Resource processing 137

name of its xxxx_respack() folder.

• Lines 5 and 6 get a text and an image respectively to assign to interface controls.

• Line 8 destroys the resource bundle, at the end of its use.

There is a big difference between allocating resources using ResId or using respack_
(Listing 11.7) functions. In the first case, the label control will be “sensitive” to language
changes made by gui_language . However, in cases 2 and 3 a constant text has been
assigned to the control, which will not be affected by this function. We will be responsible
for changing the text, if necessary.

Listing 11.7: Different ways to access resources.
label_text(label1, TEXT_FACE);
label_text(label1, respack_text(pack, TEXT_FACE));
label_text(label1, "Face");

The choice of one access mode or another will depend on the requirements of the
program. We remind you that in order to carry out automatic translations, resources
must be registered with gui_respack.

11.7. Resource processing

Let’s see in a little more detail how NAppGUI generates the resource modules. By
setting NRC_EMBEDDED in the desktopApp() command, we tell CMake to process the
resources of the Die project. We can also choose the NRC_PACKED option which we will talk
about next. When we launch CMake, it traverses the subfolders within the res directory
of each project, calling the nrc (NAppGUI Resource Compiler) utility (Figure 11.5). This
program is located in the prj/scripts folder of the SDK distribution. For each resource
bundle, nrc creates two source files (a .c and a .h) and links them to the project. The .h
contains the identifiers and the constructor we’ve seen in (Listing 11.4). For its part, the
.c performs the implementation of the package based on the content of each folder and
the nrcMode mode.

Files created by nrc are considered generated code and are not stored in the src folder
but in the build folder. They will be updated every time CMake is run, regardless of
the platform we are working on. In contrast, the original resource files (located in the
res folder) are considered part of the source code.

11.8. Resource distribution

In the previous chapter, when creating the Visual Studio solution, we indicated that
the constant NRC_EMBEDDED had to be used in the desktopApp() statement inside the

138 Chapter 11 - Resources

nrc

C:\nappgui\src\die

all.c
all.h

C:\nappgui_build\die

resres

allall

Figure 11.5: Processing resources using CMake and nrc.

CMakeLists.txt file. There are two other modes related to resource management that
can be configured separately within each desktopApp() command:

• NRC_NONE: CMake will ignore the contents of the res folder, except for the appli-
cation icon. No resource packs will be generated even if there is content inside this
folder.

• NRC_EMBEDDED: The resources, with all their translations, are embedded as part of
the (Figure 11.6) executable. It is a very interesting option for small or medium-
sized applications, since we will supply the entire program in a single *.exe file. An
installer will not be necessary and we will have the certainty that the software will
not fail due to the lack of some external file. The drawback is that, obviously, the
size of the executable will grow considerably, so it is not advisable in programs with
many resources, very heavy, or with a multitude of translations.

• NRC_PACKED: For each resource package, a *.res file will be created external to
the executable that will be loaded and released at runtime as needed (Figure 11.7).
The advantages of this method are the disadvantages of the previous one and vice
versa: Smaller executables, but with external dependencies (the .res themselves)
that must be distributed together. Memory usage will also be optimized by being
able to load *.res on demand.

Figure 11.6: Distributing a macOS application with embedded resources.

11.9 - nrc warnings 139

Figure 11.7: A distribution of the same macOS app with packed resources.

CMake manages the location of the resource packages for us. On Windows and Linux
applications it will copy all *.res into the executable directory. On macOS it will place
them in the resources folder of the bundle. A very important fact is that we don’t
have to modify the source code when switching from one modality to another. nrc
already takes care of managing the payload based on the package type. It makes sense to
start with NRC_EMBEDDED, and if the project grows, change to NRC_PACKED. We just have
to launch CMake again and recompile the project for the change to take effect.

On Windows and Linux the *.res files must always be installed in the same directory
as the executable. For macOS, CMake generates a distribution-ready bundle and
installs the resource bundles in the /resources directory of that bundle.

11.9. nrc warnings

nrc is a silent script whose work is integrated into the CMake build process, mostly
unnoticed. But there are times when you detect anomalies in the resource directories
and you need to let us know in some way. In these cases a red line will appear in the
CMake console indicating the affected project and package(s) (Figure 11.8). The details
are dumped into the NRCLog.txt file located in the generated resources folder (CMake
displays the full path).

If the bugs are critical, nrc will not be able to generate the *.h and *.c associated
with the package, preventing the application from crashing. can compile (in essence it is
still a compilation error). Other times they are mere warnings that should be fixed, but
they allow you to continue compiling. Specifically, the critical errors that affect nrc are
the following: (we show them in English as they are written in NRCLog.txt).

• MsgError (%s:%d): Comment not closed (%s).

140 Chapter 11 - Resources

Figure 11.8: nrc encountered anomalies while processing resources.

• MsgError (%s:%d): Invalid TEXT_ID (%s).

• MsgError (%s:%d): Unexpected end of file after string ID (%s).

• Duplicate resource id in ’%s’ (%s).

• Can’t load resource file ’%s’.

• Error reading ’%s’ resource directory.

• Error reading ’%s’ subdirectories.

• Error creating ’%s’ header file.

• Error creating ’%s’ source file.

• Error creating ’%s’ packed file.

On the other hand, non-critical warnings:

• Empty message file ’%s’.

• Ignored localized text ’%s’ in ’%s’. Global resource doesn’t exists.

• Ignored localized file ’%s’ in ’%s’. Global resource doesn’t exists.

• There is no localized version of the text ’%s’ in ’%s’.

• Localized directory ’%s’ is empty or has invalid resources.

11.10. Application icon

When we create a new project, CMake sets a default icon for the application, which
it places in the /res directory, with the name logo*. This image will be “embedded” in
the executable and will be used by the operating system to render the application on the
desktop (Figure 11.9). Windows and Linux also use it in the window title bar. We have
three versions:

11.10 - Application icon 141

• logo256.ico: Version for Windows Vista and later. They must include the resolu-
tions: 256x256, 48x48, 32x32 and 16x16.

• logo48.ico: Version for Linux and VisualStudio 2008 and 2005, which do not support
256x256 resolutions. This version only includes: 48x48, 32x32 and 16x16.

• logo.icns: Version for macOS. Resolutions 512x512, 256x256, 128x128, 32x32 and
16x16 both in normal resolution (@1x) and Retina Display (@2x).

Figure 11.9: Application icons on the Windows taskbar.

CMake already takes care of using the appropriate version of the icon depending on
the platform we are compiling on. To change the default icon, open the logo* files with
some graphical editor (Figure 11.10), make the changes, and relaunch CMake. Very
important: do not change the names of the files, they should always be logo256.ico,
logo48.ico and logo.icns.

Figure 11.10: Editing logo.ico.

142 Chapter 11 - Resources

Part 2

Introduction to the API

143

12C
ha

pt
er

NAppGUI SDK

While civilians (i.e., nonprogrammers) often fantasize about winning the lottery, the equivalent
for many programmers is the rare opportunity to create a new library from scratch, without the
constraints that often frustrate their desires to extend and improve an existing library.

Philip J. Schneider - Industrial Light + Magic

12.1 NAppGUI API 145
12.2 Online resources 147
12.3 A little history 147

12.1. NAppGUI API

The NAppGUI implementation has been split into several libraries written in ANSI-C
(C90) with small parts in C++98 (Figure 12.1). The project compiles without problems in
all versions of Visual Studio (since VS2005), Xcode (since 3) and GCC (since 4). It can be
used for developing high-performance applications written in C on Windows, macOS, and
Linux systems. A clear line has been drawn that separates packages oriented to computa-
tion and data access (back-end) from those intended for the presentation or interface layers
(front-end). We have also followed certain “StandardsStandards” (page 58) whose bases
are centralized in the “Sewer” (page 149) library, which, although it does not incorporate
much functionality, does define the basic types and configuration macros common to all
the project.

• Packages that do not contain platform dependent code.

• Packages that contain platform dependent code under a common interface.

146 Chapter 12 - NAppGUI SDK

Figure 12.1: NAppGUI architec-
ture.

osbs

sewer

core

geom2d

draw2d

gui

command
line

desktop

osapp
runloop

inet

• “Sewer” (page 149): Basic types, assertions, Unicode, standard C library, math
functions.

• “Osbs” (page 166): Operating system services. Portable API on files, directories,
processes, threads, memory, etc.

• “Core” (page 187): Commonly used non-graphical utilities. Memory auditor, data
structures, I/O channels, lexical analysis, etc.

• “Geom2D” (page 235): 2D geometry. Transformations, vectors, polygons, collisions,
etc.

• “Draw2D” (page 256): Vector drawing API, images and fonts.

• “Gui” (page 297): High-level user interface composer.

• “OSApp” (page 365): Desktop applications. Message loops.

• “INet” (page 373): Internet protocols and services, such as HTTP.

12.2 - Online resources 147

12.2. Online resources

For obvious reasons of space, it is impossible in this book to include a complete reference
of each and every one of the functions that make up NAppGUI. On the project’s Website1

you will find a detailed feature-by-feature guide, as well as the source code of several sample
applications.

Therefore, please go through this entire section of the book in a leisurely manner, with
the sole purpose of getting a general idea of the structure of the software and the different
parts that compose it.

12.3. A little history

I started working on this project unconsciously, in the middle of 2008 when I was
finishing my studies in Computer Engineering at the University of Alicante. He wanted to
develop a physical systems simulator that would work on both PC-Windows computers and
Apple iMacs without having to duplicate all the work. The technological alternatives of the
time, such as GTK or Qt, did not convince me at all since they were too heavy, complicated
to use and slow, so they would end up tarnishing the quality, elegance and effort that I
was putting into my mathematical calculation algorithms. After spending several months
evaluating different libraries for cross-platform programming, I downloaded some technical
manuals from Apple to program directly in Cocoa, the manzanita manufacturer’s base
technology for developing software on iMac. In the middle of 2010 I started to see the first
results and this was encouraging. I had built an application with my simulator prototype
in just 500Kb (Figure 12.2), in contrast to the 30+Mb of dependencies required by third-
party solutions. The code was compact and clean, the application worked at breakneck
speed and, above all, it had a professional appearance that was somewhat reminiscent of
iMovie, it allowed 3D views to be manipulated like in a video game and provided technical
simulation data in real time. This inspired me to continue working on drawing a barrier
between the reusable part of the application and the part that depends on a specific
technology. This would allow my simulator to be adapted to different computer models
and operating systems.

At the same time, in September 2008 I rejoined the labor market after six years at the
University, a market in which I am still currently (May 2021), although the last few years
I have been working as a freelancer from home, which allows me to organize the agenda
and optimize my time to the maximum. In these years I have not abandoned my personal
project, I have continued working on it part-time simply for pure hobby. Its development
has allowed me to investigate and delve into interesting areas for me and constantly recycle
myself. In 2013 I made my first foray into the world of entrepreneurship as a co-founder
of iMech Technologies, a software company with which I am still linked and whose main

1https://www.nappgui.com

https://www.nappgui.com

148 Chapter 12 - NAppGUI SDK

Figure 12.2: iMech simulator, based on a primitive version of NAppGUI.

objective was the sale of the simulation engine that I had previously created. By not
coming up with a solid marketing strategy, we didn’t achieve our initial goals with iMech,
but we were able to turn it around by adding new customers and it’s still alive today.

In mid-2015 I began to consider the fact that all the technical effort made during
these years has enough entity to become a product by itself. It was then when I created
the NAppGUI project and started migrating all the iMech libraries dedicated to cross-
platform development. Over the last few years I’ve completed support for Cocoa and
included support for Win32 and Gtk+. I have created this documentation in Spanish and
English, with the help of Google translation services.

On December 31, 2019, I upload to GitHub the first public pre-compiled version of
NAppGUI.

In May 2020 I start the development of the first commercial application programmed
entirely with NAppGUI.

On September 8, 2021, I release the source code of NAppGUI on GitHub, making it an
Open Source project under the MIT license.

13C
ha

pt
er

Sewer library

Even the grandest palaces needed sewers.

Tom Lehrer

13.1 Sewer 149
13.1.1 The C standard library 150

13.2 Asserts 153
13.3 Pointers 154
13.4 Unicode 155

13.4.1 UTF encodings 157
13.4.2 UTF-32 157
13.4.3 UTF-16 157
13.4.4 UTF-8 158
13.4.5 Using UTF-8 159

13.5 Maths 160
13.5.1 Random numbers 160

13.6 Standard functions 160
13.7 Standard I/O 161
13.8 Memory 162

13.8.1 Stack Segment 162
13.8.2 Heap Segment 163

13.1. Sewer
Sewer is the first library within the NAppGUI SDK (Figure 13.1). It declares the

basic types, the Unicode support, assertions, pointers safe manipulation, elementary math

150 Chapter 13 - Sewer library

functions, Standard I/O and dynamic memory allocation. It is also used as a “sink” to bury
the unsightly preprocessor macros necessary to configure the compiler, CPU, platforms,
etc. As dependencies only has a few headers of the C standard library:

Figure 13.1: Dependencies of sewer.
See “NAppGUI API” (page 145).

C stdlib

sewer

13.1.1. The C standard library
The C standard library (cstdlib) is not part of the C language, but implements func-

tions of great utility for the developer that solve typical programming problems. Any C
programmer has used it more or less and its study is usually linked to learning the language
itself (Figure 13.2).

Figure 13.2: A complete reference
to the C library is found in the
P.J.Plauger book.

This library is located halfway between the application and system calls and provides
a portable API for file access, dynamic memory, I/O, time, etc (Figure 13.3). It also
implements mathematical functions, conversion, search, string management, etc. In one
way or another, NAppGUI integrates its functionality, so it’s not necessary (or advisable)
to use cstdlib directly in the application layer. The reasons that have motivated this design
decision can be summarized in:

13.1 - Sewer 151

Figure 13.3: The functionality of
the C library has been integrated in
NAppGUI, avoiding its direct use in
applications.

nappgui

CStdLib

Kernel

System Call

Application

• Small differences: Unix-like systems do not support the secure cstdlib versions
implemented by Microsoft (strcpy_s() and others). The use of classical functions
(without the suffix _s) is insecure and will trigger annoying warnings in Visual
Studio.

• Security: Related to the previous one, avoids buffer overflow vulnerabilities in the
processing of memory blocks and strings.

• Duplicity: Much of the functionality of cstdlib is already implemented in osbs
library using direct system calls (files, dynamic memory, I/O, time, etc.)

• Completeness: The cstdlib functions related to files (fopen() and others) do
not include support for directory management. “Files and directories” (page 177)
presents a complete API based on system calls.

• Performance: In certain cases, especially in mathematical functions and memory
management, it may be interesting to change the implementation of cstdlib to an
improved one. All applications will benefit from the change, without having to
modify your code.

• Clarity: The behavior of some cstdlib functions is not entirely clear and can lead
to confusion. For example, strtoul has a very particular functioning that we must
remember every time we use it.
char *s1 = "56";
char *s2 = "asCr";
char *s3 = "467Xd";
int v1, v2, v3;
v1 = strtoul(s1, NULL, 10); // v1 = 4294967240, errno = OK

152 Chapter 13 - Sewer library

v2 = strtoul(s2, NULL, 10); // v2 = 0, errno = OK
v3 = strtoul(s3, NULL, 10); // v3 = 467, errno = OK

• Style: The use of sewer functions does not break the aesthetics of an application
written with NAppGUI.
real32_t a1 = 1.43f;
real64_t a2 = .38;
real32_t c = (real32_t)cosf((float)a1);
real64_t t = (real64_t)tan((double)a2);
...
real32_t c = bmath_cosf(a1);
real64_t t = bmath_tand(a2);

• Independence: NAppGUI internally uses a very small subset of cstdlib functions.
It is possible that in the future we will make our own implementations and completely
disconnect the support of the standard library.

• Static link: If we statically link the standard library, sewer will contain all de-
pendencies internally. This will avoid possible incompatibilities with the runtimes
installed on each machine (the classic Windows VC++ Redistributables). With this
we will be certain that our executables will work, regardless of the version of the
C runtime that exists in each case. If all calls to cstdlib are inside sewer, we free
higher-level libraries from their handling and possible runtime errors related to the
C runtime.

Static link of the cstdlib in Sewer. Doesn’t need the C runtime.
RUNTIME_C_LIBRARY "static"

dumpbin /dependents dsewer.dll

Image has the following dependencies:

KERNEL32.dll

Dynamic binding of the cstdlib in Sewer. Needs to have a specific runtime installed.
RUNTIME_C_LIBRARY "dynamic"

dumpbin /dependents dsewer.dll

Image has the following dependencies:

KERNEL32.dll
VCRUNTIME140D.dll
ucrtbased.dll

13.2 - Asserts 153

To avoid possible bugs or incompatibilities, do not use C Standard Library functions
directly in applications. Always look for an equivalent NAppGUI function.

13.2. Asserts

asserts are sentences distributed by the source code that perform an intensive “Dy-
namic analysisDynamic analysis” (page 61), helping to detect errors at runtime. When
the assert condition becomes FALSE, the program execution stops and a warning window
is displayed (Figure 13.4).

• Use cassert to introduce a dynamic check in your code.

• Use cassert_no_null once you have to access the content of a pointer.
void layout_vmargin(Layout *layout, const uint32_t row, const real32_t

↪→ margin)
{

cassert_no_null(layout);
cassert_msg(row < layout>num_rows, "'row' out of range");
...

}

Figure 13.4: assert window
displayed after a runtime error.

At this time we have three alternatives:

• Debug: Debug the program: Access the call stack, inspect variables, etc. More in
“Debugging the programDebugging the program” (page 63).

• Continue: Continue with the execution, ignoring the assert.

• Exit: Exit the program.

154 Chapter 13 - Sewer library

To avoid showing this window in futher asserts, deactivate the check 'Show this
window in next assert'. Future incidents will be directed to a log file. You can also
omit dumps in this log, deactivating 'Write assert info in log'.

asserts sentences provide very valuable information about program anomalies and
should never be ignored.

In the previous example we have seen a “continuable” assert, that is, the execution of
the program can continue if we press [Continue]. However, as we indicated, they should
not be ignored indefinitely. On the other hand we have the critical asserts (Figure 13.5).
Normally they are related to segment violation problems, where it will not be possible to
continue running the program.

Figure 13.5: Critical assert
caused by null pointer access.

13.3. Pointers
The sewer library provides macros and functions for “safe” pointers manipulation. By

“safe” we mean the fact that the SDK will detect improper pointer access just before a
segment violation occurs. Does it make sense to detect a segment violation if the program is
going to crash anyway? Pre-detection plays a very important role when running automated
tests. Before the inevitable process closing, it will leave a note in the execution log.txt,
indicating the reason for the crash.

• Use ptr_get to get the content of a pointer.
// v2 = NULL
// Segmentation fault
V2Df v1 = *v2;

// "v2 is NULL in file::line"
// will be record in log.txt
// and then, Segmentation fault
V2Df v1 = ptr_get(v2, V2Df);

13.4 - Unicode 155

13.4. Unicode

Unicode is a standard in the computer industry, essentially a table, which assigns a
unique number to each symbol of each language in the world (Figure 13.6). These values
are usually called codepoints and are represented by typing U+ followed by their number
in hexadecimal.

• Use unicode_convers to convert a string from one encoding to another.

• Use unicode_to_u32 to get the first codepoint of a string.

Figure 13.6: Several Unicode
codepoints.

A

á

Ҩ

騗

π

U+0041 Latin capital letter A

U+00E1 Latin small letter a with acute

U+04A8 Cyrillic capital letter Abkhasian Ha

U+9A17 Ideograph to swindle

U+03C0 Greek small letter Pi

Related to its structure, it has 17 planes of 65536 codepoints each (256 blocks of 256
elements) (Figure 13.7). This gives Unicode a theoretical limit of 1114112 characters, of
which 136755 have already been occupied (version 10.0 of June 2017). For real-world
applications, the most important one is Plane 0 called Basic Multilingual Plane (BMP),
which includes the symbols of all the modern languages of the world. The upper planes
contain historical characters and additional unconventional symbols.

...

Plane 0 - BMP

U+0000-U+FFFF

Plane 16

U+100000-U+10FF

U+4200
U+42FF

Figure 13.7: Unicode has 17 planes of 256x256 codepoints each.

The first computers used ASCII American Standard Code for Information Interchange,
a 7-bit code that defines all the characters of the English language: 26 lowercase letters
(without diacritics), 26 uppercase letters, 10 digits, 32 punctuation symbols, 33 codes

156 Chapter 13 - Sewer library

control and a blank space, for a total of 128 positions. Taking the additional bit within a
byte, we will have space for another 128 symbols, but still insufficient for all in the world.
This results in numerous pages of extended ASCII codes, which is a big problem to share
texts, since the same numeric code can represent different symbols according to the ASCII
page used (Figure 13.8).

0 0 0 0 0 0 01 US-ASCIIExtended

Figure 13.8: On each Extended ASCII page, the top 128 codes represent different char-
acters.

Already in the early 90s, with the advent of the Internet, this problem worsened, as
the exchange of information between machines of different nature and country became
something everyday. The Unicode Consortium (Figure 13.9) was constituted in California
in January of 1991 and, in October of the same year, the first volume of the Unicode
standard was published.

Figure 13.9: Full members of the Unicode Consortium.

13.4 - Unicode 157

13.4.1. UTF encodings
Each codepoint needs 21 bits to be represented (5 for the plane and 16 for the displace-

ment). This match very badly with the basic types in computers (8, 16 or 32 bits). For this
reason, three Unicode Translation Format - UTF encodings have been defined, depending
on the type of data used in the representation (Figure 13.10).

Figure 13.10: Encodings to store
21-bit codepoints by elements of 8, 16,
or 32.

0 0 0 0 0 0 000 0 0 0 0 0 000 0 001- - -

Plane (5) Code point (16)

8 16 32

UTF-8 UTF-16 UTF-32

13.4.2. UTF-32
Without any problem, using 32 bits we can store any codepoint. We can also randomly

access the elements of an array using an index, in the same way as the classic ASCII C
(char) strings. The bad news is the memory requirements. A UTF32 string needs four
times more space than an ASCII.
const char32_t code1[] = U"Hello";
const char32_t code2[] = U"áéíóú";
uint32_t s1 = sizeof(code1); /* s1 == 24 */
uint32_t s2 = sizeof(code2); /* s2 == 24 */
for (i = 0; i < 5; ++i)
{ /* Accessing by index */

if (code1[i] == 'H')
return i;

}

13.4.3. UTF-16
UTF16 halves the space required by UTF32. It is possible to store a codepoint per

element as long as we do not leave the 0 plane (BMP). For higher planes, two UTF16
elements (32bits) will be necessary. This mechanism, which encapsulates the higher planes
within the BMP, is known as surrogate pairs.
const char16_t code1[] = u"Hello";
const char16_t code2[] = u"áéíóú";
uint32_t s1 = sizeof(code1); /* s1 == 12 */
uint32_t s2 = sizeof(code2); /* s2 == 12 */
for (i = 0; i < 5; ++i)
{ /* DANGER! Only BMP */

if (code1[i] == 'H')
return i;

158 Chapter 13 - Sewer library

}

To iterate over a UTF16 string that contains characters from any plane, it must be
used unicode_next.

13.4.4. UTF-8
UTF8 is a variable length code where each codepoint uses 1, 2, 3 or 4 bytes.

• 1 byte (0-7F): the 128 symbols of the original ASCII. This is a great advantage,
since US-ASCII strings are valid UTF8 strings, without the need for conversion.

• 2 bytes (80-7FF): Diacritical and Romance language characters, Greek, Cyrillic,
Coptic, Armenian, Hebrew, Arabic, Syriac and Thaana, among others. A total of
1920 codepoints.

• 3 bytes (800-FFFF): Rest of the plane 0 (BMP).

• 4 bytes (10000-10FFFF): Higher planes (1-16).

0000-007F

0080-07FF

0800-FFFF

10000-10FFFF

8

8 8

8 8 8

8 8 8 8

US-ASCII

Latin/European

Others

Higher planes (1-16)

Plane 0
BMP

Figure 13.11: Each character in UTF8 uses 1, 2, 3 or 4 bytes.

More than 90% of websites use UTF8 (august of 20181), because it is the most optimal
in terms of memory and network transmission speed. As a disadvantage, it has associated
a small computational cost to encode/decode, since it is necessary to perform bit-level
operations to obtain the codepoints. It is also not possible to randomly access a specific
character by index, we have to process the entire string.
const char_t code1[] = "Hello";
const char_t code2[] = "áéíóú";
const char_t *iter = code1;
uint32_t s1 = sizeof(code1); /* s1 == 6 */
uint32_t s2 = sizeof(code2); /* s2 == 11 */
for (i = 0; i < 5; ++i)
{

if (unicode_to_u32(iter, ekUTF8) == 'H')
return i;

iter = unicode_next(iter, ekUTF8);
}

1https://w3techs.com/technologies/overview/character_encoding/all

https://w3techs.com/technologies/overview/character_encoding/all

13.4 - Unicode 159

13.4.5. Using UTF-8
UTF8 is the encoding required by all the NAppGUI SDK functions. The

reasons why we have chosen UTF-8 over other encodings have been:

• It is the natural evolution of the US-ASCII.

• The applications will be directly compatible with the vast majority of Internet ser-
vices (JSON/XML).

• In multi-lingual environments the texts will occupy less space. Statistically, the 128
ASCII characters are the most used on average and only need one byte in UTF8.

• As a disadvantage, in applications aimed exclusively at the Asian market (China,
Japan, Korea - CJK), UTF8 is less efficient than UTF16.

Within NAppGUI applications they can cohexist different representations (char16_t,
char32_t, wchar_t). However, we strongly recommend the use of UTF8 in favor
of portability and to avoid constant conversions within the API. To convert any string to
UTF8 the unicode_convers function is used.

wchar_t text[] = L"My label text.";
char_t ctext[128];
unicode_convers((const char_t*)text, ctext, ekUTF16, ekUTF8, 128);

NAppGUI does not offer support for converting pages from Extended ASCII to Unicode.

The Stream object provides automatic UTF conversions when reading or writing to
I/O channels using the methods stm_set_write_utf and stm_set_read_utf. It is also
possible to work with the String type (dynamic strings), which incorporates a multitude
of functions optimized for the UTF8 treatment. We can include constant text strings
directly in the source code (Figure 13.12), although the usual thing will be to write them
in resource files (“Resources” (page 129)). Obviously, we must save both the source and
resource files in UTF8. All current development environments support the option:

• By default, Visual Studio saves the source files in ASCII format (Windows 1252). To
change to UTF8, go to File>Save As>Save with encoding>Unicode (UTF8
Without Signature) Codepage 65001. There is no way to set this configura-

tion for the entire project :-(.

• In Xcode it is possible to establish a global configuration. Preferences>Text
editing>Default Text Encoding>Unicode (UTF8).

• In Eclipse it also allows a global configuration. Window>Preferences>General
>Workspace>Text file encoding.

160 Chapter 13 - Sewer library

Figure 13.12: UTF8 constants in a
C source file.

13.5. Maths

BMath offers a compact interface on the elementary mathematical functions of the C
standard library. It also defines some of the most used constants, such as the number Pi,
conversions between degrees and radians or the root of 2.

• Use bmath_cosf to calculate the cosine of an angle (wrapper over cstdlib cosf()).

• Use bmath_sqrtf to calculate the square root (wrapper over cstdlib sqrtf()).

13.5.1. Random numbers
BMath includes a seed-based pseudo-random number generator. From the same seed,

the sequence of numbers generated will always be the same. The sequences produced by
two different seeds will be radically disparate. Hence they are called pseudo-random.

• Use bmath_rand_seed to set the random number seed.

• Use bmath_randf to get a random floating point number, within an interval.

In the case of multi-threaded applications, this sequence may vary depending on the
order of execution of the threads, since these functions are not re-entrant. You must
use an “environment” of random numbers for each thread in question, in case you need to
always ensure the same sequence (deterministic algorithms).

• Use bmath_rand_env to create a random number safe environment.

• Use bmath_rand_mtf to get a random number from an environment.

13.6. Standard functions

BLib includes useful functions from the C standard library that don’t fit in other mod-
ules like BMath or BMem. As in <stdlib.h> we find text conversion functions, algorithms

13.7 - Standard I/O 161

or interaction with the environment.

• Use blib_strcmp to compare two text strings.

• Use blib_qsort to sort a vector of elements.

• Use blib_bsearch to perform a dichotomous search on an ordered vector.

• Use blib_abort to end program execution.

13.7. Standard I/O

All processes have input and output channels by default, without the need to create
them explicitly. By channels we mean streams or data flows.

• Use bstd_printf to write text to standard output.

• Use bstd_read to read bytes from standard input.

Each running process has three standard communication channels:

• stdin: data input. The process will read data that comes from outside.

• stdout: data output. The process will write results on this channel.

• stderr: error output. The process will write on this channel information regarding
errors.

It’s like having three perpetually open files where the program can read and write
without limits. When we execute a process from the Console or the Terminal, stdin
automatically connects to the keyboard and stdout/stderr to the screen (Figure 13.13).
However, these standard channels can be redirected to use files as input sources or output
destinations:
dir > out.txt
ls > out.txt
sort < out.txt

Figure 13.13: Executing a process
from the Terminal.

Terminal

child

stdin

stdout

stderr

parent

162 Chapter 13 - Sewer library

In this code snippet, the result of the command dir (ls in Unix) has been redirected
to the file out.txt, so we will not see anything on the screen. On the other hand, the
command sort it does not wait for the user to enter through the keyboard. Simply
taking the file out.txt, sorting its lines. Therefore, whenever we write applications on
the command line, we should conveniently use these standard channels without making
presumptions from where the information processed by the application comes from or
where it goes.

13.8. Memory

From the programmer perspective, access to memory is done through variables and
manipulated through the language operators (+, -, *, =, ...) and always in the same way,
regardless of how the variables were created or in what memory zone they are hosted.
Within bmem.h we have several functions to make copies, assignments or checks of generic
memory blocks. This module also defines functions for dynamic memory manipulation
(Heap).

• Use bmem_malloc to reserve a dynamic memory block.

• Use bmem_free to free a block of dynamic memory.

• Use bmem_copy to copy the contents of two memory blocks, previously reserved.

13.8.1. Stack Segment
The memory of a compiled and running C program is divided into several segments.

One of them is the stack, a space of variable but limited size, where local variables and
function calls (call stack) are stored. It grows and shrinks as the process enters and leaves
areas or functions (Figure 13.14). It is automatically managed by the compiler as a LIFO
Last-in First-out structure, so it goes unnoticed most of the time, since it does not require
extra attention from the programmer. We are aware of its existence when receiving the
Stack Overflow error, usually caused by infinite recursion or the reservation of very large C
vectors (Listing 13.1). The debugger allows us to inspect the state of the stack at execution
time “Debugging the programDebugging the program” (page 63).

Listing 13.1: Two simple cases that cause the stack overflow.
int func(int n) { func(n); } // Stack Overflow

float v[2000000]; // Stack Overflow

While the use of the stack is ideal due to its high performance, security and ease of
use, sometimes falls short. On the one hand, it is necessary to foresee in the design time
the amount of memory needed and define it statically (eg. struct Product pr[100];),

13.8 - Memory 163

void func(int a, int b)
{
 int i;
 char str[10];

 i = 5;
 str[0] = 'A';
}

int main()
{
 int g = 5;
 func(1, 2);
 g = 10;
}

g=5

func

a=1

b=2

i=5

str=’A’

g=5 g=10

(a)

(b)

(a)

(c)

(b)

(c)

Figure 13.14: Stack state in different points of the program.

something very inflexible when it comes to building real applications. On the other hand,
variables are destroyed when closing a scope or leaving a function, which prevents sharing
data globally.

13.8.2. Heap Segment
The heap is a memory zone that the process can request on demand, through calls to

the system. It is complementary to the stack and is characterized by:

• It can be accessed globally, from any point of the program through a pointer.

• The amount of available memory is practically unlimited.

• It is less efficient than the stack.

• Requires management. Operating systems provide functions for requesting dynamic
memory blocks (HeapAlloc(), sbrk()), being the responsibility of the process, or
rather the programmer, to release these blocks when they are no longer needed.

As allocations and de-allocations can be made in any order, internal fragmentation
occurs as the program progresses (Figure 13.15). Here would come into play the so-called
memory manager, which are algorithms that allow optimizing the use of the heap by
compacting it and reusing the released blocks. The standard C library provides the familiar
functions malloc()/free(), which implement a generic memory manager through system
calls.

NAppGUI implements its own dynamic memory manager/auditor “Heap - Memory
manager” (page 188) very optimized to serve numerous requests of small size, which
is what applications demand normally. bmem_malloc/bmem_free connect to the op-
erating system through system calls and should not be used directly.

164 Chapter 13 - Sewer library

Figure 13.15: Fragmentation of the
heap during the execution of the pro-
cess.

16
16 32
16 32 24
16 32 24
16 8 24
16 8 24 32
16 8 24 32

14C
ha

pt
er

Osbs library

There is no neat distinction between operating system software and the software that runs on top
of it.

Jim Allchin

14.1 Osbs 166
14.2 Processes 167

14.2.1 Launching processes 167
14.2.2 Multi-processing examples 168

14.3 Threads 170
14.3.1 Throwing threads 171
14.3.2 Shared variables 171
14.3.3 Multi-thread example 172

14.4 Mutual exclusion 175
14.4.1 Locks 175

14.5 Loading libraries 175
14.5.1 Library search paths 176
14.5.2 Search order in Windows 176
14.5.3 Search order on Linux/macOS 177

14.6 Files and directories 177
14.6.1 File System 177
14.6.2 Files and data streams 178
14.6.3 Filename and pathname 178
14.6.4 Home and AppData 179

14.7 Sockets 179
14.7.1 Client/Server example 180

14.8 Time 183

166 Chapter 14 - Osbs library

14.9 Log 184

14.1. Osbs

osbs (Operating System Basic Services) is a portable wrapper that allows applications
to communicate with the operating system core at the level of processes, memory, files
and networks. This communication is carried out through a series of system calls (Fig-
ure 14.1) which vary according to the operating system for which we are programming. It
is the non-graphic lowest level API to communicate with hardware devices and access the
machine resources. Below are the device drivers managed directly by the kernel, to which
applications have access denied.

Portable API

System calls

Kernel

osbsosbs

SchedulerScheduler

ProcessesProcesses MemoryMemory File systemsFile systems NetworkingNetworking

M.ManagerM.Manager DriversDrivers

CPUCPU RAMRAM Disk & CDDisk & CD NetcardNetcard

Figure 14.1: System calls are the gateway to the operating system kernel.

Darwin, the macOS kernel, and Linux are Unix-like systems, therefore, they share the
same system calls (with subtle differences). But Windows presents a radically different
architecture and function set. The NAppGUI osbs library is nothing more than a small
wrapper that internally handles these differences and provides a common way to access the
same resources on different platforms (Figure 14.2). It only depends on “Sewer” (page 149)
and its functionalities have been divided into different modules:

• “Processes” (page 167), “Threads” (page 170), “Mutual exclusion” (page 175).

• “Loading libraries” (page 175).

• “Files and directories” (page 177).

14.2 - Processes 167

• “Sockets” (page 179).

• “Time” (page 183).

Figure 14.2: osbs dependencies. See
“NAppGUI API” (page 145).

kernel32.dll
ws2_32.dll

darwin

linux_kernel

osbs

sewer

14.2. Processes

From the programmer perspective, multi-processing is the possibility of launching and
interacting with other processes (children) from the main process (parent). The operating
system can execute the child process in another CPU core (true multitasking) or in the
same as the parent (context switch). This is a system decision in which the programmer
can not influence and will depend on the processor type and its workload. The final effect
will be that both processes (parent and child) run in parallel.

• Use bproc_exec to launch a new process from the application itself.

• Use bproc_read to read from the standard output of the process.

• Use bproc_write to write to the standard input of the process.

14.2.1. Launching processes
bproc_exec will launch a process from our own C program in a similar way as the

Terminal does (Figure 14.3). In this case, the “Standard I/O” (page 161) stdin, stdout
and stderr will be redirected to the Proc object through anonymous pipes. From here,
we can use bproc_write to write on the son stdin channel and bproc_read to read from
his stdout. The rules of reading/writing are those that govern the operating system pipes
and that we can summarize in:

Figure 14.3: Launching a process
from our own C code. child

stdin

stdout

stderr
Proc*

bproc_exec()

parent

168 Chapter 14 - Osbs library

• If the parent calls bproc_read and the child has not written anything (empty buffer),
the parent will be blocked (wait) until there is information in the child’s output
channel.

• If the child ends and parent is waiting to read, bproc_read will return FALSE and
the parent will continue his execution.

• If the parent calls bproc_write and the writing buffer is full, the parent will block
(wait) until the child reads from his stdin and free space in the channel.

• If the child ends and the father is blocked by writing, bproc_write will return FALSE
and the parent will continue his execution.

• Some commands or processes (eg sort) will not start until reading the entire stdin
contents. In these cases, the parent process must use bproc_write_close to indi-
cate to the child that the writing on his stdin has finished.

• When the parent calls bproc_close, all the I/O channels will be closed and both
processes will continue their execution independently. To finish the execution of the
child process (kill) use bproc_cancel.

• bproc_wait will stop the parent process until the child completes. To avoid overload-
ing the child output buffer stdout, close the channel through bproc_read_close.

• bproc_finish will check, in a non-blocking way, if the child has finished running.

14.2.2. Multi-processing examples
Let’s look at some practical examples of IPC Inter-Process Communication using the

standard I/O channels in linked parent-child processes. In (Listing 14.1) we will dump
the child process stdout output in a file. In (Listing 14.2) we will redirect both channels,
we will write in stdin and we will read from stdout using disk files. Finally, we will
implement an asynchronous protocol where the parent and child exchange requests and
responses. In (Listing 14.4) we show the code of the child process, in (Listing 14.3) the
parent process and in (Listing 14.5) the result of the communication, written by the parent
process.

Listing 14.1: Reading from a process stdout and saving it in a file.
byte_t buffer[512];
uint32_t rsize;
File *file = bfile_create("out.txt", NULL);
Proc *proc = bproc_exec("dir C:\Windows\System32", NULL);
while(bproc_read(proc, buffer, 512, &rsize, NULL) == TRUE)

bfile_write(file, buffer, rsize, NULL, NULL);
bproc_close(&proc);
bfile_close(&file);

14.2 - Processes 169

The shell commands are not portable in general. We use them only as an example.

Listing 14.2: Redirecting the stdin and stdout of a process.
byte_t buffer[512];
uint32_t rsize;
File *fsrc = bfile_open("members.txt", ekFILE_READ, NULL);
File *fdes = bfile_create("sorted_members.txt", NULL);
Proc *proc = bproc_exec("sort", NULL);

// Writes to stdin
while (bfile_read(fsrc, buffer, 512, &rsize, NULL) == TRUE)

bproc_write(proc, buffer, rsize, NULL, NULL);

// Closes child stdin
bproc_write_close(proc);

// Reads child stdout
while(bproc_read(proc, buffer, 512, &rsize, NULL) == TRUE)

bfile_write(fdes, buffer, rsize, NULL, NULL);

bfile_close(&fsrc);
bfile_close(&fdes);
bproc_close(&proc);

Listing 14.3: Asynchronous protocol (parent process).
Proc *proc;
uint32_t commands[] = { 326, 32, 778, 123, 889, 712, 1, 55, 75, 12 };
uint32_t exit_command = 0;
uint32_t i;

proc = bproc_exec("child", NULL);

for (i = 0; i < 10; ++i)
{

uint32_t response;
uint32_t time;
// Send command to child
bproc_write(proc, (byte_t*)&commands[i], sizeof(uint32_t), NULL);

// Waits for child response
bproc_read(proc, (byte_t*)&response, sizeof(uint32_t), NULL);
bproc_read(proc, (byte_t*)&time, sizeof(uint32_t), NULL);
bstd_printf("Child command %d in %d milliseconds.\n", response, time);

}

bproc_write(proc, (byte_t*)&exit_command, sizeof(uint32_t), NULL);
bproc_close(&proc);

170 Chapter 14 - Osbs library

Listing 14.4: Asynchronous protocol (child process).
for (;;)
{

uint32_t command;
// Reads from standard input a command from parent.
if (bstd_read((byte_t*)&command, sizeof(command), NULL) == TRUE)
{

if (command != 0)
{

// Waits random time (simulates processing).
uint32_t timer = bmath_randi(1000, 2000);
bthread_sleep(timer);

// Writes to standard output the response to parent.
bstd_write((const byte_t*)&command, sizeof(command), NULL);
bstd_write((const byte_t*)&timer, sizeof(timer), NULL);

}
else
{

// Command 0 = Exit
break;

}
}

}

Listing 14.5: Parent process execution result.
Child command 326 in 1761 milliseconds.
Child command 32 in 1806 milliseconds.
Child command 778 in 1989 milliseconds.
Child command 123 in 1909 milliseconds.
Child command 889 in 1043 milliseconds.
Child command 712 in 1153 milliseconds.
Child command 1 in 1780 milliseconds.
Child command 55 in 1325 milliseconds.
Child command 75 in 1157 milliseconds.
Child command 12 in 1426 milliseconds.

14.3. Threads

The threads are different execution paths within the same process (Figure 14.4). They
are also known as light processes, since they are more agile to create and manage than
the processes themselves. They share code and memory space with the main program, so
it is very easy to exchange information between them through memory variables. A thread
starts its execution in a method known as thread_main and, at the moment it is launched,
it runs in parallel with the main thread. Like the processes, they are objects controlled by
the core of the system that will dictate, ultimately, whether the threads will be executed

14.3 - Threads 171

in another CPU core (true multitasking) or will share it (context switch).

• Use bthread_create to create a new thread.

• Use bthread_wait to force the main thread to wait for the thread to execute.

Figure 14.4: A process with multi-
ple execution threads. process (main thread)

threads

1 2 3 4

14.3.1. Throwing threads
Each call to bthread_create will create a new thread in parallel starting at the func-

tion passed as a parameter (thread_main). The “natural” way to end it is by returning
from thread_main, although it is possible to abort it from the main thread.

Basic code to launch a parallel execution thread.
static uint32_t i_thread(ThData *data)
{

// Do something
...
// Thread execution ends
return 0;

}

Thread *thread = bthread_create(i_thread, data, ThData);
// Main thread will continue here
// Second thread will run 'i_thread'

14.3.2. Shared variables
Each new thread has its own “Stack SegmentStack Segment” (page 162) therefore,

all automatic variables, function calls and dynamic allocations will be private to said
thread. But it can also receive global data from the process through the thread_main data
parameter. We must be careful when accessing global data through multiple concurrent

172 Chapter 14 - Osbs library

threads, since modifications made by other threads can alter the logical code execution,
producing errors that are very difficult to debug. The program (Listing 14.6) is correct
for single-thread programs, but if the variable vector is accessed by two simultaneous
threads, can lead to a Segmentatin Fault error if thread-1 frees memory while thread-2 is
executing the loop.

Listing 14.6: Dangerous access to shared variables.
if (shared>vector != NULL)
{

shared>total = 0;
for(i = 0; i < shared>n; i++)

shared>total += shared>vector[i];
bmem_free(shared>vector);
shared>vector = NULL;

}

To avoid this problem, we will have to protect the access to shared variables through
a Mutex (Listing 14.7). This “Mutual exclusion” (page 175) mechanism guarantees that
only one thread can access the resource in a moment of time. A thread will be stopped if it
intends to execute the code located between bmutex_lock and bmutex_unlock if another
thread is within this critical section.

Listing 14.7: Secure access to shared variables.
bmutex_lock(shared>mutex);
if (shared>vector != NULL)
{

shared>total = 0;
for(i = 0; i < shared>n; i++)

shared>total += shared>vector[i];
bmem_free(shared>vector);
shared>vector = NULL;

}
bmutex_unlock(shared>mutex);

14.3.3. Multi-thread example
The tricky part of multi-threaded programming is to decompose a solution into parts

that can run in parallel and organize the data structures so that this can be carried out in
the most balanced way possible. In (Listing 14.8) the program will run four times faster
(x4) since a perfect division of the problem has been made (Figure 14.5). This is just a
theoretical example and this result will be very difficult to achieve in real situations. We
must also minimize the number of shared variables and the time of the critical sections,
otherwise the possible inter-blocks will reduce the gain.

Listing 14.8: Multi-threaded processing of a very large vector.

14.3 - Threads 173

Figure 14.5: Collaboration of four
threads in a vector calculation. process

1 2 3 4

typedef struct _app_t App;
typedef struct _thdata_t ThData;

struct _app_t
{

uint32_t total;
uint32_t n;
uint32_t *elems;
Mutex *mutex;

};

struct _thdata_t
{

uint32_t thread_id;
uint32_t start;
uint32_t end;
uint64_t time;
App *app;

};

static uint32_t i_thead(ThData *data)
{

uint32_t i, total = 0;
uint64_t t1 = btime_now();
for (i = data>start; i < data>end; ++i)
{

// Simulates processing
uint32_t time = bmath_randi(0, 100);
bthread_sleep(time);
total += data>app>elems[i];

}

// Mutual exclusion access to shared variable 'total'
bmutex_lock(data>app>mutex);
data>app>total += total;
bmutex_unlock(data>app>mutex);
data>time = (btime_now() t1) / 1000;

174 Chapter 14 - Osbs library

return data>thread_id;
}

// Threads creating function
uint32_t i, m;
uint64_t t;
App app;
ThData thdata[4];
Thread *thread[4];

// App data vector
i_init_data(&app);
app.mutex = bmutex_create();
m = app.n / 4;

// Thread data
for (i = 0; i < 4; ++i)
{

thdata[i].thread_id = i;
thdata[i].app = &app;
thdata[i].start = i * m;
thdata[i].end = (i + 1) * m;

}

// Launching threads
t = btime_now();
for (i = 0; i < 4; ++i)

thread[i] = bthread_create(i_thead, &thdata[i], ThData);

// Wait for threads end
for (i = 0; i < 4; ++i)
{

uint32_t thid = bthread_wait(thread[i]);
bstd_printf("Thread %d finished in %d ms.\n", thid, thdata[thid].time);
bthread_close(&thread[i]);

}

// Process total time
t = (btime_now() t) / 1000;
bstd_printf("Proccessing result = %d in %d ms.\n", app.total, t);

bmutex_close(&app.mutex);

Listing 14.9: Resultado.
Thread 0 finished in 13339 ms.
Thread 1 finished in 12506 ms.
Thread 2 finished in 12521 ms.
Thread 3 finished in 12999 ms.
Proccessing result = 499500 in 13344 ms.

14.4 - Mutual exclusion 175

14.4. Mutual exclusion

In processes with multiple threads, mutual exclusion guarantees that only one of them
can execute a critical section at a specific moment of time. The critical section is a block
of code that normally protects a shared resource that does not support concurrent access.

• Use bmutex_create to create a lock.

• Use bmutex_lock to lock a critical section.

• Use bmutex_unlock to unlock a critical section.

14.4.1. Locks
Locks or Mutex are synchronization objects managed by the operating system that mark

the beginning and end of a critical section (Figure 14.6). When a thread is going to access
a certain share, you must call the method bmutex_lock to guarantee exclusive access. If
another thread is using the resource (it has previously called bmutex_lock), the current
thread will stop until the resource is released through bmutex_unlock. Blocking and
unblocking threads is handled by the operating system itself. The programmer should only
worry about identifying and protecting the critical sections. “Multi-thread exampleMulti-
thread example” (page 172).

Figure 14.6: A mutex protecting
the critical sections of two threads,
which can not be executed concur-
rently. The rest of the code can run
in parallel.

Mutex

14.5. Loading libraries

The usual, in projects of relative size, is to divide the program code into libraries in
order to be able to reuse them in different projects. The link of these libraries within the
final executable can be done in three ways:

• Compile time: The library code is copied into the executable, forming an insepa-
rable part of it (static libraries) (Figure 14.7) (a).

• Load time: The library code is distributed separately (dynamic libraries) and is
loaded together with the main program, at the same time (Figure 14.7) (b).

176 Chapter 14 - Osbs library

• Runtime: Dynamic libraries that the program loads when it needs them (Fig-
ure 14.7) (c).

Executable Library

(a)

(b)

(c)

Figure 14.7: Library link and dynamic loading.

The linking process is relatively complicated and is handled automatically by the com-
piler and operating system’s loader. The programmer should only intervene in the third
case, since it is necessary to include code to load the libraries and access the appropriate
methods or variables at all times.

• Use dlib_open to load a library at runtime.

• Use dlib_proc to get a pointer to a library function.

• Use dlib_var to get a pointer to a library variable.

14.5.1. Library search paths
A dynamic library is in a different file than the executables that can make use of it.

Each operating system implements different search strategies that we must know to install
and/or configure the programs correctly.

14.5.2. Search order in Windows
• Directory path of dlib_open.

• The same directory as the executable.

• The current directory bfile_dir_work.

• Directory %SystemRoot%\System32.

14.6 - Files and directories 177

• Directory %SystemRoot%.

• The directories specified in the environment variable PATH.

14.5.3. Search order on Linux/macOS
• The directories specified in the environment variable LD_LIBRARY_PATH (Linux) or

DYLD_LIBRARY_PATH (macOS).

• The directories specified in the executable rpath.

• System directories /lib, /usr/lib, etc.

14.6. Files and directories

14.6.1. File System
The file system (filesystem) is the hierarchical structure composed of directories and files

that allows organizing the persistent data of the computer (Figure 14.8). It is something
with which computer users are very familiar, especially after the emergence of graphic
systems that introduced the analogy of desktop, folder and document. It starts in a
directory called root (/ on Unix or C:\ on Windows) and, from here, all sub-directories
and files hang down forming a tree that grows deep. At the programming level, the file
system is managed through system calls that allow directories to be created, browse their
content, open files, delete them, obtain attributes, etc.

• Use bfile_create to create a new file.

• Use bfile_dir_create to create a directory.

• Use bfile_dir_open to open a directory to explore its contents.

• Use bfile_dir_get to get information about a directory entry.

Figure 14.8: Typical structure of a
file system.

178 Chapter 14 - Osbs library

14.6.2. Files and data streams
A process can read or write data to a file after opening an I/O (“Streams” (page 193))

which provides a stream of binary data to or from the process itself (Figure 14.9). There
is a pointer that moves sequentially each time data is read or written. It is initially in
byte 0, but we can modify it to access random positions in the file without reading the
content (Figure 14.10). This can be very useful when working with large files whose data
is indexed in some way.

• Use bfile_open to open an existing file.

• Use bfile_read to read binary data from a file.

• Use bfile_write to write binary data to a file.

• Use bfile_seek to modify the file pointer.

Figure 14.9: After opening a file,
the process has an I/O channel to
read or write data.

11110001101011011

Figure 14.10: Sequential read or
random access. 0

ptr
readed

n-1

...

...

ptrseek (n-5)

14.6.3. Filename and pathname
These two concepts are recurrent and widely used by API functions that manipulate

files. When we navigate through the contents of a directory bfile_dir_get, we obtain a
sequence of filenames that is the “flat” name of the element (file or subdirectory) without
including its path within the file system (without characters '/' or '\'). On the other
hand the pathname is a sequence of one or several filenames separated by '/', '\', which
indicates the way forward to locate a certain element. This path can be absolute when
it starts with the root directory (C:\Users\john\docs\images\party.png) or relative
(docs\images\party.png) when it indicates the partial route from the process current
working directory.

• Use bfile_dir_work to get the current working directory.

• Use bfile_dir_set_work to set the working directory.

14.7 - Sockets 179

14.6.4. Home and AppData
These are two typical directories used by applications to store files relative to a partic-

ular user. On the one hand, home indicates the personal directory of the user currently
registered in the system, typically C:\Users\john (Windows), /home/john (Linux) or
/Users/john (macOS). On the other hand appdata is a directory reserved for saving tem-
porary or configuration data of applications. Typical locations can be C:\Users\john\
AppData\Roaming (Windows), /home/john/.config (Linux) or /User/john/Library
(macOS). The usual thing will be to create a sub-folder with the name of the application
/User/john/Library/TheApp.

• Use bfile_dir_home to get the user home directory.

• Use bfile_dir_data to get the application data directory.

• Use bfile_dir_exec to get the current executable directory.

14.7. Sockets

We can define a socket as a communication channel between two processes that are
running on different machines. They use as a base the family of TCP/IP protocols that
govern Internet communication from the first prototypes of the big network back in 1969.
For its part, the IP protocol (Internet Protocol) is responsible for sending small data packets
between two remote computers through the network. As there are packets that can be
lost or take different paths when crossing the Internet nodes, TCP (Transmission Control
Protocol) will be in charge of sorting them sequentially and re-ordering those that have
been lost. Another important aspect that TCP adds is the concept of a port, which allows
the same machine to have multiple connections open at the same time. The conjunction
of TCP/IP provides the process of a reliable bidirectional communication channel (full-
duplex) with the remote process and is the basis of the client/server model (Figure 14.11).

• Use bsocket_connect in the client process to create a communication channel with
a remote server.

• Use bsocket_server in the server process to listen for client requests.

• Use bsocket_accept to accept a client’s request and start communication.

• Use bsocket_read to read data from a socket.

• Use bsocket_write to write data to a socket.

Sockets are the lowest-level communication primitive accessible by applications. They
are extremely fast but, in general, their functions are blocking, that is, they will stop the
process until the other party responds.

180 Chapter 14 - Osbs library

Figure 14.11: TCP/IP sockets al-
low two processes to be connected
through the Internet.

100110110

TCP/IP

• bsocket_connect will stop the client process until the server responds or the timeout
expires.

• bsocket_accept it will stop the server process until a request from a client arrives
or the timeout is fulfilled.

• bsocket_read will stop the process until the other interlocutor writes data to the
channel or the timeout is fulfilled.

• bsocket_write will stop the process until the other peer reads data from the channel
and frees the intermediate buffer or the timeout is fulfilled.

Apart from these indications, working with sockets is very similar to working with files
on disk. The TCP/IP implementation is complicated and is part of the operating system,
so the establishment of the connection has been simplified through the system calls seen
above. Since a socket only allows sending and receiving bytes, both partners need to define
a protocol that indicates the order, sequence and type of data to be shared in such a way
that communication is satisfactory and free of deadlocks. Some of the most used protocols
on the Internet are: HTTP, SMTP, FTP, SSH, etc.

14.7.1. Client/Server example
As an example we are going to see how two processes exchange information through

sockets. The protocol is extremely simple. After connection, the client (Listing 14.11)
will send a series of numerical values to the server (Listing 14.10) and it will respond by
resending the same value. When the client sends the value UINT32_MAX the communication
will end.

Listing 14.10: Simple socket-based server.
uint32_t client_id = 0;
Socket *server_sock = bsocket_server(3444, 32, NULL);

if (server_sock == NULL)
return;

for(;;)
{

Socket *income_sock = NULL;
uint32_t ip0, ip1;

14.7 - Sockets 181

uint16_t p0, p1;

bstd_printf("Waiting for a new client\n");

income_sock = bsocket_accept(server_sock, 0, NULL);
if (income_sock == NULL)

continue;

bstd_printf("Client %d arrives\n", client_id);
bsocket_local_ip(income_sock, &ip0, &p0);
bsocket_remote_ip(income_sock, &ip1, &p1);
bstd_printf("Local IP: %s:%d\n", bsocket_ip_str(ip0), p0);
bstd_printf("Remote IP: %s:%d\n", bsocket_ip_str(ip1), p1);

for (;;)
{

byte_t data[4];
uint32_t rsize;
if (bsocket_read(income_sock, data, sizeof(data), &rsize, NULL) == TRUE

↪→)
{

uint32_t i;
bsocket_ntoh4((byte_t*)&i, data);
if (i != UINT32_MAX)
{

bstd_printf("Readed %d from client\n", i);
bsocket_hton4(data, (byte_t*)&i);
if (bsocket_write(income_sock, data, sizeof(data), NULL, NULL)

↪→ == TRUE)
{

bstd_printf("Sending %d to client\n", i);
}
else
{

bstd_printf("Error writting to client\n");
break;

}
}
else
{

bstd_printf("Client %d say bye!\n", client_id);
break;

}
}
else
{

bstd_printf("Error reading from client\n");
break;

}
}

182 Chapter 14 - Osbs library

bstd_printf("\n\n");
bsocket_close(&income_sock);
client_id += 1;

}

bsocket_close(&server_sock);

Listing 14.11: Client process.
Socket *sock = NULL;
serror_t error;
uint32_t i = 0;
byte_t data[4];

sock = bsocket_connect(bsocket_str_ip("192.168.1.21"), 3444, 5000, &error);

if (sock == NULL)
{

bstd_printf("Connection error\n");
return;

}

bsocket_read_timeout(sock, 2000);
bsocket_write_timeout(sock, 5000);

while (i < kPING_COUNTER)
{

bsocket_hton4(data, (const byte_t*)&i);
if (bsocket_write(sock, data, sizeof(data), NULL, NULL) == TRUE)
{

bstd_printf("Sending %d to server\n", i);
}
else
{

bstd_printf("Error writting in socket\n");
break;

}

if (bsocket_read(sock, data, sizeof(data), NULL, NULL) == TRUE)
{

uint32_t j;
bsocket_ntoh4((byte_t*)&j, data);
bstd_printf("Readed %d from server\n", j);
if (j != i)
{

bstd_printf("Error data corruption\n");
break;

}

i += 1;
}

14.8 - Time 183

else
{

bstd_printf("Error reading in socket\n");
break;

}
}

if (i == kPING_COUNTER)
{

i = UINT32_MAX;
bsocket_hton4(data, (const byte_t*)&i);
if (bsocket_write(sock, data, sizeof(data), NULL, NULL) == TRUE)
{

bstd_printf("Sending FINISH to server\n");
}
else
{

bstd_printf("Error writting in socket\n");
}

}

bsocket_close(&sock);

14.8. Time

The operating system measures the passage of time using an internal clock, typically
implemented by a counter of the ticks that have passed since an initial moment called
epoch. In Unix-like systems this counter represents the number of seconds elapsed since
January 1, 1970 UTC. However, in Windows it represents the number of 100 nanosecond
intervals since January 1, 1601 coinciding with the beginning of the Gregorian calendar.
In NAppGUI these values have been unified to work with Unix Epoch on all platforms.

• Use btime_now to get the number of micro-seconds elapsed since January 1, 1970
UTC.

• Use btime_date to get the system date.

• Use btime_to_micro and btime_to_date to convert dates to Unix Time and vice
versa.

The difference between two instants will give us the time elapsed during the execution
of a task.
uint64_t ed, st = btime_now();

// Do something...
...

184 Chapter 14 - Osbs library

Figure 14.12: Unix Epoch Instant
0.

ed = btime_now();
bstd_printf("Total elapsed microseconds: %lu\n", ed st);

14.9. Log
A log or diary is a record of anomalies that occur at runtime and that help to further

debug the program or determine the cause of an error (Figure 14.13). This report is
aimed more at programmers or software administrators and not at the end user, so it
is advisable to include specific technical information on the cause of the problem. The
messages addressed to the end user must be written in a more friendly tone, far from
technicalities and sent to the standard output (stdout stderr) or to the window system,
if we are facing a desktop application.

• Use log_printf to write a message to the execution log.

Figure 14.13: Messages related to
internal anomalies of the program,
can be sent to a log.

Wrong allocation size ‘-56’

app_log.txt

15C
ha

pt
er

Core library

A strong core will improve your technique, strength, and stamina, and compliment everything you
do.

Susan Trainor

15.1 Core 187
15.2 Heap - Memory manager 188

15.2.1 Multi-thread memory 189
15.2.2 How Heap Works 189

15.3 Buffers 192
15.4 Strings 192
15.5 Streams 193

15.5.1 Stream Types 193
15.5.2 File stream 194
15.5.3 Socket stream 194
15.5.4 Block stream 195
15.5.5 Memory stream 195
15.5.6 Standard stream 196
15.5.7 Null stream 197
15.5.8 Binary stream 197
15.5.9 Text stream 198
15.5.10 Tokens 199
15.5.11 Identifiers 200
15.5.12 Strings 201
15.5.13 Numbers 202
15.5.14 Symbols 202
15.5.15 Comentarios 203

186 Chapter 15 - Core library

15.5.16 Stream advantages 203
15.5.17 Unify serialization 203
15.5.18 More elegance 204
15.5.19 Higher productivity 205
15.5.20 Higher performance 206
15.5.21 Byte order 206
15.5.22 Stream state 207

15.6 Arrays 208
15.6.1 Registers or pointers 209
15.6.2 Type check 210
15.6.3 Constructors 211
15.6.4 Array loops 212
15.6.5 Copy objects 213
15.6.6 Serialization 213
15.6.7 Destructors 214
15.6.8 Sort and search 216
15.6.9 Arrays of basic types 217

15.7 Arrays (pointers) 217
15.8 Binary search trees 217

15.8.1 Iterators 220
15.8.2 Arrays vs Sets comparative 221

15.9 Binary search trees (pointers) 222
15.10 Regular expressions 222

15.10.1 Define patterns 223
15.10.2 Regular languages and automata 224

15.11 Data binding 225
15.11.1 Synchronization with graphical interfaces 227
15.11.2 Read and write JSON 227
15.11.3 Serialization with DBind 228
15.11.4 Default constructor 228
15.11.5 Numerical ranges 229

15.12 Events 230
15.13 Keyboard buffer 231
15.14 File operations 231
15.15 Resource packs 233
15.16 Dates 233
15.17 Clocks 233

15.1 - Core 187

15.1. Core

Just as a building needs a strong foundation, any application or library must be based
on robust and efficient pillars. It is useless to invest hours and hours in a nice interface
if the internal engine is broken. For this purpose, the core library has been developed
(Figure 15.1). Provides structures, utilities and algorithms commonly used in program-
ming, which will facilitate the program development guaranteeing maximum efficiency and
portability. Core is the third level within the NAppGUI SDK and still has no knowledge
about the operating system graphics capabilities, so it can be used to implement any kind
of project.

Figure 15.1: core dependencies. See
“NAppGUI API” (page 145).

osbsosbs

sewersewer

corecore back-end

The services provided by core have been divided into several modules.

• “Heap - Memory manager” (page 188).

• “Buffers” (page 192).

• “Strings” (page 192).

• “Streams” (page 193).

• “Arrays” (page 208).

• “Binary search trees” (page 217).

• “Regular expressions” (page 222).

• “Data binding” (page 225).

• “Events” (page 230).

• “File operations” (page 231).

• “Clocks” (page 233).

188 Chapter 15 - Core library

15.2. Heap - Memory manager

Heap is a very efficient dynamic memory manager and auditor included in the core
library and available for all projects based on NAppGUI (libraries and applications). It
is common for applications to request a large number of small memory blocks to hold
different objects (character strings, interface controls, structure instances, I/O buffer, etc).
The strategy behind this manager is just to ask the operating system for memory pages of
a certain size (64kb or more) using bmem_malloc and use them to solve several requests
very efficiently.

• Use heap_new to dynamically create an object.

• Use heap_malloc to reserve a memory block.

• Use heap_delete to destroy an object.

• Use heap_free to free up a memory block.
Product *product = heap_new(Product);
byte_t *memblock = heap_malloc(1024, "MyOwnBlock");

// Do something
...

heap_delete(&product, Product);
heap_free(&memblock, "MyOwnBlock");

Using Heap instead of system calls will provide us with certain benefits:

• Performance: A call to heap_malloc is solved only by increasing the value of a
counter. heap_free it only updates the header of the affected page.

• Locality: Two consecutive calls to heap_malloc() are located in contiguous physical
memory positions. This reduces the number of cache failures because, according to
the locality principle, there is a high probability that two objects that are created
together will be used together.

• Memory leaks: heap points reservations and releases by object type. If necessary,
will notify the programmer through “Asserts” (page 153) or “Log” (page 184) that
there are objects not released. The great advantage of this auditor over other tools is
that it is always being executed as part of the program. This exploits the temporal
coherence, because if after a program change leaks are detected where there was
not before, it is very likely that we can limit and detect the error, since it will be
something we have just worked on.

• Statistics: We can obtain memory usage profiles (time/bytes). This can help us
detect bottlenecks (especially at startup) or optimize page size.

15.2 - Heap - Memory manager 189

15.2.1. Multi-thread memory
By default, heap is configured to work optimally in single-threaded applications. If we

want several threads of the same process to reserve or release dynamic memory concurrently
and safely, we must use:

• heap_start_mt to start multi-thread support.

• heap_end_mt to end multi-thread support.

The moment heap_start_mt is called, the synchronization mechanisms within the
heap are activated to guarantee mutual exclusion to the memory manager until a call to
heap_end_mt is received which will return to single-threaded operation mode. Successive
calls to heap_start_mt will accumulate, so it will remain in multi-threaded mode until
all open blocks are closed (Listing 15.1). It is the responsibility of the programmer to use
this pair of functions at those points of the program that require it.

Any section that begins with heap_start_mt must be closed with heap_end_mt.

There is no problem in activating multi-threaded support in single-threaded sections,
except for a slight performance penalty.

Listing 15.1: Multi-thread sections.
// Singlethreaded block
...
...

heap_start_mt();
// Multithreaded block
...
heap_start_mt();
...
heap_end_mt();
// Continue multithreaded block
...
heap_end_mt();

// Singlethreaded block
...

15.2.2. How Heap Works
When a program starts, heap creates a default memory page. The first bytes are reserved

as a header, a small structure that controls the state of the page. Each request is assigned
sequentially within the same page, increasing the value of a pointer (Figure 15.2). When

190 Chapter 15 - Core library

the page runs out of space, a new one is created bmem_malloc, which is linked to the
previous one and labeled as the new default page (Figure 15.3). Each call to heap_free
update the header with the number of blocks/bytes released (Figure 15.4). These blocks
are not reused, otherwise the logic of heap would be complicated by slowing it down.
The address of the header is stored at the end of each block, so do not have to iterate to
locate it. When all the blocks on the page have been released, the entire page is destroyed
by bmem_free and the pointers between neighboring pages restored (Figure 15.5).

Figure 15.2: Reserve a
new memory block with
heap_malloc().

24 24 12 36 24 12

512

48

offset

Header

heap_malloc(48)

Figure 15.3: Request to
the operating system of a new
empty page. heap_malloc?

bmem_malloc(65536)

osbsosbs

RAMRAM

MemoryMemory

HeapAllocHeapAlloc

Figure 15.4: Releasing a block
of memory (only updates the
header).

24 24 12 36 24 12

512

48

Header

96 36

24 12 48

heap_free()

Heap also counts the number of alloc/dealloc per object type using the parameter name
of heap_malloc. At the end of the execution of the program, if the application lacks
memory leaks, it will write in “Log” (page 184) a message like this:

15.2 - Heap - Memory manager 191

Figure 15.5: Destroying the
entire page. bmem_free(65536)

[12:58:08] [OK] Heap Memory Staticstics
[12:58:08] ============================
[12:58:08] Total a/dellocations: 1126, 1126
[12:58:08] Total bytes a/dellocated: 74611, 74611
[12:58:08] Max bytes allocated: 54939
[12:58:08] Effective reallocations: (0/34)
[12:58:08] Real allocations: 2 pages of 65536 bytes
[12:58:08] ============================

But if after the execution, the application has memory to be released, the message will be
different:

[13:00:35] [FAIL] Heap Object Leaks!!!
[13:00:35] ===========================
[13:00:35] 'App' a/deallocations: 1, 0 (1 leaks)
[13:00:35] 'String' a/deallocations: 414, 410 (4 leaks)
[13:00:35] ===========================
[13:00:35] [FAIL] Heap Global Memory Leaks!!!
[13:00:35] ==================================
[13:00:35] Total a/dellocations: 1161, 1156 (5 leaks)
[13:00:35] Total bytes a/dellocated: 75704, 75596 (108 bytes)
[13:00:35] Max bytes allocated: 54939
[13:00:35] ==================================

That warns that we have an object App and four String without releasing. If in the
previous execution there were no leaks, it is very likely that we can narrow the error
without too much difficulty.

The heap auditor does not intend to replace more advanced memory testing tools, it
is only a first filter that constantly alerts us during the development and test phase.
Although the overhead that occurs at runtime is minimal, the auditor is completely
disabled in the Release configuration.

192 Chapter 15 - Core library

15.3. Buffers

Buffer objects are simply dynamically stored memory blocks and stored in the “Heap
SegmentHeap Segment” (page 163). They are useful for sharing generic data between
different functions or threads. For the latter case, they must be protected by a Mutex if
several threads can access it concurrently (they are not thread-safe). They are of fixed
size. Once created, they can not be resized, although they can be rewritten as many times
as necessary.

• Use buffer_create to create a dynamic memory block.

• Use buffer_destroy to free up a block of dynamic memory.

• Use buffer_data to get a pointer to the memory block.

15.4. Strings

String objects contain “UTF-8UTF-8” (page 158) characters strings dynamically al-
located. Although it is possible to insert static text strings directly into the source code
or access them through the resource packages (respack_text), it is usually necessary to
compose texts at runtime or dynamically store strings received by some input channel
(keyboard, files, network, etc). The NAppGUI strings.h module offers a multitude of
functions to work with UTF8 text strings, both static and dynamic.

• Use str_c to create a dynamic copy of a static C string.

• Use str_printf to compose a dynamic string using the same format as C printf.

• Use tc to get a const char_t* pointer to the content of a String.
String *str1 = str_c("This a static char array.");
String *str2 = str_printf("Code: %s, Price %8.2f.", tc(product>code),

↪→ product>price);
const char_t *cstr1 = tc(str1);
const char_t *cstr2 = tc(str2);
cstr1 = "This a static char array."
cstr2 = "Code: 45634GHJKL, Price 439.67."

Do not confuse String objects with C strings const char_t *str or char_t str
[128]. The first ones contain a pointer to the dynamic memory area and an integer
with the number of reserved bytes.

In the case that it is necessary to create more extensive texts from loops, the most
efficient way is to create a Stream and, later, obtain the associated String.
String *str = NULL;

15.5 - Streams 193

Stream *stm = stm_memory(2048);
uint32_t n = arrpt_size(products, Product);
stm_printf(stm, "List of %d products\n", n);
arrpt_foreach(product, products, Product);

stm_printf(stm, "Code: %s, Price %8.2f.\n", tc(product>code), product>
↪→ price);

arrpt_end();
str = stm_str(stm);
stm_close(&stm);

// Do something with 'str'
...

str_destroy(&str);

15.5. Streams
A stream is a data flow that runs from a source to a destination. Think of a phone call.

We have an origin (the person who speaks), a destination (the person who listens) and a
channel (the line itself). In programming, the stream is the equivalent to the telephone line,
it is the pipe that joins the application with a data source or destination (Figure 15.6) and
through which binary information, bit sequences, run. As with any other communication
channel, the information is volatile, available for a very limited time. Once it reaches the
receiver, it disappears.

Figure 15.6: Streams connect the
process with the machine and the
world. 010111001110000111 11110001101011011

In essence, there are three elementary operations to perform when working with streams:
Create the channel, read data and write data.

• Use stm_memory to create a read/write memory stream.

• Use stm_read_r32 to read a float from the stream.

• Use stm_write_r32 to write a float to the stream.

• Use stm_close to close the channel and free up resources (destructor).

15.5.1. Stream Types
Actually, it is more correct to talk about types of extremes (origin and destination)

than of stream types. From the perspective of the programmer, a stream is an abstract

194 Chapter 15 - Core library

type that presents the same functionality regardless of the ends it connects. Therefore,
when talking about stream types we are referring to the type of constructor.

15.5.2. File stream
In File streams (Figure 15.7), the source is the process memory and the destination is

a disk file. The opposite can also happen: that the source is the file and the destination
the memory, it will depend on how we create the channel. It will not be possible to
perform write operations on an open file for reading or vice versa (Listing 15.2). “Files
and directories” (page 177).

Figure 15.7: File streams allow
communication with the file system.

settings.cfg products.db

• Use stm_from_file to open a file and read from it.

• Use stm_to_file to create a file and write to it.

• Use stm_append_file to add content to an existing file.

Listing 15.2: Example of writing to a file.
Stream *stm = stm_to_file("C:\Users\user\john\out.txt", NULL);
if (stm != NULL)
{

stm_writef(stm, "One ");
stm_writef(stm, "Two ");
stm_writef(stm, "Three");
stm_writef(stm, ".");
stm_close(&stm);
// 'out.txt' is closed = "One Two Three."

}

15.5.3. Socket stream
A socket is a communication channel between two processes over the Internet (Fig-

ure 15.8). Unlike file streams, sockets allow bidirectional full-duplex) communication, that
is, both ends can send and receive information. The sequence of message exchange between
partners is determined by the protocol (Listing 15.3), being HTTP, FTP, SMTP or LDAP
some of the most used for Internet transmissions. See “Sockets” (page 179).

• Use stm_socket to create a communication channel with a remote process.

Listing 15.3: Downloading a web page, using the HTTP protocol.

15.5 - Streams 195

Figure 15.8: A socket stream opens
a communication channel over the In-
ternet.

GET /page.html

Thank you!

HTTP 200 OK

uint32_t ip = bsocket_url_ip("www.myserver.com", NULL);
Socket *socket = bsocket_connect(ip, 80, 0, NULL);
if (socket != NULL)
{

Stream *stm = stm_socket(socket);
stm_writef(stm, "GET /mypage.html HTTP/1.1\r\n");
stm_writef(stm, "Host: www.myserver.com\r\n");
stm_writef(stm, "\r\n");
stm_lines(line, stm)

bstd_printf(line);
bstd_printf("\n");

stm_next(line, stm);

// Socket will be closed too
stm_close(&stm);

}

15.5.4. Block stream
Block streams are used to read formatted data from a generic memory block. (Fig-

ure 15.9). This memory area is considered read-only and will not be modified, so write
operations will not be allowed in this type of stream. When the end of the block is reached,
the ekSTEND state will be activated.

• Use stm_from_block to read data from a memory block.

Figure 15.9: With block streams we
will read formatted data from mem-
ory areas.

23.4,-87,true,“john”

15.5.5. Memory stream
Memory streams are read/write channels that allow implementing the producer/con-

sumer model (Figure 15.10). First, the information reaches the stream through write
operations and is stored in an internal memory buffer. Subsequently, said information can
be read by another function, thread or process. After each reading the information read
will disappear from the channel. The concept is similar to that of IPC-pipes, except that

196 Chapter 15 - Core library

there is no size limit for the buffer, but it will grow on demand. Read and write operations
can be done simultaneously depending on the established protocol.

• Use stm_memory to create a stream in memory.

• Use stm_buffer to access the internal buffer.

thread1
write

thread2
read

Figure 15.10: Producer/consumer model implemented with memory
streams.

Although this type of stream supports read and write operations it is not considered
full-duplex. The reading is done on previously written data, but cannot “answer” the
interlocutor. It is not a “conversation”.

15.5.6. Standard stream
The “Standard I/O” (page 161) can be managed by streams using three predefined

objects (Figure 15.11). These objects are created when the program starts and will be
automatically released when finished.

• kSTDIN: To read from the standard imput.

• kSTDOUT: To write in standard output.

• kSTDERR: To write in the error output.

Figure 15.11: Access to standard
I/O through streams.

kSTDIN kSTDOUT

kSTDERR

real64_t value;
const char_t *line;
value = stm_read_r64(kSTDIN);
line = stm_read_line(kSTDIN);
stm_printf(kSTDOUT, "Value = %.4f", value);

15.5 - Streams 197

15.5.7. Null stream
Sometimes it can be useful to have a “sink” that ignores all write operations (Fig-

ure 15.12). Think of debugging tasks where we want to activate or deactivate the output
of information but deleting or commenting on the code is cumbersome. The idea is similar
to the Unix /dev/null.

• Use kDEVNULL to write to a sink that will ignore all received data.

Figure 15.12: With null streams ev-
erything that is written will be ig-
nored.

23.4,-87,true,“john”

#if defined __ASSERTS__
Stream *stm = kSTDOUT;
#else
Stream *stm = kDEVNULL;
#endif

...
i_large_dump_func(obj1, stm);
...
// More debug functions
stm_printf(stm, "More debug data...\n");
...
i_other_dump_func(obj2, stm);

Cannot read from kDEVNULL.

15.5.8. Binary stream
Generic binary data always travels through a stream as bytes. How these data are

interpreted depends on the interlocutors and their communication protocol. But by em-
phasizing “binary data” we mean that numeric values are written to the channel as they
appear in the CPU registers using binary, two’s complement, or IEEE754 (Figure 15.13)
code. In multi-byte types we must take into account the “Byte orderByte order” (page 206).
In stream.h several functions are defined to read and write binary types.

• Use stm_read_u32 to read a 32-bit unsigned integer.

• Use stm_write_r64 to write a real 64bits (double).

• Use stm_write_bool to write a boolean.

198 Chapter 15 - Core library

Figure 15.13: Numbers in bi-
nary format.

...... 012301012301234567

uint32_tint16_treal32_treal64_t

0 1 0 1 1 0 01
01110111100000111000

15.5.9. Text stream
Text streams are a particular case where the binary information is assumed to represent

Unicode character codes (codepoints) (Figure 15.14) (Listing 15.4). This means that the
content of the stream will be readable directly by a human, but it will require a post-
processing (parsing) in destination to interpret these texts and translate them into binary.
You do not have to do anything special when creating a stream to indicate that it is of
type text, you just have to use the appropriate functions.

• Use stm_printf to write text in a stream.

• Use stm_read_char to read a character from a stream.

• Use stm_read_line to read a text line from a stream.

• Use stm_col to get the column number of the last character read.

• Use stm_row to get the row number of the last character read.

Figure 15.14: In text streams
the information can be read di-
rectly.

...... llo348.96true e H

Listing 15.4: Reading a text file using streams.
Stream *stm = stm_from_file("/home/fran/Desktop/text.txt", NULL);
const char_t *line = stm_read_line(stm);
while(line != NULL)
{

// Do something with 'line'
textview_writef(text, line);
textview_writef(text, "\n");

// Read next line
line = stm_read_line(stm);

}

stm_close(&stm);

stm_read_line and other reading functions will always return the text in UTF8. But
if the data inside the stream were in another format, we must use stm_set_read_utf
, in order to carry out the conversion correctly. See “UTF encodingsUTF encodings”
(page 157).

15.5 - Streams 199

On the other hand, stm_printf also receives the text in UTF8, but the receiver may
need it in another format. We will use stm_set_write_utf to set the output encoding.
We will write in UTF8, but the channel will be sent in UTF16 or UTF32.

Streams do not have to be “pure” text or binary. They can combine both types of
representations.

15.5.10. Tokens
When reading from text streams, an interpretation (parsing) of the content is necessary

in order to transfer the data to memory variables (in binary). The first step is to break the
text into symbols (or words) called tokens. Internally, the streams incorporate a simple
lexical analyzer that recognizes the tokens of the C language, very common in countless
grammars and file formats (Figure 15.15). It is implemented as a finite state machine and
will greatly facilitate the processing of these text flows. In (Listing 15.5) we see the code
necessary to read one by one all the tokens from a .c file. We have the result of processing
the file (Listing 15.6) in (Listing 15.7).

• Use stm_read_token to read a token.

• Use stm_token_lexeme to obtain the string associated with the last token read.

• Use stm_read_r64_tok to read a real64_t from text.

• Use stm_token_col to get the column of the last token.

• Use stm_token_row to get the row of the last token.

Figure 15.15: Decomposition of a
text into tokens. LexScn

A = 45 + 12.3
...

ekTIDENT(”a”)
ekTINTEGER(”45”)

ekTPLUS(”+”)

ekTEQUALS(”=”)
ekTREAL(”12.3”)

Text Stream

Tokens

Listing 15.5: Reading tokens from a file in C.
Stream *stm = stm_from_file("source.c", NULL);
token_t token;

while ((token = stm_read_token(lex)) != ekTEOF)
{

switch (token) {
case ekTIDENT:

// It's an IDENTIFIER
...

200 Chapter 15 - Core library

case ekTREAL:
// It's a REAL NUMBER
...

}
}

Listing 15.6: File source.c.
void func(int a)
{

int i;
char *str = "Hello";

i = 5 + 2.5;
}

Listing 15.7: Lexical analysis of source.c.
Token Lexeme

ekTIDENT "void"
ekTIDENT "func"
ekTOPENPAR "("
ekTIDENT "int"
ekTIDENT "a"
ekTCLOSPAR ")"
ekTOPENCURL "{"
ekTIDENT "int"
ekTIDENT "i"
ekTSCOLON ";"
ekTIDENT "char"
ekTASTERK "*"
ekTIDENT "str"
ekTEQUALS "="
ekTSTRING ""Hello""
ekTSCOLON ";"
ekTIDENT "i"
ekTEQUALS "="
ekTINTEGER "5"
ekTPLUS "+"
ekTREAL "2.5"
ekTSCOLON ";"

15.5.11. Identifiers
An identifier is an alphanumeric “word” that must begin with a letter or '_' and

contains numbers, letters, or '_'. It is used to name variables, functions, reserved words,
etc. They do not allow spaces or symbols. (Listing 15.8) (Figure 15.16).

15.5 - Streams 201

Listing 15.8: Correct and incorrect identifiers.
OK: while cos _reSult a56B _06_t aG h9 _12AcVb
NO: 045 ?er "_5G _tg(

Figure 15.16: Finite automata that
recognizes an identifier.

a-z
A-Z_

a-z
A-Z_
0-9

Identifier

Certain identifiers can be reserved to act as language keywords. For example for,
while or if are C keywords and cannot be used for the naming of variables or functions.
Being general purpose, our scanner does not recognize any type of reserved word, but must
be expressly tagged after reading the token (Listing 15.9).

Listing 15.9: Recognizing the while keyword.
while ((token = stm_read_token(stm)) != ekTEOF)
{

if (token == ekTIDENT)
{

const char_t *lex = stm_token_lexeme(stm, NULL);

if (str_equ_c(lex, "while") == TRUE)
token = ekTRESERVED;

}
}

15.5.12. Strings
A text string is a series of Unicode characters enclosed in quotation marks ("") (Fig-

ure 15.17). The parser recognizes C escape sequences to represent non-printable codes or
unavailable characters on the keyboard (Listing 15.10).

• Use stm_token_escapes to make escape sequences effective when reading strings.

Listing 15.10: Escape sequences accepted in ekTSTRING.
\a 07 Alert (Beep, Bell) (added in C89)
\b 08 Backspace
\f 0C Formfeed Page Break
\n 0A Newline (Line Feed)
\r 0D Carriage Return
\t 09 Horizontal Tab
\v 0B Vertical Tab
\\ 5C Backslash
\' 27 Single quotation mark

202 Chapter 15 - Core library

\" 22 Double quotation mark
\? 3F Question mark (used to avoid trigraphs)
\nnn Octal number
\xhh Hexadecimal number
\Uhhhhhhhh Unicode code point
\uhhhh Unicode code point

Figure 15.17: Finite automata that
recognizes a text string.

“
String

unicode

“

\

esc_seq

15.5.13. Numbers
In the case of numerical tokens the thing is complicated a bit due to the different

numerical bases and the exponential representation of real numbers (Figure 15.18). We
briefly summarize it, although it is common to many programming languages (C included).

• If the number starts with 0 it will be considered octal (base 8), therefore, the following
digits are limited to 07, eg: 043, 001, 0777.

• If the number starts with 0x will be considered hexadecimal (base 16) with digits
09 af AF, eg: 0x4F, 0XAA5, 0x01EAC.

• At the moment a decimal point appears '.' will be considered real number. A point
at starting is valid, eg: .56.

• An integer or real number allows exponential notation with the character 'e'('E'),
eg: 12.4e2, .56e3, 1e4.

15.5.14. Symbols
The symbols are single-character tokens that represent almost all US-ASCII punctu-

ation marks and are often used as operators, separators or limiters within grammars.
(Listing 15.11) (Figure 15.19).

Listing 15.11: Symbols recognized as tokens by LexScn.
< > , . ; : () [] { } + * = $ % # & ' " ^ ! ? | / \ @

15.5 - Streams 203

Hex
0

1-9

xX 0-fF

Integer 0-9

.

Real
.

0-9

.

0-7

0-7
Octal

0-9

eE 0-9

0-9

Real

0-fF

eE

Figure 15.18: Finite automata that recognizes numbers.

Figure 15.19: Finite automata that
recognizes some symbols.

+

-

*

=

Plus

Minus

Asterisk

Equal

15.5.15. Comentarios
By default, C /*Comment */ or C++ //Comment are ignored by stm_read_token.

• Use stm_token_comments so that it returns ekTSLCOM or ekTMLCOM if it finds any.

• Use stm_token_spaces to return ekTSPACE when it finds blank spaces.

15.5.16. Stream advantages
Although it is possible to read or write directly to the I/O channels (“Memory” (page 162),

“Files and directories” (page 177), “Sockets” (page 179), “Standard I/O” (page 161)), do
it through Stream objects has certain advantages. Therefore, we recommend using them
instead of low-level APIs for the following reasons:

15.5.17. Unify serialization
Streams offer a uniform interface, regardless of the origin and destination of the data

(Figure 15.20). For the object serialization, we just have to write a reader and a writer,
without worrying if the object will be saved to disk, transmitted over the Internet or stored

204 Chapter 15 - Core library

temporarily in memory (Listing 15.12).

Listing 15.12: (De)serialization of an object through streams.
typedef struct _product_t
{

type_t type;
String *code;
String *description;
Image *image64;
real32_t price;

} Product;

void product_write(Stream *stm, Product *product)
{

stm_write_enum(stm, product>type, type_t);
str_write(stm, product>code);
str_write(stm, product>description);
image_write(stm, product>image64);
stm_write_r32(stm, product>price);

}

void product_read(Stream *stm, Product *product)
{

product>type = stm_read_enum(stm, type_t);
product>code = str_read(stm);
product>description = str_read(stm);
product>image64 = image_read(stm);
product>price = stm_read_r32(stm);

}

Figure 15.20: Through streams we
manage all I/O channels with the
same interface.

Stream

15.5.18. More elegance
The I/O channels only work with byte blocks. Streams implement high-level functions

for texts and binary types. This will make our code much more readable. (Listing 15.13).

Listing 15.13: Writing an object to disk directly or through a stream.
void product_write(File *file, Product *product)
{

15.5 - Streams 205

uint32_t size = str_len(product>description);
const char_t *data = tc(product>description);
bfile_write(file, (byte_t*)&product>id, sizeof(uint32_t), NULL, NULL);
bfile_write(file, (byte_t*)&product>price, sizeof(real64_t), NULL, NULL);
bfile_write(file, (byte_t*)&size, sizeof(uint32_t), NULL, NULL);
bfile_write(file, (byte_t*)data, size, NULL, NULL);

}

void product_write(Stream *stream, Product *product)
{

stm_write_u32(stream, product>id);
stm_write_r64(stream, product>price);
str_write(stream, product>description);

}

15.5.19. Higher productivity
Related to the previous one, streams can “parse” text strings directly. You can get

characters, words or lines without having to scan the entry character by character (List-
ing 15.14).

Listing 15.14: Read a line of text directly or through a stream.
String *getline(File *file)
{

/* Potentially unsafe. */
/* Risk of buffer overflow. */
char_t buffer[MAXBUFF];
uint32_t i = 0;
char_t c;

bfile_read(file, (byte_t*)&c, 1, NULL, NULL);
while (c != '\n')
{

buffer[i] = c;
i += 1;
bfile_read(file, (byte_t*)&c, 1, NULL, NULL);

}

buffer[i] = '\0';
return str_c(buffer);

}

String *getline(Stream *stream)
{

/* Totally safe. */
/* 'line' is managed by dynamic cache. */
const char_t *line = stm_read_line(stream);
return str_c(line);

}

206 Chapter 15 - Core library

15.5.20. Higher performance
File streams and socket streams implement an internal cache. This allows less access

to the channel with a higher volume of data, which means faster processing speed. (Fig-
ure 15.21).

• Use stm_flush to clear the cache and dump the data in the channel.

cachecache

Figure 15.21: Streams implement cache memory, which increases performance.

15.5.21. Byte order
When reading or writing binary data from an I/O channel, special attention must be

paid to the order of the bytes in 16, 32 or 64 bit data types, which is known as endianness.
On litte endian machines, as is the case with the Intel x86/x64 family processors, the
lowest order byte will be located at the lowest memory address. In the case of the big
endian (Motorola 68000, PowerPC) it happens on the contrary, it will go in the highest.
For example, if we write a 32-bit integer in a file or socket from a little endian machine
and read it from a big endian, the data will be corrupted by altering the internal order
of bits (Figure 15.22). The Stream objects automatically adjust the endianness in each
read/write operation. Default is set ekLITEND, except in sockets that will be ekBIGEND for
being the accepted agreement for network communications. However, it can be changed if
necessary.

• Use stm_set_write_endian to establish the endianness of the output channel. The
data will pass from endian CPU to Stream endian before being written.

• Use stm_set_read_endian to establish the endianness of the input channel. The
data will pass from Stream endian to CPU endian at the time of being read.

23 385.875.968

LitEnd BigEnd

Figure 15.22: We must take into account endianness when sharing
data between machines of different architecture.

15.5 - Streams 207

Endianness does not influence “UTF-8UTF-8” (page 158) text strings, but it does in
the “UTF-16UTF-16” (page 157) and “UTF-32UTF-32” (page 157).

15.5.22. Stream state
A stream can be affected by two types of problems. On the one hand the data cor-

ruption that is evident when we read binary data from the stream. A clear example
would be to read a Boolean by stm_read_bool and get a value of 129 when obviously
this value should be 0 (TRUE) or 1 (FALSE). Typically, a stream becomes corrupted due
to lack of coordination between writer and reader and is usually due to a programming
error. This situation should be resolved by debugging and correcting the serialization of
objects or reviewing the data protocol. On the other hand, there may be “physical” errors
in the channel (file deleted, loss of Internet connection, permissions, etc.). In both cases,
the stream will be blocked and subsequent read or write operations that we carry out on
it will be ignored. We can also ask the total number of bytes read and/or written in the
channel, in case we need to know if there is information available for reading.

• Use stm_state to know the current status of the channel.

• Use stm_file_err to get extended error information on disk streams.

• Use stm_sock_err to get extended error information in sockets.

• Use stm_corrupt to mark a stream as ekSTCORRUPT. Sometimes it is the application
itself that detects that the data is not correct (eg out of range).

• Use stm_bytes_written to get the total number of bytes written to the stream.

• Use stm_bytes_readed to get the total number of bytes read from the stream.
uint32_t nw = stm_bytes_written(stm);
uint32_t nr = stm_bytes_readed(stm);
if (nw nr > 0)
{

if (stm_state(stm) == ekSTOK)
{

uint32_t v1 = stm_read_u32(stm);
real32_t v2 = stm_read_r32(stm);
...

}
else
{

// Error in stream
}

}
else
{

// No data in stream

208 Chapter 15 - Core library

}

15.6. Arrays

Being able to work with data collections is essential when designing our model. In
addition to the basic types and the struct, union or class, the C language offers us the
array construction, which allows to store several elements under the same variable name
(Listing 15.15):

Listing 15.15: C Arrays.
typedef struct _product_t Product;
struct _product_t
{

type_t type;
String *code;
String *description;
Image *image64;
real32_t price;

};

DeclSt(Product);
DeclPt(Product);

uint32_t integers[100];
real32_t reals[100];
Product products[100];

Or, dynamically (Listing 15.16):

Listing 15.16: Dynamic arrays.
uint32_t n = get_n();
uint32_t *integers = heap_new_n(n, uint32_t);
real32_t *reals = heap_new_n(n, real32_t);
Product *products = heap_new_n(n, Product);

The C arrays store elements in contiguous positions of memory and, although they
are very quick to consult, they lack the functionality to insert, delete, search or sort.
In many cases, the data is not available when the container is created, but they are
entering or leaving dynamically during the program execution, so we cannot anticipate in
advance a maximum number with which to make the memory reservation. The Array type
implemented in NAppGUI is, in essence, a dynamic C array and a series of methods to
manipulate it. By dynamic we understand that the structure adjusts its size to the actual
amount of elements, keeping the main premise that all remain in memory together.

15.6 - Arrays 209

When an Array is created, memory is reserved for a few records (Figure 15.23). Later,
we can add new elements at the end (typical) or insert them in any random position in
case we already have data in the container. In the latter case, the rest of the elements
will be shifted to the right. As soon as the number of reserved records is exceeded, the
internal dynamic block will be doubled to accommodate the new positions. In the same
way it is possible to eliminate any element of the collection, moving the rest to the left
to maintain the spatial coherence of the structure. If the number of items decreases by
half, the memory block will be reduced. In this way, during the life of the container, the
memory will be adjusted by multiplying or dividing by 2 the number of reserved elements.

Header

used free

reserved

Header

Insert

grow

shrink

Header

Insert

Header

Delete

Figure 15.23: The Array adapt their internal memory to the num-
ber of elements.

15.6.1. Registers or pointers
An object of type Product, our example structure, needs 20 bytes on 32-bit systems

(Figure 15.24). The code, description and image64 fields are pointers that point to
other memory areas, where the String and Image type fields reside, dynamically reserved.

type_tString*String*Image*real32_t Product
(20 bytes)

GTX-1050 (8)

Gigabyte GeForce GTX 1050 OC 2Gb GDDR5 (38)

Figure 15.24: Product object.

Depending on what is stored inside the container, we can use two kinds of array (List-
ing 15.17). The array of records will keep the entire object (20 bytes) inside and the array
of pointers only a reference to it (4 bytes), the actual object being located in another

210 Chapter 15 - Core library

memory address (Figure 15.25). Although the internal structure management is the same,
access to the elements differs slightly.

• Use arrst_create to create an array of records.

• Use arrpt_create to create an array of pointers.

Listing 15.17: Create an array.
ArrSt(Product) *arrst = arrst_create(Product);
ArrPt(Product) *arrpt = arrpt_create(Product);

Header Product Product Product *... * * * * * ...

Product Product

Product

Product

Product
ProductProduct

Header

Figure 15.25: Arrays of registers and pointers.

Use ArrSt can slightly improve performance, thanks to spatial consistency, which re-
duces cache failures, and saving calls to the memory manager “Arrays vs Sets compara-
tiveArrays vs Sets comparative” (page 221). But this will not always be possible, and we
cannot use them in these cases:

• Opaque objects: If the type definition is not public, the container cannot calculate
the space required for each element, so we can only work with pointers to them.

• Shared objects: If other structures of the model keep pointers to the elements of the
container, we will have Segmentation Fault problems due to the change of memory
addresses when relocating the internal container block (Figure 15.26).

Header Product Product

Transaction

0x45A20

0x45A20
Header Product Product

Transaction

0x45A20

0x87B10
Product

growrealloc

Segmentation fault

Figure 15.26: Register arrays are dangerous with external references.

15.6.2. Type check
You will have noticed in (Listing 15.15) that two statements appear just after the

definition of the struct Product: DeclSt and DeclPt. These are two macros that enable
compile-time type checking, defining a custom interface in the containers for this new type

15.6 - Arrays 211

(Listing 15.6.2). All things considered, they mimic the C++ template<>. DeclSt enables
record containers and DeclPt pointer ones.
Product *p1 = arrst_new(Product);
Product *p2 = arrst_get(arrst, 5, Product);
const Product *p3 = arrst_get_const(arrst, 5, Product);

Although it is not advisable, you can dispense with the use of these macros and use the
“raw” interfaces of the containers, defined in array.h and rbtree.h. In this case your
code will be much less readable and you will not have compiler support.

Headers array.h and rbtree.h are not documented.

15.6.3. Constructors
When memory is reserved for an object, either in the “Stack SegmentStack Segment”

(page 162) as automatic variables
Product product;

at “Heap SegmentHeap Segment” (page 163) through dynamic memory
Product *product = heap_new(Product);

or in a container
Product *product = arrst_new(array, Product);

its initial content is garbage, understood as undetermined bytes. Initializing an object is
assigning valid and consistent values to each field of the object (Listing 15.18).

Listing 15.18: Initializing an object Product.
static void i_init(Product *product)
{

product>type = ekCPU;
product>code = str_c("");
product>description = str_c("");
product>image64 = image_copy(gui_image(NOIMAGE_PNG));
product>price = 0.f;

}

For its part, a constructor is an initializer that previously reserves memory dynamically
to store the object (Listing 15.19).

Listing 15.19: Constructor of object Product.
static Product *i_create(void)

212 Chapter 15 - Core library

{
Product *product = heap_new(Product);
i_init(product);
return product;

}

When we use register arrays, we will only need to initialize the object, since the space
to store it has been reserved by the container itself (Listing 15.20). However, in pointer
arrays, the memory for the object must be explicitly reserved, since the container will only
save a reference.

Listing 15.20: Insert correctly initialized objects.
// Add an item using an automatic variable (a copy is required)
Product product;
i_init(&product);
arrst_append(array, product, Product);

// Add an item directly (avoiding copying)
Product *product = arrst_new(array, Product);
i_init(product);

// Add a pointer to a newly created object on the heap
Product *product = i_create();
arrpt_append(array, product, Product);

Use arrst_new, arrst_insert_n or arrst_prepend_n whenever possible to insert
into record arrays, as they avoid having to copy the object.

15.6.4. Array loops
To iterate over all the elements of the array, we can choose between two types of syntax

to implement the loop.
uint32_t i, n = arrst_size(arrst, Product);
for (i = 0; i < n; ++i)
{

const Product *product = arrst_get(arrst, i, Product);

// Do something
...

}

arrst_foreach(product, arrst, Product)
// Do something
...

arrst_end();

15.6 - Arrays 213

// In reverse order
arrst_foreach_rev(product, arrst, Product)

// Do something
...

arrst_end();

15.6.5. Copy objects
Similar to constructors, there are two methods for copying objects (Listing 15.21). In

the first one, we generate dynamic memory for the object’s fields, but not for the object
itself, either because it is an automatic variable or is stored in an array of records. In the
second case, we reserve dynamic memory for both the object and its elements.

Listing 15.21: Copying an object Product.
static void i_copy_data(Product *dest, const Product *src)
{

dest>type = src>type;
dest>code = str_copy(src>code);
dest>description = str_copy(src>description);
dest>image64 = image_copy(src>image64);
dest>price = src>price;

}

static Product *i_copy(const Product *product)
{

Product *new_product = heap_new(Product);
i_copy_data(new_product, product);
return new_product;

}

ArrSt(Product) *arrst = arrst_copy(arrst_src, i_copy_data, Product);
ArrPt(Product) *arrpt = arrpt_copy(arrpt_src, i_copy, Product);

15.6.6. Serialization
A special case of the constructor are the readers (de-serializers). When we create an

array from the content of “Streams” (page 193) (Listing 15.22), we need a method capable
of creating or initializing an element from the stream itself. Depending on the type of
container it will be necessary to reserve memory for each item or not.

Listing 15.22: Reading an array from a stream.
static void i_read_data(Stream *stm, Product *product)
{

product>type = stm_read_enum(stm, type_t);
product>code = str_read(stm);
product>description = str_read(stm);

214 Chapter 15 - Core library

product>image64 = image_read(stm);
product>price = stm_read_r32(stm);

}

static Product *i_read(Stream *stream)
{

Product *product = heap_new(Product);
i_read_data(stream, product);
return product;

}

ArrSt(Product) *arrst = arrst_read(i_read_data, Product);
ArrPt(Product) *arrpt = arrpt_read(i_read, Product);

In the same way we can write (serialize) the contents of an array in a write stream
(Listing 15.23). In this case, a single write function is sufficient for both types of containers,
since each one knows how to access its elements.

Listing 15.23: Writing an array in a stream.
static void i_write(Stream *stm, const Product *product)
{

stm_write_enum(stm, product>type, type_t);
str_write(stm, product>code);
str_write(stm, product>description);
image_write(stm, product>image64);
stm_write_r32(stm, product>price);

}

arrst_write(stm, arrst, i_write, Product);
arrpt_write(stm, arrpt, i_write, Product);

15.6.7. Destructors
In programming many times we are confused by the verbs: ’delete’, ’destroy’, ’free’,

’erase’, ’remove’, ’clear’ since they essentially mean the same thing but with subtle dif-
ferences. In NAppGUI we will use one verb or another depending on concrete actions:

• Free: Only free dynamic memory allocated to an object (Listing 15.24). You need a
double pointer, since the object will be invalidated (=NULL) after freeing it, avoiding
references to free memory areas.

Listing 15.24: Freeing the memory of an object.
Product *product = heap_new(Product);
...
heap_free(&product, Product);
// product = NULL

15.6 - Arrays 215

• Remove: It destroys the fields of an object, but does not free the memory of the
object itself. It is the opposite of the initializer (Listing 15.25).

Listing 15.25: Freeing memory from object fields.
static void i_remove(Product *product)
{

str_destroy(&product>code);
str_destroy(&product>description);
image_destroy(&product>image64);

}

arrst_destroy(&arrst, i_remove, Product);

• Destroy: The combination of the previous two. Destroy the fields of the object and
free its memory (Listing 15.26). It is the opposite of the constructor. Obviously, it
requires a double pointer to invalidate the reference.

Listing 15.26: Free the object’s memory and all its contents.
static void i_destroy(Product **product)
{

i_remove(*product);
heap_free(product, Product);

}

arrpt_destroy(&arrpt, i_destroy, Product);

• Delete: Delete an element from an array or other type of container (Listing 15.27).
It may have associated a destructor or remover, although it is not mandatory.

Listing 15.27: Delete an item from a container.
// Just delete.
arrst_delete(arrst, 4, NULL, Product);

// Delete and remove (arrst).
arrst_delete(arrst, 4, i_remove, Product);

// Delete and destroy (arrpt).
arrpt_delete(arrpt, 4, i_destroy, Product);

• Clear: Delete all the elements of a container, but do not destroy it, just leave it to
zero (Listing 15.28). Like arrst_delete, optionally can free objects memory.

Listing 15.28: Clear a container, deleting all its items.
// Just delete all.
arrst_clear(arrst, NULL, Product);

// Delete and remove all (arrst).

216 Chapter 15 - Core library

arrst_clear(arrst, i_remove, Product);

// Delete and destroy all (arrpt).
arrpt_clear(arrpt, i_destroy, Product);

15.6.8. Sort and search
The usual way to use arrays will be to add elements at the end by arrst_new or

arrpt_append then iterate over all. This “natural” order will be enough in most cases,
but we may need to organize the elements following another criterion for:

• Present the information ordered by one or several fields of the structure.

• Optimize searches. To locate a certain element, there is no choice but to travel the
entire array, with linear cost O(n). But we can solve the search in logarithmic time
O(logn) if the array is sorted, dramatically increasing performance especially in
large sets (Figure 15.27).

Figure 15.27: In a maximum of 10
steps we will find an element among
a thousand (20 steps for a million).

250

500

375

406

437

421

425

428

426

0 999
426

• Use the function arrst_sort, to sort an array. We will have to pass a comparison
function, which will determine the order relationship (Listing 15.29).

Listing 15.29: Sort arrays by product code.
static int i_compare(const Product *p1, const Product *p2)
{

return str_scmp(p1>code, p2>code);
}

arrst_sort(arrst, i_compare, Product);
arrpt_sort(arrpt, i_compare, Product);

15.7 - Arrays (pointers) 217

To search for an element within an array, we must also provide a function that compares
the object with a key. This key contains the search criteria and is usually smaller than the
element itself. Many times it is just a simple number or a text string (Listing 15.30).

• arrst_search Slow method. It will search for elements in a linear way, one by one
O(n).

• arrst_bsearch Fast method. It will search elements in logarithmic way, O(logn).
The array must be sorted according to the same criteria as the search.

Listing 15.30: Search for an item by its code.
static int i_compare_key(const Product *p1, const char_t *key)
{

return str_cmp(p1>code, key);
}

uint32_t pos;
Product *pr1, *pr2;
// Slow O(n)
pr1 = arrst_search(arrst, i_compare_key, "G3900", &pos, Product, char_t);

// Fast O(logn)
pr2 = arrst_bsearch(arrst, i_compare_key, "G3900", &pos, Product, char_t);

15.6.9. Arrays of basic types
The basic types are a particular case of single-field structure, so we will use it ArrSt.

In the specific case of enum we must create an alias by typedef, as ArrSt(type) does not
support the keyword enum, just as does not support struct keyword. In C++ this alias is
not necessary. When destroying the array we will pass NULL to the destructor parameter,
since the basic types do not generate dynamic memory.
typedef enum _type_t type_t;
ArrSt(uint32_t) *integers = arrst_create(uint32_t);
ArrSt(type_t) *types = arrst_create(type_t);
arrst_destroy(&integers, NULL, uint32_t);
arrst_destroy(&types, NULL, type_t);

15.7. Arrays (pointers)

15.8. Binary search trees

Like arrays binary search trees (BST), also known as sets or maps, are containers
that allow us to work with a collection of objects. The main difference with the first ones

218 Chapter 15 - Core library

is that the elements are not stored linearly in contiguous positions of memory, but use a
tree-shaped structure where each node has two descendants (Listing 15.31) (Figure 15.28).

Listing 15.31: Creation of arrays and sets.
typedef struct _product_t Product;
struct _product_t
{

type_t type;
String *code;
String *description;
Image *image64;
real32_t price;

};

static int i_compare(const Product *p1, const Product *p2)
{

return str_scmp(p1>code, p2>code);
}

ArrSt(Product) *arrst = arrst_create(Product);
ArrPt(Product) *arrpt = arrpt_create(Product);
SetSt(Product) *setst = setst_create(i_compare, Product);
SetPt(Product) *setpt = setpt_create(i_compare, Product);

Figure 15.28: Array and set repre-
sentation.

0 1 2 3 4 5 6 7 8 9 10 11

6

2 9

1 4 8 10

0 3 5 7 11

array

set

BSTs are structures optimized for cases where insertions, deletions and searches are
very frequent. They are permanently sorted, hence it is possible to insert, delete or locate
any element in logarithmic time O(logn), no need to use sort functions like arrst_sort
(Figure 15.29). For maintenance to be carried out efficiently, the tree that supports the
structure must meet a number of characteristics:

• Binary : Each node can only have 0, 1 or 2 children.

• Sorted : All descendants to the left of a node are of lesser value and those to the
right of greater value. The order and search criteria are set in the constructor by a

15.8 - Binary search trees 219

9

5 14

2 17

9

5 14

2 1711

11insert 9

14

2 1711

5delete

5

Figure 15.29: In search trees the insertion or deletion does not break the order of
the set.

comparison function (i_compare in the previous example) and cannot be changed
during the lifetime of the container. The new elements will be inserted in their
correct position according to this order. It does not support duplicate elements or
in arbitrary positions.

• Balanced: A tree can fulfill the two previous properties, but have degenerated to
a list where searches can no longer be resolved in logarithmic time (Figure 15.30).
Internally, the NAppGUI Set containers are implemented with the so called red-
black trees, where a maximum height of 2log(n+1) is guaranteed. This is achieved
by restructuring the tree after each insertion or deletion, so adding a new element
(or removing it) is resolved in a maximum of O(logn). This is much faster than in
arrays, where have to move all the elements to insert a record in a specific position,
with an associated cost of O(n).

Figure 15.30: Degenerated and bal-
anced search tree.

1

2

3

4

5

6

4

3 5

1 62

As we saw in “Registers or pointersRegisters or pointers” (page 209), we have two
modalities when creating sets (Figure 15.31). The register-based version is more efficient
than the pointer-based version, although less flexible.

• Use setst_create to create a set of registers.

• Use setpt_create to create a set of pointers.

220 Chapter 15 - Core library

Product

Product Product

Product Product Product

Product

Product

Product Product Product

Product*

**

Figure 15.31: Sets of registers and pointers.

15.8.1. Iterators
We cannot access the elements of a set using a random index, as was the case with arrays.

The nodes are dispersed in different memory areas, which prevents calculating the position
of a particular element from a base address. An iterator is nothing more than a pointer
within the set that acts as a marker for the currently selected element (Figure 15.32).
From a specific position, we can move to the previous or subsequent element, but never
make arbitrary jumps. We can control the position of the iterator with different functions
(Listing 15.32):

Figure 15.32: The iterators
allow us to move through the
structure.

6

2 9

1 4 8 10

0 3 5 7 11
prev

next

pos

• Use setst_get to search for an item. The iterator will be fixed on it.

• Use setst_next to move the iterator to the next item.

• Use setst_prev to move the iterator to the previous item.

• Use setst_first to move the iterator to the first element of the set.

• Use setst_last to move the iterator to the last element of the set.

Listing 15.32: Iterating over the elements of a set.
const Product *product = setst_first(setst, Product);
while (product != NULL)
{

// Do something
...

15.8 - Binary search trees 221

product = setst_next(setst, Product);
}

setst_foreach(product, setst, Product)
// Do something
...

setst_fornext(product, setst, Product)

// In reverse order
setst_forback(product, setst, Product)

// Do something
...

setst_forprev(product, setst, Product)

15.8.2. Arrays vs Sets comparative
We have performed a test to see the behavior of these two types of structures in real

situations, apart from mere theory (Table 15.1). The structure used has been Product
described in (Listing 15.31). We will compare six types of containers ArrSt(Product) and
ArrPt(Product) (unsorted), ArrSt(Product) and ArrPt(Product) (sorted), SetSt(
Product) and SetPt(Product).

• The items will be sorted by code field using the method i_compare described in
(Listing 15.31).

• The elements have been created previously and reside in memory. Times only reflect
the management performed by the containers.

• Field code take values from "0" until "n1", where n=100,000 is the number
of elements. The elements have been previously messed up using the function
bmem_shuffle_n.

• The tests have been performed on a Raspberry Pi 3 Model B with NAppGUI
compiled in Release version (“ConfigurationsConfigurations” (page 95)). We have
chosen this platform because of its clear technical inferiority with respect to others.
In this way the asymptotic difference is more evident.

Operation ArrSt ArrPt ArrSt-Sort ArrPt-Sort SetSt SetPt

Add(100k) 0.006 0.004 27.600 2.896 0.159 0.274

Loop(100k) 0.000 0.000 0.000 0.000 0.022 0.025

Search(100k) 84.139 588.080 0.101 0.218 0.121 0.232

Sort(100k) 0.085 0.205 - - - -

222 Chapter 15 - Core library

Operation ArrSt ArrPt ArrSt-Sort ArrPt-Sort SetSt SetPt

Delete(100k) 0.004 0.003 31.198 3.064 0.171 0.253

Table 15.1: Results of the comparison (in seconds).

In view of these data, we can reach the following conclusions:

• Linear searches O(n) are tremendously slow.

• Keeping an array sorted after each insertion or deletion is expensive. It is more
efficient to add all the elements and then order, although this will not always be
possible. If the elements enter or leave arbitrarily but the set must always be ordered,
it is better to use Sets.

• Register-based containers are more efficient in queries, but less when inserting or
deleting. However, this test does not include the time to create or release dynamic
memory, something inherent in pointer containers.

• Iterating in arrays is almost free, but iterating in sets has a small cost due to the
logic of jumping between nodes.

• We cannot say that one container is better than another in general. It will depend
on each specific case.

• For small groups (less than 1000 elements) the differences are practically impercep-
tible.

• For extremely small groups (up to 100 items) always use arrays. The asymptotic Sets
improvement is marred by the much more efficient implementation of the Arrays.

15.9. Binary search trees (pointers)

15.10. Regular expressions

Regular expressions define a text pattern that can be used to find or compare strings.

• Use regex_create to create a regular expression.

• Use regex_match to check if a string matches the pattern.

Listing 15.33: Using regular expressions.
RegEx *regex = regex_create(".*.txt");

const char_t *str[] = {
"file01.txt",
"image01.png",
"sun01.jpg",

15.10 - Regular expressions 223

"films.txt",
"document.pdf"};

uint32_t i, n = sizeof(str) / sizeof(char_t*);

for (i = 0; i < n; ++i)
{

if (regex_match(regex, str[i]) == TRUE)
bstd_printf("YES: %s\n", str[i]);

else
bstd_printf("NO: %s\n", str[i]);

}

regex_destroy(®ex);

Result of (Listing 15.33).
YES: file01.txt
NO: image01.png
NO: sun01.jpg
YES: films.txt
NO: document.pdf

15.10.1. Define patterns
We can build a regular expression from a text string, following these simple rules:

• A string pattern corresponds only to that same string.
"hello" > {"hello"}

• A period '.' is equivalent to “any character”.
"h.llo" > {"hello", "htllo", "hällo", "h5llo", ...}

• A dash 'AZ' sets a range of characters, using the ASCII/Unicode code from both
ends.
"AZello" > {"Aello", "Bello", "Cello", ..., "Zello"}

'AZ': (6590) (ABCDEFGHIJKLMNOPQRSTUVWXYZ)
'09': (4857) (0123456789)
'áú': (225250) (áâãäåæçèéêëìíîïðñòóôõö÷øùú)

Like String objects, patterns are expressed in “UTF-8UTF-8” (page 158), therefore
the entire Unicode set can be used to create regular expressions.

• The brackets '[áéíóú]' allow you to switch between several characters.

224 Chapter 15 - Core library

"h[áéíóú]llo" > {"hállo", "héllo", "híllo", "hóllo", "húllo"}

• The asterisk '*' allows the last character to appear zero or more times.
"he*llo" > {"hllo", "hello", "heello", "heeello", "heeeello", ...}
"h.*llo" > {"hllo", "hello", "hallo", "hillo", "hasello", ...}
"hAZ*llo" > {"hllo", "hAllo", "hABllo", "hVFFRREASllo" }

> {"hAQWEDllo", hAAABBRSllo", ...}
"FILE_09*.PNG" > {"FILE_.PNG", "FILE_0.PNG", "FILE_01.PNG" }

> {"FILE_456.PNG", "FILE_112230.PNG",...}

• The parentheses '(he*llo)' allow grouping a regular expression, so that it behaves
as a single character.
"[(hello)(bye)]" > {"hello", "bye" }
"[(red)(blue)(1*)]" > {"red", "blue", "", "1", "11", "111", ... }
"(hello)*" > {"", "hello", "hellohello", "hellohellohello", ... }
"(he*llo)ZZ" > {"hlloZZ", "helloZZ", "heelloZZ", "heeelloZZ", ... }

• For '.', '', '[]', '*', '()' to be interpreted as characters, use the backslash
'\'.
"\(he*\llo\)" > {"(he*llo)"}

Remember that for expressions inserted as constants in C code, the backslash character
is represented by a double slash "\\(he\\(*\\(llo\\()".

15.10.2. Regular languages and automata
Regular languages are those that are defined recursively using three basic operations

on the set of characters (or symbols) available. They can be described using the regular
expressions discussed above.

• Each character ’a’ is a regular language ’A’.

• The union of two regular languages, is a regular language A�B.

• The concatenation of two regular languages, is a regular language A·B.

• The closure of a regular language is a regular language A*. This is where recursion
comes in.

In this context the symbols are all Unicode characters. But you can define languages
 based on other alphabets, including the binary {0, 1}.

15.11 - Data binding 225

To recognize whether or not a string belongs to a certain regular language, it is necessary
to build a Finite Automata based on the rules reflected in (Figure 15.33).

Figure 15.33: Construction of
finite automata to filter regular
expressions.

a
A

A B

A·B

ε

A

B
A∪B

ε

ε ε

ε

A

A*

ε

ε

ε

ε

15.11. Data binding
We understand by Data Binding the possibility of automatically synchronizing the

structures of the program with different input/output sources. We start from the simple
model (Listing 15.34) that we present in “Arrays” (page 208) composed of a struct and
an enum.

Listing 15.34: Simple data model based on struct.
typedef struct _product_t Product;

typedef enum _type_t
{

ekCPU,
ekGPU,
ekHDD,
ekSCD

} type_t;

struct _product_t
{

type_t type;

226 Chapter 15 - Core library

String *code;
String *description;
Image *image64;
real32_t price;

};

The first thing we have to do is register this model in dbind, a kind of general
“database” within our application (Listing 15.35). It is only necessary to carry out this
process once when starting the program. In this way, internal tables will be created with
the description of each structure of the data model (Figure 15.34), leaving the program
ready to automate certain tasks when working with objects of said classes.

• Use dbind to register the fields of a structure.

• Use dbind_enum to register the different values of enum types.

Listing 15.35: Registering the data model of (Listing 15.34).
dbind_enum(type_t, ekCPU, "");
dbind_enum(type_t, ekGPU, "");
dbind_enum(type_t, ekHDD, "");
dbind_enum(type_t, ekSCD, "");
dbind(Product, type_t, type);
dbind(Product, String*, code);
dbind(Product, String*, description);
dbind(Product, Image*, image64);
dbind(Product, real32_t, price);

struct Product
{
 type_t type;
 String *code;
 String *description;
 Image *image64;
 real32_t price;
};

offset
 0
 4
 8

 12

 16

name
type
code
description

image64

price

Product

type
type_t
String*
String*

Image*

real32_t

enum type_t
{
 ekCPU,
 ekGPU,
 ekHDD,
 ekSCD
};

name
ekCPU
ekGPU
ekHDD

ekSCD

type_t

 val
 0
 1
 2
 3

Figure 15.34: Internal tables created by dbind when registering the
data model.

15.11 - Data binding 227

15.11.1. Synchronization with graphical interfaces
One of the most widespread uses of data binding is the possibility of synchronizing the

graphical interface with the objects that make up the data model. This paradigm is known
as MVVM (Model-View-ViewModel) (Figure 15.35)and we will delve deeper into it “GUI
Data binding” (page 349).

Product
type
code
description
image64
price

Layout

Cell

Figure 15.35: Automatic synchronization of data and interface.

15.11.2. Read and write JSON
The parsing of JSON scripts can also be automated thanks to dbind (Figure 15.36). In

“JSON” (page 375) you will have detailed information on how to do it.
{

"code":0,
"size":80,
"data":[
{"id":0,
"code":"i78700K",
"description":"Intel BX80684I78700K 8th Gen Core i78700K Processor",
type":0,
"price":374.8899999999999863575794734060764312744140625,
"image":"cpu_00.jpg",
"image64":"\/9j\/4AAQSkZJRgABAQ....
},
...

}

228 Chapter 15 - Core library

Product
type
code
description
image64
price

PJson
code
size
data

{
 "code":0,
 "size":80,
 "data":[
 {"id":0,
 "code":"i7-8700K",
 "description":"Intel BX8068..
 type":0,
 "price":374.88999,
 "image":"cpu_00.jpg",
 "image64":"\/9j\/4AAQSkZJR...
 }, ...

Figure 15.36: Data Binding in the analysis of JSON scripts.

15.11.3. Serialization with DBind
As we saw in “SerializationSerialization” (page 213) and “Unify serializationUnify se-

rialization” (page 203) we need to define object reading and writing functions to send or
receive them through streams. Fortunately, dbind knows the detailed composition of each
registered object, so it’s possible access the I/O without having to explicitly program these
functions (Listing 15.36) (Figure 15.37).

Listing 15.36: Objects serialization with dbind.
ArrPt(Product) *products = dbind_read(stream, ArrPt(Product));
...
dbind_write(stream, products, ArrPt(Product));

struct Product
{
 type_t type;
 String *code;
 String *description;
 Image *image64;
 real32_t price;
};

Product
type
code
description
image64
price

11110001101011011

Figure 15.37: Object reading/writing via dbind.

15.11.4. Default constructor
Thanks to dbind we can also create objects initialized with default values without

creating specific constructors (Listing 15.37). They can also be destroyed guaranteeing
the correct recursive release of the memory of all their fields.

• Use dbind_create to create an object “ConstructorsConstructors” (page 211).

15.11 - Data binding 229

• Use dbind_init to initialize an object.

• Use dbind_destroy to destroy an object “DestructorsDestructors” (page 214).

Listing 15.37: Construction and destruction without additional methods.
ArrSt(Product) *array = dbind_create(ArrSt(Product));
Product *pr1 = dbind_create(Product);
Product *pr2 = arrst_new(array, Product);
dbind_init(pr2, Product);

// Use objects
...

dbind_destroy(&pr1, Product);
dbind_destroy(&array, ArrSt(Product));

The default values when initializing object fields are 0 for numbers, FALSE for booleans,
"" for Strings and empty containers in the case of arrays or sets. If the object contains
nested sub-objects, they will also be created/initialized recursively. These default values
can be changed if necessary (Listing 15.38).

• Use dbind_default to set the default value.

Listing 15.38: Changing the default values.
dbind_default(Product, type_t, type, ekHDD);
dbind_default(Product, String*, code, "Emptycode");
dbind_default(Product, real32_t, price, 5.f);
dbind_default(Product, Image*, image64, gui_image(NOIMAGE_PNG));

15.11.5. Numerical ranges
It is possible to configure the numeric fields uint32_t, int8_t, real64_t, etc to

limit the accepted values (Listing 15.39). dbind will be responsible for validating the data
every time it reads values from any data source (GUI, JSON, Streams, etc).

• Use dbind_range to set a maximum and minimum numerical values.

• Use dbind_precision to set numerical precision. For example 0.01 in monetary
values.

• Use dbind_increment to set the value of discrete increments.

• Use dbind_suffix to set a suffix that will be added when converting numbers to
text.

Listing 15.39: Value range and accuracy of price value.
dbind_default(Product, real32_t, price, 10f);

230 Chapter 15 - Core library

dbind_range(Product, real32_t, price, .50f, 10000f);
dbind_precision(Product, real32_t, price, .01f);
dbind_increment(Product, real32_t, price, 5.f);
dbind_suffix(Product, real32_t, price, "€");

15.12. Events

An event is an action that occurs during the program execution, usually asynchronously
or unpredictably and on which a given object must be notified. In applications with a
graphical interface, many events are constantly occurring when the user interacts with the
different controls. However, they can also occur in console applications, for example, when
finish the writing of a file to disk or when downloading a page from Internet. In a system
of events two actors intervene: The sender, which has evidence when the action occurs
and the receiver who is notified that such action has occurred. To connect both ends we
must perform these simple steps (Listing 15.40) (Figure 15.38):

• Create a listener indicating the receiving object and the callback function to which
the sender should call.

• Said listener is assigned to the sender by the appropriate method. For example, the
Button type provide the method button_OnClick to notify of a click.

• When the event occurs, the sender calls the callback function, indicating the receiving
object (parameter of listener) and detailed information about the event collected
in the object Event.

Listing 15.40: Callback function and button click event.
static void OnClick(AppCtrl *ctrl, Event *event)
{

// TODO: Response to click
}

...

void CreateButton(AppCtrl *ctrl)
{

Button *button = button_push();
button_text(button, "Ok");
button_OnClick(button, listener(ctrl, OnClick, AppCtrl));

}

Events are used in bulk in GUI applications, but can also be useful in command line
applications. See for example hfile_dir_loop in “File operations” (page 231).

15.13 - Keyboard buffer 231

Figure 15.38: OnClick
event.

ListenerListener

AppCtrl

1

2

sender
receiver

3
OnClickOnClick

Button

Event

15.13. Keyboard buffer

The operating system generates events related to the pressing or releasing keys view_OnDown
view_OnUp. Sometimes we need to know the state of a key without having to be aware

of the events they generate. KeyBuf offers a very simple query mechanism using only the
value of the vkey_t key.

• Use keybuf_create to create the buffer.

• Use view_keybuf to assign the buffer to any generic view, which will be in charge
of capturing events and updating it. The status may be consulted from any program
function at any time.

15.14. File operations

Although in “Files and directories” (page 177) we already saw how to access the file
system at a low level, sometimes certain high-level operations are necessary on the data
on disk. The mere act of completely deleting a directory has many individual low-level
operations associated with it. The Core library, through <hfile.h> provides certain
utilities that can simplify our lives at certain times.

• Use hfile_dir_create to create a directory, also creating its predecessors if they
don’t exist.

• Use hfile_dir_destroy to recursively delete a directory and all its contents.

• Use hfile_dir_sync to synchronize the contents of two directories. Something
similar to Unix rsync.

• Use hfile_dir_loop to go deep through a directory (Listing 15.41).

• Use hfile_buffer to load the contents of a file into memory.

Listing 15.41: Using hfile_dir_loop to loop through a three-level directory.
typedef struct _query_t Query;

232 Chapter 15 - Core library

static void i_OnEntry(Query *query, Event *e)
{

const EvFileDir *p = event_params(e, EvFileDir);

// First level (year)
if (p>depth == 0)
{

// The entry is a directory
if (event_type(e) == ekEENTRY)
{

bool_t *enter = event_result(e, bool_t);
int16_t year = str_to_i16(p>filename, 10, NULL);

// The loop enter in this subdir (depth 1)
if (i_process_year(query, year) == TRUE)

*enter = TRUE;
else

*enter = FALSE;
}

}
// Second level (month)
else if (p>depth == 1)
{

// The entry is a directory
if (event_type(e) == ekEENTRY)
{

bool_t *enter = event_result(e, bool_t);
uint8_t month = str_to_u8(p>filename, 10, NULL);

// The loop enter in this subdir (depth 2)
if (i_process_month(query, month) == TRUE)

*enter = TRUE;
else

*enter = FALSE;
}

}
// Third level (files)
else if (p>depth == 2)
{

// The entry is a file
if (event_type(e) == ekEFILE)

i_process_file(query, p>pathname);
}

}

/**/

Query query = i_init_query(&query);

hfile_dir_loop("main_path", listener(&query, i_OnEntry, Query), TRUE, FALSE,
↪→ NULL);

15.15 - Resource packs 233

Figure 15.39: Representation
of directory of (Listing 15.41).

main_path

2018

file2.txt

2019 2020 2021

01 04 08 12

file3.txt file4.txt file5.txt file6.txtfile1.txt

depth = 0

depth = 1

depth = 2

15.15. Resource packs

15.16. Dates

A series of functions are included within core to work with dates.

• Use date_system to get the system date.

• Use date_add_seconds to increment a given date.

• Use date_cmp to compare two dates.

15.17. Clocks

Simple objects that allow us, in a comfortable way, to measure the time span between
two instants. They are also useful for launching events at regular time intervals (List-
ing 15.42).

Listing 15.42: 25fps animation.
Clock *clock = clock_create(.04);
for (;;)
{

...
if (clock_frame(clock) == TRUE)

listener_event(transition, ekGUI_EVENT_ANIMATION, NULL, params, NULL,
↪→ void, EvTransition, void);

...

234 Chapter 15 - Core library

}
clock_destroy(&clock);

16C
ha

pt
er

Geom2D library

16.1 Geom2D 235
16.2 2D Vectors 237

16.2.1 CW and CCW angles 238
16.2.2 Vector projection 238

16.3 2D Size 240
16.4 2D Rectangles 240
16.5 2D Transformations 241

16.5.1 Elementary transformations 241
16.5.2 Composition of transformations 242
16.5.3 Decomposition and inverse 245

16.6 2D Segments 246
16.7 2D Circles 247
16.8 2D Boxes 247
16.9 2D Oriented Boxes 247
16.10 2D Triangles 249
16.11 2D Polygons 250

16.11.1 Polygon center 251
16.11.2 Polygon decomposition 252

16.12 2D Collisions 253

16.1. Geom2D

We are facing a geometric calculation library in two dimensions. Geom2D allows work-
ing with primitives in the real plane: Points, vectors, transformations, curves and surfaces.

236 Chapter 16 - Geom2D library

It offers only mathematical functionality, that is, it does not define any type of represen-
tation or drawing operation. It only depends on “Core” (page 187) library (Figure 16.1),
so it can be used in both desktop applications and command line utilities. All types and
functions are defined in simple (float) and double precision, in addition to being able
to make use of C++ “Math templatesMath templates” (page 53).

Figure 16.1: Dependencies of
geom2d. See “NAppGUI API”
(page 145).

osbsosbs

sewersewer

corecore

back-end

geom2dgeom2d

All geometric elements are based on (x, y) coordinates in the plane. Geom2D does not
assume how these coordinates will be interpreted. That will depend on the reference system
defined by the application. The most used are the Cartesian and the screen (Figure 16.2),
although others systems could be used where appropriate (Figure 16.3).

(0,0) X

Y
(0,0)

X

Y

(3,2)

3

2

Figure 16.2: Interpretation of the coordinate (3,2) on monitors (left)
and on the Cartesian plane (right).

Figure 16.3: Different 2D coordi-
nate systems.

X

Y

X

Y X

Y

X

Y

Y

X

Y

X Y

X

Y

X

16.2 - 2D Vectors 237

16.2. 2D Vectors
Vector (V2Df, V2Dd) is the most elementary geometric element. It represents a point,

a direction or displacement by its two components x and y (Figure 16.4).

X

Y

X

Y

Figure 16.4: A 2D vector represents a position or a displacement in
the plane.

The Vectorial Albegra defines a series of basic operations: Addition, negation, multipli-
cation by a scalar, module and normalization (Formula 16.1). The visual representation
of these operations is in (Figure 16.5).

~v = ~a +~b

= (a.x + b.x, a.y + b.y)
~v = p2 − p1

= (p2.x − p1.x, p2.y − p1.y)
−~a = (−a.x, −a.y)

~v = s · ~a

= (s · a.x, s · a.y)

|~a| =
√

a.x2 + a.y2

â =
(

a.x

|~a|
,
a.y

|~a|

)

Formula 16.1: Elementary vector albegra.

• Use v2d_addf to add two vectors.

• Use v2d_subf to subtract two vectors.

• Use v2d_mulf to multiply by a scalar.

• Use v2d_lengthf to calculate the modulus of a vector.

• Use v2d_normf to normalize a vector.

238 Chapter 16 - Geom2D library

a b
a+b

a -a a

2a

a â1
|a|

p1

p2

p2-p1

Figure 16.5: Geometric interpretation of basic operations with vec-
tors.

16.2.1. CW and CCW angles
The angle of rotation of a vector will always be expressed in radians and the positive

direction corresponds to the rotation from the X axis to the Y axis. Normally the
counterclockwise direction is associated as positive and the clockwise direction negative.
This is true in Cartesian coordinates but not in other types of reference systems, such as
images or monitors (Figure 16.6). We must bear this in mind to avoid confusion, something
that happens relatively frequently. The same criterion is applied when calculating the
perpendicular vector, differentiating between positive and negative.

• Use v2d_anglef to get the angle between two vectors.

• Use v2d_rotatef to apply a rotation to a vector.

• Use v2d_perp_posf to calculate the positive perpendicular vector.

To avoid confusion, remember that the positive direction is the one that rotates from the
X axis to the Y axis. It will be counterclockwise direction in Cartesian coordinates
and clockwise direction in screen coordinates.

16.2.2. Vector projection
Another operation used quite frequently in geometry is the projection of points onto a

vector. Intuitively, we can see it as the point on the vector closest to the original point and
that it will always be on the perpendicular line. We will calculate it with the dot product
(Formula 16.2) and its value (scalar) will be the distance from the origin to the projection
in the direction of the vector (Figure 16.7).

• Use v2d_dotf to calculate the dot product of two vectors.

16.2 - 2D Vectors 239

X

Y

+θ

-θ

+⟂
-⟂

X
Y -θ

+θ

-⟂
+⟂

π/2 -π/2

Figure 16.6: Rotation of a vector in Cartesian and screen systems.

proj~v(p) = v.x · p.x + v.y · p.y

|~v|

proj ~4,3(1, 2) = 4 · 1 + 3 · 2
5

= 2

proj ~4,3(2, −2) = 0.4
proj ~4,3(5, 1) = 4.6

proj ~4,3(−3, 1) = −1.8

Formula 16.2: Projection of several points in a vector.

(4,3)

(5,1)

(-2,-2)

(1,2)

(-3,1)

-1.8

0.4 2

4.6

0

5

Figure 16.7: Geometric interpretation of projections.

If we are interested in the relative position between different projections, we can avoid
dividing by the vector’s modulus, which is more computationally efficient by not cal-
culating square roots.

240 Chapter 16 - Geom2D library

16.3. 2D Size

The S2Df, S2Dd structure stores information about a measure or size in two dimensions
using its fields width and height.

• Use s2df to compose a measure through its elementary fields.

Figure 16.8: Size2D.

width

heightS2Df

16.4. 2D Rectangles

A rectangle (or frame) (R2Df, R2Dd) (Figure 16.9) is used to locate elements in user
interfaces or other 2D systems through a point of origin V2Df and a size S2Df. They can
also be used in clipping operations, when optimizing drawing tasks.

• Use r2d_collidef to determine if two rectangles collide.

• Use r2d_clipf to determine if a rectangle is visible within an area.

• Use r2d_joinf to join the two rectangles.

(X,Y)

Width

Height

Figure 16.9: Positioning GUI elements using rectangles.

16.5 - 2D Transformations 241

16.5. 2D Transformations

Affine transformations are a type of mathematical operation that allows coordinate
changes between different reference systems. For example in (Figure 16.10) (a) we con-
struct a polygon expressing the coordinates of its vertices in a Cartesian system: [(4,1),
(2,5), (-3,5), (-4,2), (0, -3)]. Now let’s imagine that we want to draw several instances of
our model on a plane, each with a different position, orientation and size (Figure 16.10)
(b). We would need to calculate the coordinates of the points of the polygon in the new
locations, in order to correctly draw the lines that delimit them.

X

-Y

(0,0)

(x=?,y=?)
X

Y

0

12

3

4

(x=4, y=1)

(a) (b)

Figure 16.10: Geometric model (a) Expressed in a Cartesian system. (b) After
applying transformations.

Vector Algebra gives us a powerful tool with which the relationship between two systems
can be expressed using six real numbers (Figure 16.11). The first four values correspond to
a 2x2 matrix with the coordinates of the vectors X=[1,0] and Y=[0,1] in the new reference
system. This matrix integrates a possible rotation and scaling of the axes. The last two
values indicate a displacement in the origin of coordinates. In (Formula 16.3) we have the
mathematical development to transform the point [4.1] to a new base rotated 25° with
respect to the origin and displaced 11 units on the X axis and -5 on the Y axis. Applying
the same operation to all points, we would transform the object.

16.5.1. Elementary transformations
In principle, any combination of values [i.x, i.y, j.x, j.y, p.x, p.y] would provide a valid

transformation, although if we do not choose them with certain criteria we will obtain
aberrations that are not very useful in practice. The most used transformations in graphic
and engineering applications are (Figure 16.12) (Figure 16.13) (Formula 16.4):

• Translation (a): Moves the origin of the object to another point.

• Rotation (b): Rotates the object on the origin of its local system.

• Scaling (c): Change the size. If sx < 1, reduce. sx > 1, increase. sx = 1, does not

242 Chapter 16 - Geom2D library

X

Y

X

Y

25º X

Y

X

Y

(11,-5)

(4,1)

(14.2,-2.4)

(1,0)

(0.906,0.423)

(0,1)
(-0.423,0.906)

Figure 16.11: Change of base. Relationship of a point in two different reference
systems.

[
x′

y′

]
=

[
i.x j.x
i.y j.y

] [
x
y

]
+

[
p.x
p.y

]

=
[
0.906 −0.423
0.423 0.906

] [
4
1

]
+

[
11
−5

]

=
[
3.2
2.6

]
+

[
11
−5

]

=
[

14.2
−2.4

]

Formula 16.3: Point [4,1] transformation.

vary. In non-uniform scales, sx and sy have different values, which will produce a
distortion in the aspect ratio.

• Identity (d): It is the null transformation. When applied, the vectors remain un-
changed.

16.5.2. Composition of transformations
It is possible to compose or accumulate transformations by matrix multiplication (For-

mula 16.5). The usual thing in 2d models will be to obtain the final location of an object
from the elementary transformations translation, rotation and scaling. The accumulation
is also useful for positioning elements in hierarchical structures, where the location of each
object depends directly on that of its upper node (parent).

16.5 - 2D Transformations 243

Figure 16.12: Classification of
affine transformations.

Affine Transformations

Nonuniform scalings

Angle-preserving

Length-preserving

Rigid motions

Translations Rotations

Reflections

Uniform scalings

X’

Y’

X

Y

X’

Y’

X

Y

X’

Y’

θ

X

Y

(a)

(b)

(c)

X

Y

X’

YY’

(d)

Figure 16.13: Geometric representation of elementary transformations. (a) Trans-
lation, (b) Rotation, (c) Scaling, (d) Identity.

• Use t2d_movef to add a displacement to an existing transformation.

• Use t2d_rotatef to add a rotation.

• Use t2d_scalef to add a scaling.

• Use t2d_multf to add a transformation.

• Use t2d_vmultf to apply a transformation to a vector.

• Use t2d_vmultnf to apply a transformation to several vectors.

• Use kT2D_IDENTf to reference the identity transformation.

244 Chapter 16 - Geom2D library

[
x′

y′

]
=

[
1 0
0 1

] [
x
y

]
+

[
p.x
p.y

]
[
x′

y′

]
=

[
cosθ −sinθ
sinθ cosθ

] [
x
y

]
+

[
0
0

]
[
x′

y′

]
=

[
sx 0
0 sy

] [
x
y

]
+

[
0
0

]
[
x′

y′

]
=

[
1 0
0 1

] [
x
y

]
+

[
0
0

]

Formula 16.4: Translation, Rotation, Scaling and Identity.

[
x′

y′

]
=

[
id.x jd.x
id.y id.y

] [
x
y

]
+

[
pd.x
pd.y

]
id.x = i1.x · i2.x + j1.x · i2.y

id.y = i1.y · i2.x + j1.y · i2.y

jd.x = i1.x · j2.x + j1.x · j2.y

jd.y = i1.y · j2.x + j1.y · j2.y

pd.x = i1.x · p2.x + j1.x · p2.y + p1.x

pd.y = i1.y · p2.x + j1.y · p2.y + p1.y

Formula 16.5: Composition of two arbitrary transformations.

Matrix multiplication is not commutative, but the order in which the operations are
applied will affect the final result. For example in (Figure 16.14) (a), the origin has been
moved and then applied a rotation. In (Figure 16.14) (b) it has been done on the contrary,
first rotate and then move.

Listing 16.1: Acumulación de transformaciones.
// (a) First move, then rotate
T2Df t2d;
t2d_movef(&t2d, kT2D_IDENTf, 11, 0);
t2d_rotatef(&t2d, &t2d, kBMATH_PIf / 4);

// (b) First rotate, then move
T2Df t2d;
t2d_rotatef(&t2d, kT2D_IDENTf, kBMATH_PIf / 4);

16.5 - 2D Transformations 245

t2d_movef(&t2d, &t2d, 11, 0);

XY

X

Y XY

X

Y
(a) (b)

(1) 45º
(2)

45º
(1)

(2)

Figure 16.14: Effect of the order of application of transformations.

16.5.3. Decomposition and inverse
Any chain of translations, rotations, and scales defines an affine reference frame that

can be expressed in terms of a single traslation, rotation, and scale (Figure 16.15). We can
“undo” this transformation and return to the origin through the inverse transformation
(Listing 16.2).

• Use t2d_decomposef to get the components of a transformation.

• Use t2d_inversef to get the inverse transformation.

X

Y

X

Y

rot(45º)

move(11,0)

move(10,-10)

rot(-90º)
scale(1.5,1)

pos: (21.92, 7.78)
angle: -45º
scale: (1.5, 1)

Figure 16.15: Transformation chain and final system.

Listing 16.2: Components of a reference and inverse system.
T2Df t2d, inv, inv2;
V2Df pos, sc;
real32_t a;

// Transform sequence
t2d_rotatef(&t2d, kT2D_IDENTf, kBMATH_PIf / 4);

246 Chapter 16 - Geom2D library

t2d_movef(&t2d, &t2d, 11, 0);
t2d_movef(&t2d, &t2d, 10, 10);
t2d_rotatef(&t2d, &t2d, kBMATH_PIf / 2);
t2d_scalef(&t2d, &t2d, 1.5f, 1);

// Transform components
t2d_decomposef(&t2d, &pos, &a, &sc);

// Transform inverse
t2d_inversef(&inv, &t2d);

// Inverse from components
t2d_scalef(&inv2, kT2D_IDENTf, 1/sc.x, 1/sc.y);
t2d_rotatef(&inv2, &inv2, a);
t2d_movef(&inv2, &inv2, pos.x, pos.y);

// inv == inv2 ('inv' more numerical accurate)

16.6. 2D Segments

Segments are fragments of a line between two points p0 and p1 (Figure 16.16). They
are the simplest geometric primitives, after vectors. We define the t parameter as the
normalized position within the segment. Values between 0 and 1 will correspond to internal
points of the segment, with the limits t=0 (p0) and t=1 (p1). Out of this range we will
have the points outside the segment, but within the line that contains it. For example t=2
would be the point after p1 located at a distance equal to the length of the segment.

• Use seg2d_lengthf to get the length of the segment.

• Use seg2d_close_paramf to get the value of the parameter closest to a certain
point.

• Use seg2d_evalf to get the point from the parameter.

• Use seg2d_sqdistf to get the distance (squared) between two segments.

Figure 16.16: Segments in the
plane.

p0

p1

p0p1

t=0

t=1

t=0.5

t=1 t=0t=1.25

16.7 - 2D Circles 247

16.7. 2D Circles
Circles allow us to group a set of points within the same container volume. Collision

detection will be performed optimally since it is the geometric test that requires the fewest
operations. Given a set of points, we can calculate the container circle in various ways
(Figure 16.17) depending on the precision and speed needed.

• Use cir2d_from_boxf to get the circle from a 2D box.

• Use cir2d_minimumf to obtain the circle of minimum radius from a set of points.

• Use cir2d_from_pointsf to obtain the circle from the the set average. More bal-
anced option in terms of precision/performance.

(a) (b)

Figure 16.17: Container circle: From BBox (a). Minimum radius
(b).

16.8. 2D Boxes
2D containers or (Bounding boxes) delimit the area of the plane occupied by different

geometric elements (Figure 16.18). They are useful in the collision detection or clipping
operations, which prevent non-visible figures from being drawn, improving overall perfor-
mance.

• Use box2d_from_pointsf to create a 2D box from a set of points.

• Use box2d_addnf to change dimensions based on new points.

• Use box2d_segmentsf to get the four segments that delimit the box.

16.9. 2D Oriented Boxes
Oriented Bounding Boxes are 2D boxes that can rotate about their center (Figure 16.19),

so they will no longer be aligned with axes. Here the collision detection is somewhat

248 Chapter 16 - Geom2D library

(minX, minY)

(maxX, maxY)

(maxX, maxY)

(minX, minY)

Figure 16.18: 2D boxes as a container for other objects.

complicated compared to 2D Axis-Aligned boxes, in exchange for providing a better fit
against elongated objects that can rotate in the plane.

• Use obb2d_from_pointsf to create an oriented box from a set of points.

• Use obb2d_from_linef to create an oriented box from a segment.

• Use obb2d_transformf to apply a 2D transformation to the box.

• Use obb2d_boxf to get the aligned box containing the oriented box.

center width

height

angle = 0

angle

Figure 16.19: 2D oriented boxes.

We can obtain relevant parameters of an arbitrary set of points from the covariance
matrix (Formula 16.6), which is geometrically represented by an ellipse rotated in the
plane and centered on the mean of the distribution (Figure 16.20). This analysis allows
obb2d_from_pointsf to calculate the 2D box associated with the distribution in a quite
acceptable way, without becoming the optimal solution that is much more expensive in

16.10 - 2D Triangles 249

computational terms.

Σ =
[
σxx σxy

σyx σyy

]

σxx = 1
N

[
N∑

i=1
xi

2
]

− µ2
x

σyy = 1
N

[
N∑

i=1
yi

2
]

− µ2
y

σxy = 1
N

[
N∑

i=1
xiyi

]
− µxµy

σyx = σxy

µx = 1
N

N∑
i=1

xi

µy = 1
N

N∑
i=1

yi

Formula 16.6: Calculation of the covariance matrix.

Figure 16.20: The covariance ma-
trix represents an ellipse rotated in
the plane.

Use oriented boxes (OBB2Df) for “elongated” point distributions. In rounded or square
cases the aligned box (Box2Df) can provide a volume with a smaller area.

16.10. 2D Triangles

Triangles are widely used in computational geometry, especially when performing cer-
tain calculations on polygons or surfaces. They are also the basis of most graphical APIs,
so on many occasions we will need to approximate objects using triangles. The centroid

250 Chapter 16 - Geom2D library

is the equilibrium point found at the intersection of the medians (Figure 16.21).

• Use tri2df to compose a triangle.

• Use tri2d_transformf to apply a transformation.

• Use tri2d_centroidf to get the center of mass.

• Use tri2d_areaf to calculate the area.

Figure 16.21: 2D triangles.
p0

p1

p2

16.11. 2D Polygons

Polygons are widely versatile figures, since they allow us to define arbitrary regions
delimited by rectilinear segments. Geom2D supports so-called simple polygons, which
are those whose sides cannot intersect each other.

• Use pol2d_createf to create a polygon from the path formed by its vertices.

• Use pol2d_ccwf to get the direction of path rotation. See “CW and CCW anglesCW
and CCW angles” (page 238).

• Use pol2d_transformf to apply a transformation to the polygon.

• Use pol2d_areaf to get the area.

• Use pol2d_boxf to get the polygon boundaries.

We can classify the polygons into three large groups (Figure 16.22):

• Convex: The most “desired” from the point of view of calculation simplicity. They
are those where any segment that joins two interior points, is totally within the
polygon.

• Concave: Or not convex. The opposite of the above. It is one that has an interior
angle of more than 180 degrees.

16.11 - 2D Polygons 251

• Weakly: It is one that presents holes through “cut” segments where two vertices
are duplicated to allow access and return of each hole. It is an easy way to empty
the interior of regions without requiring multiple cycles. The calculation of areas
and collisions will take into account these cavities.

0

12

3

4

0

12

3 4

5

(a) (b)
0

12

3 4

56

7 8

910

11
(c)

Figure 16.22: 2D polygons. (a) Convex, (b) Concave, (c) Weak. All of them defined
counter-clockwise.

16.11.1. Polygon center
It is difficult to define a central point in a figure as irregular as a polygon can be.

Normally we will interpret as such the centroid or center of mass but, in non-convex
cases, this point can be located outside the polygon. In labeling tasks, it is necessary to
have a representative point that is within the figure. We consider the visual center to be
that point within the polygon located at a maximum distance from any edge (Figure 16.23).
In convex polygons it will coincide with the centroid.

• Use pol2d_centroidf to get the centroid of the polygon.

• Use pol2d_visual_centerf to get the visual center of the polygon. It implements
an adaptation of the polylabel algorithm of the MapBox1 project.

Figure 16.23: “Central” point
of a polygon. Line: Centroid,
Fill: Visual or Label Center.

1https://github.com/mapbox/polylabel

https://github.com/mapbox/polylabel

252 Chapter 16 - Geom2D library

16.11.2. Polygon decomposition
Certain calculations or rendering tasks can be considerably optimized if we reduce

the complexity of the geometry to be treated. Decomposing a polygon is nothing more
than obtaining a list of simpler polygons whose union is equivalent to the original figure
(Figure 16.24). As an inverse operation, we would have the calculation of the convex hull,
which is obtaining the convex polygon that encloses a set of arbitrary points (Figure 16.25).

• Use pol2d_trianglesf to get a list of the triangles that make up the polygon.

• Use pol2d_convex_partitionf to get a list of convex polygons equivalent to the
polygon.

• Use pol2d_convex_hullf to create a convex polygon that “wraps” a set of points.

Figure 16.24: Decomposition
of a polygon by triangulation or
convex components.

Figure 16.25: Convex hull of a set
of points.

16.12 - 2D Collisions 253

16.12. 2D Collisions
Collision detection is responsible for studying and developing algorithms that check if

two geometric objects intersect at some point. As the general case would be quite complex
to implement and inefficient to evaluate, a series of collision volumes (Figure 16.26) are
defined that will enclose the original sets and where the tests can be significantly simplified.
The use of these most elementary forms is usually known as broad phase collision detection
(Figure 16.27), since it seeks to detect “non-collision” as quickly as possible. In “Hello 2D
Collisions!” (page 565) you have an example application.

• Use col2d_poly_obbf to detect the collision between an oriented box and a polygon.

• Use col2d_tri_trif to detect the collision between two triangles.

• Use col2d_circle_segmentf to detect the collision between a circle and a segment.

Figure 16.26: 2D Collision Volumes: Point, Segment, Circle, Box,
Oriented Box, Triangle, and Polygon.

Figure 16.27: Broad phase
collision detection.

TRUEFALSE

Col2D provides functions to check each pair of previously presented collision volumes.
Most of these methods use the Separation Axis Theorem (Figure 16.28). This theorem
indicates, in essence, that if it is possible to find a line where the projections of the vertices
do not intersect, then the figures do not intersect. In the specific case of convex polygons,
it is only necessary to evaluate n lines, where n is the number of sides of the polygon.

254 Chapter 16 - Geom2D library

Figure 16.28: Separation axis
theorem detecting a collision.

Collide

17C
ha

pt
er

Draw2D library

17.1 Draw2D 256
17.2 2D Contexts 257

17.2.1 Reference systems 259
17.2.2 Cartesian systems 262
17.2.3 Antialiasing 263
17.2.4 Retina displays 264

17.3 Drawing primitives 265
17.3.1 Line drawing 265
17.3.2 Figures and borders 266
17.3.3 Gradients 267
17.3.4 Gradient transformation 269
17.3.5 Gradients in lines 270
17.3.6 Gradient Limits 271
17.3.7 Drawing text 271
17.3.8 Drawing images 274
17.3.9 Default parameters 275

17.4 Geom2D Entities Drawing 276
17.5 Colors 277

17.5.1 HSV space 278
17.6 Palettes 279

17.6.1 Predefined palette 280
17.7 Pixel Buffer 280

17.7.1 Pixel formats 281
17.7.2 Procedural images 282
17.7.3 Copy and conversion 283

17.8 Images 283
17.8.1 Load and view images 284

256 Chapter 17 - Draw2D library

17.8.2 Generate images 285
17.8.3 Pixel access 285
17.8.4 Save images: Codecs 286

17.9 Typography fonts 288
17.9.1 Create fonts 288
17.9.2 System font 290
17.9.3 Font characteristics 291
17.9.4 Size in points 291
17.9.5 Bitmap and Outline fonts 292
17.9.6 Unicode and glyphs 293

17.1. Draw2D

The Draw2D library integrates all the functionality necessary to create two dimensions
vector graphics. It depends directly on Geom2D (Figure 17.1) and, as we will see later,
drawing does not imply having a graphical user interface in the program. It is possible
to generate images using an internal memory buffer, without displaying the result in a
window.

• “2D Contexts” (page 257).

• “Drawing primitives” (page 265).

• “Colors” (page 277) and “Palettes” (page 279).

• “Pixel Buffer” (page 280) and “Images” (page 283).

• “Typography fonts” (page 288).

This library connects directly to the native technologies of each operating system:
GDI+ on Windows systems, Quartz2D on macOS and Cairo on Linux. In essence,
draw2d offers a common and light interface so that the code is portable, delegating the
final work in each of them. With this we guarantee three things:

• Efficiency: These APIs have been tested for years and are maintained by system
manufacturers.

• Presence: They are integrated as stardard in all computers, so it is not necessary to
install additional software.

• Performance: The programs are smaller since they do not require linking with special
routines for handling graphics, typography or images.

17.2 - 2D Contexts 257

Figure 17.1: Dependencies of
draw2d. See “NAppGUI API”
(page 145).

osbs

sewer

core

back-end

geom2d

draw2d GDI+

Quartz 2D

Cairo

17.2. 2D Contexts

Vector graphics are composed of basic primitives such as lines, circles, text, etc, using
the painter’s algorithm (Figure 17.2): Incoming operations overlap existing ones. The
result is stored in an intermediate buffer known as canvas or surface. This drawing surface
is part of an object called context that also maintains certain parameters related to the
appearance of primitives: Colors, line attributes, reference system, gradients, etc..

1

2

Context

2

1

Context

Figure 17.2: Painter’s algorithm. New objects will overlap existing
ones.

One of the advantages of working with parametric shapes is that image scaling can
be done without loss of quality (Figure 17.3). This is because the conversion to pixels, a
process called rasterization (Figure 17.4), is done in real time and constantly adjusts to
the change of vectors. In bitmap images, an increase in size has associated a loss of quality.

Draw2D allows working with two types of 2D contexts (Figure 17.5).

• Window context. The destination will be an area within a user interface window
managed by a View control. This control maintains its own drawing context and

258 Chapter 17 - Draw2D library

Figure 17.3: Vector scaling and
bitmap scaling.

TEXT

TEXT

Vector Bitmap

Figure 17.4: Rasterization of a cir-
cle.

sends it “ready to use” through the EvDraw event (Listing 17.1).

Listing 17.1: Drawing in a window.
static void i_OnDraw(App *app, Event *e)
{

const EvDraw *p = event_params(e, EvDraw);

draw_clear(p>ctx, color_rgb(200, 200, 200));
draw_fill_color(p>ctx, color_rgb(0, 128, 0));
draw_rect(p>ctx, ekFILL, 100, 100, 200, 100);
draw_fill_color(p>ctx, color_rgb(0, 0, 255));
draw_circle(p>ctx, ekFILL, 450, 150, 75);

}

View *view = view_create();
view_size(view, s2df(600, 400));
view_OnDraw(view, listener(app, i_OnDraw, App));

• Image context. Here the drawing commands will be directly dumped into memory
to subsequently obtain an image with the final result (Listing 17.2).

Listing 17.2: Draw on an image.
static i_draw(void)
{

17.2 - 2D Contexts 259

Image *image = NULL;
DCtx *ctx = dctx_bitmap(600, 400, ekRGBA32);

draw_clear(ctx, color_rgb(200, 200, 200));
draw_fill_color(ctx, color_rgb(0, 128, 0));
draw_rect(ctx, ekFILL, 100, 100, 200, 100);
draw_fill_color(ctx, color_rgb(0, 0, 255));
draw_circle(ctx, ekFILL, 450, 150, 75);

image = dctx_image(&ctx);
image_to_file(image, "drawing.png", NULL);
image_destroy(&image);

}

Figure 17.5: Window and image
contexts.

As we can see, the drawing itself is done in the same way, the only thing that changes
is how we obtained the context (DCtx). This allows us to write generic graphic routines
without worrying about the destination of the final result. In the example DrawImg1

you have a practical step-by-step development of the use of contexts. The images that
accompany the rest of the chapter have been obtained from this application.

Because it is not necessary to have a window to draw, Draw2d can be used in console
applications to compose or edit images in an automated way.

17.2.1. Reference systems
The drawing origin of coordinates is located in the upper left corner (Figure 17.6). The

positive X move to the left and the positive Y down. Units are measured in pixels (or
points in “Retina displaysRetina displays” (page 264)). For example, the command:
draw_circle(ctx, ekSKFILL, 300, 200, 100);

will draw a circle of 100 pixel radius whose center is 300 pixels to the left and 200 pixels
down from the origin. This initial system is called identity since it has not yet been
manipulated, as we will see below.

1https://nappgui.com/en/howto/drawimg.html

https://nappgui.com/en/howto/drawimg.html

260 Chapter 17 - Draw2D library

600

40
0

300,200

100

(0,0)

Figure 17.6: Identity reference system in 2D contexts.

Although the initial scale is in pixels, we must banish the idea that we are directly
manipulating pixels when drawing. Drawing contexts use floating point coordinates.
For example, drawing a line between the points (0.23, 1.432) and (-45.29, 12.6756)
is perfectly valid. Transformations and antialiasing may slightly alter the position or
thickness of certain lines. Nor should we expect “identical” pixel-level results when
migrating applications to different platforms, since each system uses its own rasteri-
zation algorithms. We must think that we are drawing on the real plane. To directly
manipulate the pixels of an image, see image_pixels and image_from_pixels.

This initial reference system can be manipulated by “2D Transformations” (page 241).
The most common transformations in graphics are: Translations (Figure 17.7), Rotations
(Figure 17.8) and Scaling (Figure 17.9).

• draw_matrixf will change the context reference system.

Listing 17.3: Coordinate origin translation 100 units in both directions.
T2Df t2d;
t2d_movef(&t2d, kT2D_IDENTf, 100, 100);
draw_matrixf(ctx, &t2d);
i_draw(...);

Listing 17.4: Coordinate origin rotation 15 degrees.
T2Df t2d;
t2d_rotatef(&t2d, kT2D_IDENTf, 15 * kBMATH_DEG2RADf);
draw_matrixf(ctx, &t2d);

17.2 - 2D Contexts 261

Figure 17.7: Translation (List-
ing 17.3).

600

40
0

100,100

i_draw(...);

Figure 17.8: Rotation (List-
ing 17.4).

600

40
0

15º

Listing 17.5: Scaling, size halving.
T2Df t2d;
t2d_scalef(&t2d, kT2D_IDENTf, .5f, .5f);
draw_matrixf(ctx, &t2d);
i_draw(...);

Figure 17.9: Scaling (Listing 17.5).

600

40
0

The transformations can be accumulated, but we must bear in mind that they are
not commutative operations, but that the order in which they are applied will influence
the final result. For example in (Figure 17.10) we observe that the drawing has moved
(100, 50) pixels, instead of (200, 100), because the translation is affected by previous

262 Chapter 17 - Draw2D library

scaling. More details at “Composition of transformationsComposition of transformations”
(page 242).

Listing 17.6: Composition of transformations.
T2Df t2d;
t2d_scalef(&t2d, kT2D_IDENTf, .5f, .5f);
t2d_movef(&t2d, &t2d, 200, 100);
t2d_rotatef(&t2d, &t2d, 15 * kBMATH_DEG2RADf);
draw_matrixf(ctx, &t2d);
i_draw(...);

600

40
0

200,100 15º

Figure 17.10: Composition of transformations (Listing 17.6).

17.2.2. Cartesian systems
There is a dichotomy when drawing in 2D: On the one hand, traditionally desktop

systems and digital images place the origin of coordinates in the upper left corner with
the Y axis growing down (Figure 17.11). On the other hand, the Cartesian systems used
in geometry place it in the lower left corner, with Y growing up. This creates a dilemma
about whether one system is better than another.

Figure 17.11: 2D system on moni-
tors (left) and Cartesian (right).

(0,0) X

Y
(0,0)

X

Y

The answer is clearly no. Even in the same drawing, we may need to combine both
depending on the element we are treating. For texts and images, the screen system is more

17.2 - 2D Contexts 263

intuitive since it reproduces the paper or canvas of the physical world. For mathematical
functions, bar graphs, plans and other aspects related to the technical world, the Cartesian
is much more comfortable and natural.

• draw_matrix_cartesianf set the context reference system in Cartesian coordi-
nates. In (Figure 17.12) we have used a 6x4 unit Cartesian system mapped onto a
600x400 pixel window.

Listing 17.7: Drawing in Cartesian coordinates.
T2Df t2d;
draw_line_color(ctx, color_rgb(255, 0, 0));
draw_line_width(ctx, .03);
draw_fill_color(ctx, color_rgb(0, 0, 255));
t2d_scalef(&t2d, kT2D_IDENTf, 100, 100);
draw_matrix_cartesianf(ctx, &t2d);
draw_rect(ctx, ekSKFILL, 1.5f, .1f, 1, 2);
draw_line_color(ctx, color_rgb(0, 128, 0));
draw_line(ctx, 0, 0, 1.5f, 2.1f);

Figure 17.12: Cartesian coordi-
nates (Listing 17.7).

6

4

(0,0)

17.2.3. Antialiasing
Given the discrete nature of monitors and digital images, a staggered effect (sawtooth)

is produced by transforming vector primitives to pixels (Figure 17.13). This effect becomes
less noticeable as the resolution of the image increases, but still the “pixelated” remains
patent. The antialiasing, is a technique that reduces this step effect by slightly varying
the colors of the pixels in the environment near the lines and contours (Figure 17.14).
With this, the human eye can be deceived by blurring the edges and generating images
of greater visual quality. In return we have the cost in the performance of applying
it, although for years that the calculations related to antialiasing are made directly in
hardware (Figure 17.15), so the impact will be minimal.

• draw_antialias allows to activate or deactivate the antialiasing calculations.

264 Chapter 17 - Draw2D library

Figure 17.13: Antialiasing off.

Figure 17.14: Antialiasing on.

Figure 17.15: Orchid Fahrenheit
1280 (1992). One of the first cards
that incorporated 2d graphic acceler-
ation.

17.2.4. Retina displays
At the end of 2014 Apple introduced its news iMac with high resolution Retina Display

(5120x2880). Normally, these monitors work in scaled mode (2560x1440) allowing double
density pixels (Figure 17.16). Apple differentiates between points on the screen, which
are what really manipulates the application and physical pixels. Therefore, our 600x400
window will really have 1200x800 pixels on Retina computers, although the application
will still “see” only 600x400 points. The operating system converts transparently. In fact,
we don’t have to do anything to adapt our code, since it will work in the same way on
both normal iMac and those equipped with Retina monitors.

This double density will be used by the rasterizer to generate higher quality images by
having more pixels in the same screen area. In (Figure 17.17) and (Figure 17.18) we see
the extra quality that these models provide.

17.3 - Drawing primitives 265

Figure 17.16: Double density pixels
on Retina Display (right).

(0,0) X

Y

(0,0) X

Y

Figure 17.17: Normal screen (with
antialiasing).

Figure 17.18: Retina Display (with
antialiasing).

17.3. Drawing primitives

When drawing in 2D contexts we have a series of elementary shapes such as lines,
figures, text and images. In DrawHello2 you have the source code of the application that
will accompany us throughout this section.

17.3.1. Line drawing
The most elementary operation is to draw a line between two points. In 2d contexts the

lines are solid objects and not a mere row of pixels. Let’s think we are using thick tip pens,
where the theoretical line will always remain in the center of the stroke (Figure 17.19). We
can change the shape of the endings (linecap), the joints (linejoin) and establish a pattern
for dashed lines.

2https://nappgui.com/en/howto/drawhello.html

https://nappgui.com/en/howto/drawhello.html

266 Chapter 17 - Draw2D library

• draw_line will draw a line.

• draw_polyline will draw several connected lines.

• draw_arc will draw an arc.

• draw_bezier will draw a Bézier curve of degree 3 (cubic).

• draw_line_color will set the line color.

• draw_line_width set the line width.

• draw_line_cap set the style of the ends.

• draw_line_join set the style of the unions.

• draw_line_dash set a dot pattern for dashed lines.

Figure 17.19: Different line styles. (a) ekLCFLAT. (b)
ekLCSQUARE. (c) ekLCROUND. (d) ekLJMITER. (e)
ekLJROUND. (f) ekLJBEVEL. The pattern: [5, 5, 10, 5], [1, 1],
[2, 1], [1, 2], [5, 5, 10, 5], NULL.

17.3.2. Figures and borders
To draw figures or closed areas we have several commands. As we see in (Figure 17.20)

we can draw the outline of the figure, its interior or both. For the contour, the established
line style will be taken into account as we have seen in the previous section.

• draw_rect for rectangles.

• draw_rndrect for rectangles with rounded edges.

17.3 - Drawing primitives 267

• draw_circle for circles.

• draw_ellipse for ellipses.

• draw_polygon for polygons.

• draw_fill_color set the area fill color.

Listing 17.8: Drawing of figures (outlines and/or fills).
draw_fill_color(ctx, kCOLOR_BLUE);
draw_line_color(ctx, kCOLOR_BLACK);
draw_rect(ctx, ekSTROKE, 10, 10, 110, 75);
draw_rndrect(ctx, ekFILL, 140, 10, 110, 75, 20);
draw_circle(ctx, ekSKFILL, 312, 50, 40);
draw_ellipse(ctx, ekFILLSK, 430, 50, 55, 37);

As we saw in “2D Contexts” (page 257), the order in which the operations are performed
matters. It is not the same to fill and then draw the outline as vice versa. The center of
the stroke will coincide with the theoretical contour of the figure.

Figure 17.20: Stroke only
ekSTROKE. Fill only
ekFILL. First stroke, then
fill ekSKFILL. First fill,
then stroke ekFILLSK.

17.3.3. Gradients
Gradients allow regions to be filled using a gradient instead of a solid color (Fig-

ure 17.21). Several base colors and their relative position along a vector are defined
(Listing 17.9). The positions [0, 1] correspond to the extremes and the values within this
range to the possible intermediate stops. Each line perpendicular to the vector defines
a uniform color that will extend indefinitely until reaching the limits of the figure to be
filled.

• Use draw_fill_linear to activate the fill with gradients.

268 Chapter 17 - Draw2D library

• Use draw_fill_color to return to solid color fill.

Figure 17.21: Linear gradi-
ents. The color is interpolated
along a vector.

(0,0)

Stop 0

(640,400)

Stop 0.35

Stop 0.70

Stop 1

Uniform color

∞

∞

(0,0) (600,0)

(0,0)

(0,400)

(0,0)

(600,400)

(a) (b)

(c) (d)

Listing 17.9: Definition of (Figure 17.21) gradients.
// (a) Gradient
color_t color[4];
real32_t stop[4] = {0, .35f, .7f, 1};
color[0] = color_rgb(255, 0, 0);
color[1] = color_rgb(0, 255, 0);
color[2] = color_rgb(0, 0, 255);
color[3] = color_rgb(255, 0, 255);
draw_fill_linear(ctx, color, stop, 4, 0, 0, 600, 400);

// (b) Gradient
color_t color[2];
real32_t stop[2] = {0, 1};
color[0] = color_rgb(255, 0, 0);
color[1] = color_rgb(0, 0, 255);
draw_fill_linear(ctx, color, stop, 2, 0, 0, 600, 0);

// (c) Gradient
color_t color[2];
real32_t stop[2] = {0, 1};
color[0] = color_rgb(255, 0, 0);
color[1] = color_rgb(0, 0, 255);
draw_fill_linear(ctx, color, stop, 2, 0, 0, 0, 400);

// (d) Gradient
color_t color[2];
real32_t stop[2] = {0, 1};
color[0] = color_rgb(255, 0, 0);
color[1] = color_rgb(0, 0, 255);
draw_fill_linear(ctx, color, stop, 2, 0, 0, 600, 400);

17.3 - Drawing primitives 269

17.3.4. Gradient transformation
Since the gradient is defined by a vector, it is possible to set a transformation that

changes the way it is applied. This matrix is totally independent from the one applied
to drawing primitives draw_matrixf, as we saw in “Reference systemsReference systems”
(page 259).

• Use draw_fill_matrix to set the gradient transformation. With this we can get
several effects:

• Global gradient: The gradient will be applied globally to the background, and the
figures will be cutouts of the same pattern (Figure 17.22). To do this we will set the
identity matrix as a gradient transformation (Listing 17.10). It is defined by default.

Figure 17.22: Global gradient. The
continuity between figures is not lost.

Listing 17.10: Gradient matrix for the whole drawing.
draw_fill_linear(ctx, c, stop, 2, 0, 0, 600, 400);
draw_fill_matrix(ctx, kT2D_IDENTf);
i_draw_shapes(ctx);

• Local gradient: The vector is transferred to the origin of the figure or to a point
in its near surroundings (Figure 17.23). With this, we will be able to apply the
gradient locally and that only affects a specific figure. In (Listing 17.11) we have
slightly varied the transformation to fix the origin in a corner and not in the center
of the ellipse. This may vary depending on the desired effect.

Listing 17.11: Gradient matrix for a figure.
T2Df t2d;
t2d_movef(&t2d, kT2D_IDENTf, 250, 280);
t2d_rotatef(&t2d, &t2d, kBMATH_PIf / 10);
draw_matrixf(ctx, &t2d); // Geometry matrix
draw_fill_linear(ctx, c, stop, 2, 0, 0, 200, 100);
t2d_movef(&t2d, &t2d, 100, 50);

270 Chapter 17 - Draw2D library

Figure 17.23: Local gradient. The
origin is placed in the figure.

draw_fill_matrix(ctx, &t2d); // Gradient matrix
draw_ellipse(ctx, ekSKFILL, 0, 0, 100, 50);

17.3.5. Gradients in lines
In addition to region fill, gradients can also be applied to lines and contours (Fig-

ure 17.24) (Listing 17.12).

• Use draw_line_fill to draw the lines with the current fill pattern.

• Use draw_line_color to return to solid color.

Figure 17.24: Drawing lines using
gradients.

Listing 17.12: Gradients in lines.
draw_fill_linear(ctx, c, stop, 2, 0, 0, 600, 400);
draw_fill_matrix(ctx, kT2D_IDENTf);
draw_line_fill(ctx);
draw_bezier(ctx, 30, 200, 140, 60, 440, 120, 570, 200);

17.3 - Drawing primitives 271

17.3.6. Gradient Limits
As we have said, the color fill will spread evenly and indefinitely along all the lines

perpendicular to the vector, but... What happens outside its limits? In (Listing 17.13)
(Figure 17.25) the gradient has been defined in x=[200, 400], this measure being lower
than the figure to be filled:

• Use draw_fill_wrap to define the behavior of the gradient out of bounds.

• ekFCLAMP the end value is used as a constant in the outer area.

• ekFTILE the color pattern is repeated.

• ekFFLIP the pattern is repeated, but reversing the order which prevents the loss of
continuity in color.

Listing 17.13: Uniform color outside the limits of the gradient (Figure 17.25) (a).
draw_fill_linear(ctx, c, stop, 2, 200, 0, 400, 0);
draw_fill_wrap(ctx, ekFCLAMP);
draw_rect(ctx, ekFILLSK, 50, 25, 500, 100);

Figure 17.25: Limit Behavior:
(a) ekFCLAMP, (b) ekFTILE, (c)
ekFFLIP.

(200,0) (400,0)
(50,25) (550,25)

(a)

(b)

(c)

17.3.7. Drawing text
Text rendering is the most important part of the user interface. In the old days, small

bitmaps were used with the image of each character, but in the early 90’s vector fonts
based on Bezier curves came into play. The large number of fonts, the immense set of
“Unicode” (page 155) characters and the possibility of scaling, rotating, or layout the text
in paragraphs was a great technical challenge in those years. Fortunately, all this casuistry
is largely solved by the native APIs of each operating system, which allows us to provide
a simplified interface to add text to our drawings..

• Use draw_text to draw texts in 2D contexts.

• Use draw_text_color to set the color of the text.

272 Chapter 17 - Draw2D library

• Use draw_font to set the font.

• Use draw_text_width to set the maximum width of a block of text.

• Use draw_text_trim to indicate how the text will be cut.

• Use draw_text_align to set the alignment of a text block.

• Use draw_text_halign to set the internal alignment of the text.

• Use draw_text_extents to get the size of a block of text.

To draw single-line texts, we just have to call the function, passing a UTF8 string
(Listing 17.14) (Figure 17.26). Previously, we can assign the font, color and alignment.

Listing 17.14: Dibujo de una línea de texto.
Font *font = font_system(20, 0);
draw_font(ctx, font);
draw_text_color(ctx, kCOLOR_BLUE);
draw_text_align(ctx, ekLEFT, ekTOP);
draw_text(ctx, "Text ��Κείμενο ", 25, 25);

Figure 17.26: Single-line
texts, with alignment and trans-
formations.

If the string to be displayed has new lines (character ’\n’) they will be taken into
account and the text will be shown in several lines (Listing 17.15) (Figure 17.27). We
can also obtain the measure in pixels of a block, useful to integrate the text with other
primitives.

Listing 17.15: Dibujo de textos con saltos de línea.
const char_t *text = "Text new line\����n\Γραμμήn κειμένου";
real32_t w, h;
draw_text(ctx, text, 25, 25);
draw_text_extents(ctx, text, 1, &w, &h);

17.3 - Drawing primitives 273

Figure 17.27: Texts with a
’\n’ character.

If the text does not contain new lines, it will be drawn continuously expanding horizon-
tally. This may not be the most appropriate in long paragraphs, so we can set a maximum
width, forcing its drawing in several lines (Listing 17.16) (Figure 17.28).

Listing 17.16: Maximum width and internal alignment in text blocks.
const char_t *text = "Lorem ipsum dolor sit amet...consequat";
draw_text_width(ctx, 200);
draw_text_halign(ctx, ekLEFT);
draw_text(ctx, text, 25, 25);
draw_text_extents(ctx, text, 200, &w, &h);

Figure 17.28: Text
paragraphs with width
limit. The maximum and
real width obtained with
draw_text_extents are
shown.

Finally, we can use draw_text_path to treat the text like any other geometric region,
highlighting the border or filling with gradients. In this case draw_text_color will have
no effect and the values of draw_fill_color, draw_fill_linear and draw_line_color
will be used (Listing 17.17) (Figure 17.29).

Listing 17.17: Text with dotted stroke and gradient fill.

274 Chapter 17 - Draw2D library

color_t c[2];
real32_t stop[2] = {0, 1};
real32_t dash[2] = {1, 1};
c[0] = kCOLOR_BLUE;
c[1] = kCOLOR_RED;
draw_line_dash(ctx, dash, 2);
draw_line_color(ctx, kCOLOR_GREEN);
draw_text_extents(ctx, "Gradient dashed text", 1, &w, &h);
draw_fill_linear(ctx, c, stop, 2, 25, 0, 25 + w, 0);
draw_text_path(ctx, ekFILLSK, "Gradient dashed text", 25, 250);

Figure 17.29: Combining fill
and stroke.

draw_text is much faster than draw_text_path, so we must limit the use of the
latter to what is strictly necessary.

17.3.8. Drawing images
Images generated procedurally or read from disk can be used as a drawing primitive

more (Listing 17.18) (Figure 17.30). As with text or other figures, the transformation of
the context will affect the geometry of the image.

• Use draw_image to draw an image.

• Use draw_image_frame to draw a sequence of an animation.

• Use draw_image_align to set the alignment of the image with respect to the inser-
tion point.

Listing 17.18: Translated and rotated image drawing.
const Image *image = image_from_resource(pack, IMAGE_JPG);
T2Df t2d;
t2d_movef(&t2d, kT2D_IDENTf, 300, 200);

17.3 - Drawing primitives 275

t2d_rotatef(&t2d, &t2d, kBMATH_PIf / 8);
draw_image_align(ctx, ekCENTER, ekCENTER);
draw_matrixf(ctx, &t2d);
draw_image(ctx, image, 0, 0);

Figure 17.30: Drawing images with alignment.

17.3.9. Default parameters
Each context maintains certain state parameters. At the beginning of the drawing,

either by the method OnDraw or after creating the context with dctx_bitmap the default
values are those shown in (Table 17.1):

Parameter Value Change with

Matrix Identity (0,0) Sup-Left corner, pixels. draw_matrixf

Antialiasing TRUE draw_antialias

LineColor kCOLOR_BLACK draw_line_color

LineWidth 1 draw_line_width

Linecap ekLCFLAT draw_line_cap

Linejoin ekLJMITER draw_line_join

LineDash Sólido draw_line_dash

TextColor kCOLOR_BLACK draw_text_color

276 Chapter 17 - Draw2D library

Parameter Value Change with

FillColor kCOLOR_BLACK draw_fill_color

FillMatrix Identity (0,0) Sup-Left corner, pixels. draw_fill_matrix

Font System default, regular size. draw_font

Text max width -1 draw_text_width

Text vertical align ekLEFT draw_text_align

Text horizontal align ekTOP draw_text_align

Text internal align ekLEFT draw_text_halign

Image vertical align ekLEFT draw_image_align

Image horizontal align ekTOP draw_image_align

Table 17.1: Default values in 2D contexts.

17.4. Geom2D Entities Drawing

In the previous section we have seen the basic primitives for drawing in 2D. However,
Draw2D has specialized functions for “Geom2D” (page 235) objects. These new func-
tions would be totally dispensable, since you could get the same result using draw_rect,
draw_polygon, etc. They are included as a mere shortcut, in addition to offering a version
of them based on “Math templatesMath templates” (page 53), very useful when developing
generic algorithms in C++. The line and fill properties will be those that are in effect
at any given time within the context, due to: draw_line_color, draw_line_width,
draw_fill_color, etc..

• Use draw_v2df to draw a point.

• Use draw_seg2df to draw a segment.

• Use draw_cir2df to draw a circle.

• Use draw_box2df to draw an aligned box.

• Use draw_obb2df to draw an oriented box.

• Use draw_tri2df to draw a triangle.

• Use draw_pol2df to draw a polygon.

You can find a complete example of the use of 2D entities in Col2DHello3 (Figure 17.31).
In addition to drawing, this application shows other concepts related to graphics and

3https://nappgui.com/en/howto/col2dhello.html

https://nappgui.com/en/howto/col2dhello.html

17.5 - Colors 277

geometric calculation such as:

• Create 2D objects on demand.

• Click+Drag interactivity.

• Collision detection.

• Calculation of areas.

• Triangulation of polygons and decomposition into convex components.

• Calculation of the optimal circle that surrounds a set of points.

• Calculation of the oriented box (OBB2Df) that best represents a set of points.

• Calculation of the Convex Hull.

Figure 17.31: Col2dHello application, which illustrates how to work with 2D geometry.

17.5. Colors

The colors in Draw2D are encoded using a 32-bit integer with the four RGBA channels
in Little-Endian: Red in byte 0, green in 1, blue in 2 and alpha (or transparency) in 3
(Figure 17.32). The alias color_t is used as an equivalent to uint32_t. In the particular
case that byte 3 is equal to 0 (fully transparent), the first three bytes will not contain RGB
information, but an index with a special color.

• Use color_rgba to create a color using its RGBA components.

• Use color_get_rgba to get the RGBA components.

278 Chapter 17 - Draw2D library

• Use color_html to translate an string into HTML format ("#RRGGBB").

• Use kCOLOR_BLACK and others to access predefined basic colors.

Figure 17.32: 32-bit RGBA value
representation. 0123

a > 0

RGBA

RGBA a = 0 Indexed

Index

0123

17.5.1. HSV space
RGB representation is based on the addition of the three primary light colors. It is the

most widespread within the generation of computer images, especially when calculating
shading and reflections. It is also used in TV, monitors or projectors where each pixel
is obtained by combining the light of three emitters. However, it is very unintuitive for
human color editing. For example, given a color in RGB, it is very difficult to increase the
brightness or vary the tone (between red and orange, for example) by manipulating the
triplet (r, g, b). The HSV space (Hue, Saturation, Value) also called HSB (Brightness)
solves this problem, since the effect of altering this group of values will be highly predictable
(Figure 17.33).

• Use color_hsbf to create an RGB color from its components H, S, B.

• Use color_to_hsbf to get the H, S, B components.

Figure 17.33: HSV space repre-
sented by an inverted cone. As V de-
creases, so will the number of colors
available.

• Hue: Continuous cyclical value between 0 and 1. Where 0=Red, 1/3=Green, 2/3
=Blue, 1=Red (Table 17.2).

• Saturation: It is equivalent to adding white paint to the base tone. When S=1 no
white is added (maximum saturation, pure color). But if S=0 we will have a pure
white, regardless of the tone.

• Brightness: It is equivalent to adding black paint to the HS combination. If B=1 no
black is added (maximum brightness). If B=0 we will have a pure black, regardless
of the hue and saturation.

17.6 - Palettes 279

RGB HSV

(0,0,0) kCOLOR_BLACK (?,?,0)

(1,1,1) kCOLOR_WHITE (?,0,1)

(1,0,0) kCOLOR_RED (0,1,1)

(1,1,0) kCOLOR_YELLOW (1/6,1,1)

(0,1,0) kCOLOR_GREEN (1/3,1,1)

(0,1,1) kCOLOR_CYAN (1/2,1,1)

(0,0,1) kCOLOR_BLUE (2/3,1,1)

(1,0,1) kCOLOR_MAGENTA (5/6,1,1)

Table 17.2: Equivalence RGB/HSV.

Unlike RGB, HSVs are not totally independent. As we reduce the brightness, the
number of colors of the same tone will decrease until we reach B=0 where we will have pure
black regardless of H and S. On the other hand, if S=0 H will be overridden and we will
have the different shades of gray as B changes from 0 (black) to 1 (white).

17.6. Palettes

A palette is nothing more than an indexed list of colors (Figure 17.34), usually related
to “Pixel Buffer” (page 280). Its main utility is to save space in the images representation,
since each pixel is encoded by an index of 1, 2, 4 or 8 bits instead of the real color where
24 or 32 bits are necessary. For this reason, it is usual to have palettes of 2, 4, 16 or 256
colors.

• Use palette_create to create a palette.

• Use palette_colors to access the elements.

Figure 17.34: Palette associated
with an indexed pixel buffer.

PixelBuffer

Palette

7

3
7 7

7

7

0 0

0 0

0

0 0

0 0 0
0

4 4

4 1
1 1

2 5

21
3

3

33
5

1
1

2
6

4
3

3 2 2

66
6 6

280 Chapter 17 - Draw2D library

17.6.1. Predefined palette
We have several predefined palettes both in color (Figure 17.35) and in grays (Fig-

ure 17.36). The RGB8 palette has been created by combining 8 tones of red (3bits), 8
tones of green (3bits) and 4 tones of blue (2bits). This is so because the human eye
distinguishes much less the variation of blue than the other two colors.

• Use palette_ega4 to create a predefined palette of 16 colors.

• Use palette_rgb8 to create a 256 color palette.

• Use palette_gray4 and similars to create a palette in grays.

• Use palette_binary for a two-color palette.

Figure 17.35: Predefined color
palettes.

EGA4 RGB8

m0

low high

m1

CGA2

Figure 17.36: Predefined gray
palettes.

Gray1 Gray2 Gray4 Gray8

17.7. Pixel Buffer

A pixel buffer (Pixbuf) is a memory area that represents a grid of color dots or pixels.
They allow direct access to information but are not optimized for drawing on the screen,
so we must create an Image object to view them. They are very efficient for procedural
generation or the application of filters, since reading or writing a value does not require
more than accessing its position within the buffer.

• Use pixbuf_create to create a new pixel buffer.

• Use image_pixels to get the pixels of an image.

• Use pixbuf_width to get the width of the grid.

17.7 - Pixel Buffer 281

• Use pixbuf_height to get the height of the grid.

All operations on pixel buffers are performed on the CPU. They are efficient to the
extent that we directly access memory, but they cannot be compared with alternatives
that use the GPU for digital image processing.

17.7.1. Pixel formats
The format refers to how the value of each pixel is encoded within the buffer (Table 17.3)

(Figure 17.37).

• Use pixbuf_format to get the pixel format.

• Use pixbuf_format_bpp to get the number of bits wanted for each pixel.

Value Description

ekRGB24 True color +16 million simultaneous, 24 bits per pixel.

ekRGBA32 True color with alpha channel (transparencies), 32 bits per pixel.

ekGRAY8 256 shades of gray, 8 bits per pixel.

ekINDEX1 Indexed, 1 bit per pixel.

ekINDEX2 Indexed, 2 bits per pixel.

ekINDEX4 Indexed, 4 bits per pixel.

ekINDEX8 Indexed, 8 bits per pixel.

Table 17.3: Pixel formats.

Figure 17.37: (a) True color,
(b) shades of gray, (c) indexed.

R G B R G B R G B

px0 px1 px2

R G B

px3

...

Palette

Indexed
7

3
7 7

7

7

0 0

0 0

0

0 0

0 0 0
0

4 4

4 1
1 1

2 5

21
3

3

33
5

1
1

2
6

4
3

3 2 2

66
6 6

True Color

px1

...

px3 px5 px7 px9 px11 px13 px15 px17 px19 px21 px23

px0 px1 px2 px3 px4 px5 px6 px7 px8 px9 px10 px11

G G G G G G G G G G G G ...

(a)

(b)

(c)

282 Chapter 17 - Draw2D library

17.7.2. Procedural images
One way to “fill” buffers is through algorithms that calculate the value of each pixel.

A clear example is found in the representation of fractal sets (Figure 17.38), an area of
 mathematics dedicated to the study of certain dynamic systems. In “Fractals” (page 411)
you have the complete application.

• Use pixbuf_data to get a pointer to the contents of the buffer.

• Use pixbuf_set to write the value of a pixel.

• Use pixbuf_get to read the value of a pixel.

Figure 17.38: Julia set.
Pixel-pixel generated image
using fractal algorithms.

While pixbuf_set and pixbuf_get allow safe pixel manipulation, it may sometimes
be necessary to get a little extra in terms of performance. In (Listing 17.19) we have some
macros for direct access to the memory area returned by pixbuf_data. Use them with
great care and knowing what you are doing, since they do not have error control methods,
so segmentation failures are likely if they are not used correctly.

Listing 17.19: Quick macros for manipulating a buffer type ekINDEX1 (1 bit per pixel).
#define pixbuf_get1(data, x, y, w)\

(uint32_t)((data[((y)*(w)+(x))/8] >> (byte_t)(((y)*(w)+(x))%8)) & 1)

#define pixbuf_set1(data, x, y, w, v)\
{\

register byte_t *__ob = data + (((y)*(w))+(x))/8;\
register byte_t __op = (byte_t)((((y)*(w))+(x))%8);\
*__ob &= ~(1 << __op);\
*__ob |= ((v) << __op);\

}

17.8 - Images 283

17.7.3. Copy and conversion
During the digital processing of an image, we may have to chain several operations, so

it will be useful to be able to make copies of the buffers or format conversions.

• Use pixbuf_copy to make a copy.

• Use pixbuf_convert to convert to another format (Table 17.4).

Source Destiny Observations

RGB24 RGB32 Alpha channel is added with the value 255

RGB32 RGB24 Alpha channel is removed with possible loss of information.

RGB(A) Gray RGB channels are weighted at a ratio of 77/255, 148/255,
30/255. Alpha channel is lost.

Gray RGB(A) RGB channels (gray, gray, gray) are duplicated. Alpha channel
to 255.

RGB(A) Indexed The smallest distance between each pixel and the palette is
calculated. Possible loss of information.

Indexed RGB(A) The palette will be used to obtain each RGBA value.

Indexed Indexed If the destination has a lower number of bits, out = in % bpp
will be applied with possible loss of information.

Gray Indexed The Gray8 format will be considered indexed for all purposes.

Indexed Gray The Gray8 format will be considered indexed for all purposes.

Table 17.4: Conversion between formats.

17.8. Images
There is a close relationship between pixel buffers and images. Although the firsts

contain “raw” color information, the latter are objects directly linked to the graphical API
of each system, which allows them to be drawn in 2d contexts or viewed in a window
(Figure 17.39).

Figure 17.39: Image objects
have a direct link to graphics
APIs, while Pixbuf do not.

Image

Gdiplus::Bitmap

NSBitmapImageRep

GdkPixbuf

284 Chapter 17 - Draw2D library

The structure of a digital image, also called bitmap or raster graphics, is the same as
that of a buffer pixel. We have a discrete grid of color dots characterized by its resolu-
tion (width, height) and depth, which is the amount of bits needed to encode each pixel
(Figure 17.40). bitmap images work best for taking snapshots of the real world, where
it is practically impossible to describe the scene using geometric primitives, as we saw in
“Drawing primitives” (page 265). On the other hand, as it is composed of discrete points,
it does not behave well in the face of changes in size where it will suffer a loss of quality.

Figure 17.40: On the left an
image of 64x64 pixels and 16 col-
ors. Right 256x256 pixels and
16 million colors.

17.8.1. Load and view images
In most cases, the only thing we will need to know about images will be how to read

them from disk or other data source and then display them on the screen as part of the
user interface (Listing 17.20) (Figure 17.41). We consider that the images are stored in
one of the standard formats: JPG, PNG, BMP or GIF.

Listing 17.20: Loading and viewing images.
Image *img = image_from_file("lenna.jpg", NULL);
Image *icon = image_from_resource(pack, ekCANCEL);
...
imageview_image(view, img);
button_image(button, icon);

Figure 17.41: Integration
of images in the user inter-
face.

lenna.jpg

Image*
read draw

• Use image_from_file to load an image from disk.

• Use image_from_data to create an image from a memory buffer.

17.8 - Images 285

• Use image_from_resource to get a picture of a resource package.

• Use image_read to create an image from “Streams” (page 193).

• In the demo UrlImg4 you have an example of how to download them from a Web
server.

Once the image object is loaded in memory, we have several ways to view it:

• Use draw_image to draw an image in a 2d context.

• Use imageview_image to assign an image to a view.

• Use button_image to assign an image to a button.

• Use popup_add_elem to assign a text and icon to a drop-down list.

17.8.2. Generate images
As we saw in “2D Contexts” (page 257), if necessary we can create our own images from

drawing commands to later display them in the interface (Figure 17.42) or save them to
disk.

• Use dctx_image to create an image from a 2d context.

Figure 17.42: Image generated by drawing commands.

17.8.3. Pixel access
Images are immutable objects optimized for recurring on-screen drawing, so certain

licenses are allowed, both in the internal organization of color information and in the
management of possible copies. For this reason it is not possible to directly manipulate
the pixels, but we must access them using a “Pixel Buffer” (page 280).

4https://nappgui.com/en/howto/urlimg.html

https://nappgui.com/en/howto/urlimg.html

286 Chapter 17 - Draw2D library

• Use image_from_pixels to create an image from the color information.

• Use image_from_pixbuf to create an image from a pixel buffer.

• Use image_pixels to get a buffer with the pixels of the image.

• Use image_width to get the width.

• Use image_height to get the height.

• Use image_format to get the pixel format.

Apple technical documentation: “Treat NSImage and its image representations as
immutable objects. The goal of NSImage is to provide an efficient way to display images
on the target canvas. Avoid manipulating the data of an image representation directly,
especially if there are alternatives to manipulating the data, such as compositing the
image and some other content into a new image object.”

The pixel buffers allow us to optimally manipulate the content of the image. To
view the result or store it in any of the supported formats, we must create a new image
(Figure 17.43).

PixelBuffer

Algorithms

New Image

GUI

Output

Image

Source

Figure 17.43: Image editing process.

17.8.4. Save images: Codecs
One of the biggest problems of digital images is the large amount of memory they need.

An image of only 1024x768 pixels and 32 bits of color needs 3 megabytes of memory.
It may not seem like much, but at the end of the 80s this was a great handicap since
memory was very expensive and transmissions were very slow. This is why several coding
(compression) systems were devised that reduced the amount of memory needed and that
were consolidated with the rise of the Internet (Figure 17.44).

17.8 - Images 287

• Use image_get_codec to get the codec associated with the image.

• Use image_codec to change the codec associated with the image.

• Use image_to_file to save it to disk.

• Use image_write to write it in a Stream.

Figure 17.44: Image formats sup-
ported by NAppGUI.

Draw2D does not natively support other formats than those mentioned. If necessary,
you will have to find a way to create a Pixbuf from the specific data of your format,
in order to integrate these images into the user interface.

• JPEG: Joint Photographic Experts Group is a format with a very good compres-
sion rate based on the Fourier Transform. Ideal for capturing real-world snapshots,
although it will detract some quality from the original capture (lossy compression).

• PNG: Portable Network Graphics emerged in response to legal problems with the
GIF format. Supports lossless LZ77/Deflate compression and indexed pixel formats.
Ideal for computer generated diagrams, graphics or images.

• GIF: Graphics Interchange Format uses the proprietary compression algorithm
LZW, although the patent expired in 2003. It has survived PNG because it can
include animations in a single file, something that neither of the two previous for-
mats supports.

• BMP: BitMaP. Windows native format widely surpassed by the other three. Al-
though it supports a special type of compression called Run-Length encoding, the
truth is that most files are saved uncompressed. BMP files take up much more
space, for this reason very little is used on the Internet and almost nothing on non-
Windows machines. It is supported by almost all programs and systems because it
is very simple an fast to interpret.

To be able to display on the screen, the image must be decompressed (de-encoded), a
process that is performed automatically when reading the image. When saving it to disk
or sending it over the network, the opposite process is performed, compressed or encoded
using the algorithm associated with it (Table 17.5), but it can be changed.

Constructor Codec

image_from_file The original codec.

288 Chapter 17 - Draw2D library

Constructor Codec

image_from_data The original codec.

image_from_resource The original codec.

image_from_pixels Transparencies? Yes:ekPNG No:ekJPG.

dctx_image ekPNG.

Table 17.5: Default image codecs.

Generally, GDI+, NSImage or GdkPixbuf support for codec settings is quite limited.
For example, it is not possible to generate indexed PNG files, which is very useful when
reducing the size of images for the web. If the application requires more control over
the export, we will have no choice but to use libpng, libjpeg or any other third-party
solution.

17.9. Typography fonts

Typography fonts are graphic objects (files) that contain the characters and symbols
we see on a monitor. We remember that a “Unicode” (page 155) string only stores the
character codes (codepoints) without any information on how they should be drawn. The
graph associated with a character is known as glyph and, in a font file, there are as many
glyphs as codepoints can represent the typography. The matching between codepoints
and their corresponding glyphs is carried out by the operating system graphic sub-system
(Listing 17.21) (Figure 17.45).

Listing 17.21: Drawing a text string.
Font *font = font_create("Comic Sans MS" 28, 0);
draw_font(ctx, font);
draw_text(ctx, "Hello World", 200, 250);
font_destroy(&font);

17.9.1. Create fonts
When displaying texts on graphic interfaces it is necessary to establish a typography,

otherwise the system would not know how to render it. There will always be some fount
defined by default, but we can change it when customizing the appearance of our texts.

• Use font_create to create a new font.

• Use font_family to get the typeface.

• Use draw_font to set the font in 2d contexts.

17.9 - Typography fonts 289

Unicode (codepoints)
H e l l o W o r l d

(72,101,108,108,111,32,87,111,114,108,100)

Font (glyphs) Hello World

H 䵤
Wڗ
К
╬Ψ

“Comic Sans MS” 28px

Figure 17.45: Text representation: codepoints + glyphs.

• Use label_font to change the font associated with a Label control.

The most representative feature of a typeface design is the family to which it belongs
(font family) (Figure 17.46). Each computer has a series of families installed that do not
have to coincide with those incorporated in another machine. This is an important fact
to keep in mind since, for portability, we should not assume that a certain typeface family
will be present on all machines that run the program. Sentences like:
Font *font = font_create("Comic Sans MS", 28, 0);

they will not be completely portable, since we are not sure that the Comic Sans MS
typeface is installed in all computers. We have two alternatives to guarantee the existence
of a certain font:

Figure 17.46: Different typographic
families.

Hello World!
Hello World!
Hello World!

Hello World!
• Use font_system to get the default font of the operating system. It will always be

available but its appearance will be different according to operating system.

290 Chapter 17 - Draw2D library

• Use font_regular_size to get the default size for buttons and other controls.

• Use font_installed_families to obtain the list of families installed in the ma-
chine and choose the one that best suits our purposes.

17.9.2. System font
As we just mentioned, there is always a default font associated with the window en-

vironment and that, in a way, gives part of its personality. Using this font guarantees
us the correct integration of our program in all the systems where it runs, making our
code totally portable (Figure 17.47). Interface controls like Button or Label have the
system font of regular size associated by default. The correspondence of font_system in
the different systems is:

• Segoe UI: Windows Vista, 7, 8, 10.

• Tahoma: Windows XP.

• San Francisco: macOS Mojave, High Sierra, Sierra, Mac OSX El Capitan.

• Helvetica Neue: Mac OSX Yosemite.

• Lucida Grande: Mac OSX Mavericks, Mountain Lion, Lion, Snow Leopard.

• Ubuntu: Linux Ubuntu.

• Piboto: Linux Raspbian.

Figure 17.47: Use of the system font.

In addition to the system font we have another default monospace font available
(Figure 17.48). These typefaces mimic old typewriters, where all characters occupy the
same space. Usually used for technical documents or source code files.

• Use font_monospace to create a generic monospace typography.

17.9 - Typography fonts 291

Figure 17.48: Proportional font
(variable width) and monospace
(fixed width).

17.9.3. Font characteristics
In addition to the family, we can adjust the size and style of the font. The size refers to

the average height (in pixels) of the characters that make up the typeface, where margins
and displacements in relation to the baseline are not taken into account (Figure 17.49).
The total height of a line of text is known as cell height and, as a general rule, it will
be somewhat larger than the char height font size.

jEh
baseline

char
height

char
height

cell
height

Figure 17.49: Character height (char height = font size).

We can also change the style of the text, setting its attributes through the parameter
style combining the values of fstyle_t (Figure 17.50).

• ekFBOLD. Bold.

• ekFITALIC. Italic.

• ekFUNDERLINE. Underlined.

• ekFSTRIKEOUT. Strikethrough.

17.9.4. Size in points
By default, the font size is expressed in pixels, but can be changed by adding ekFPOINTS

to the style parameter. This unit is related to paper fonts. Here is the DPI (dots per
inch) concept that indicates the amount of isolated ink drops that a printing device can
emit per metric inch. In typography the criterion of 72 DPI’s is established, therefore, the
size of a point is approximately 0.35mm. In this way it is easy to calculate the font size
from the points: 12pt=4.2mm, 36pt=12.7mm or 72pt=25.4mm (1 inch). This is the unit
used in word processors, which already work based on a print page size. The problem

292 Chapter 17 - Draw2D library

Figure 17.50: Text style.

comes when we want to represent sources expressed in points on a screen, since there is
no exact correspondence between pixels and millimeters. The final pixel size depends on
the resolution and physical size of the monitor. A conversion agreement between pixels
and inches is required, which results in the term PPI (pixels per inch). Traditionally, in
Windows systems 96 PPI is established while in Apple iMac it is 72 PPI. This causes the
fonts expressed in points to be 33% larger in Windows (Figure 17.51). Also in the Microsoft
system it is possible to configure the PPI by the user, which adds more uncertainty about
the final size of the texts on the screen.

100%133%

Figure 17.51: Unit ekFPOINTS is not advisable for screens.

17.9.5. Bitmap and Outline fonts
In the first computers typographies were created as raster graphics Bitmap Fonts (Fig-

ure 17.52). Each character fitted a fixed-sized cell where those pixels that made it were
marked. The biggest problem is that they don’t scale well. As the text on the screen grows
larger, the jagged effect of the pixels becomes apparent.

17.9 - Typography fonts 293

Figure 17.52: Bitmap fonts.

In 1982 Adobe launched the PostScript format that included those known as Outline
Fonts (Figure 17.53). This format contains a geometric description of each symbol based
on Bezier lines and curves. In this way the pixelated effect of the bitmap is avoided, since
when the character is scaled, the pixels that compose it are re-computed in a process
known as rasterization. In the late 80’s Apple launches the TrueType format and sells
a license to Microsoft that incorporates it in Windows 3.1, opening the door of the mass
market to vector sources. Today all systems work with scalable fonts, having the clearest
representatives in TrueType and OpenType.

Figure 17.53: Outline fonts,
on which TrueType and Open-
Type formats are based.

17.9.6. Unicode and glyphs
Unicode is a very large table. In version 11 (June 2018) there are 137,374 codepoints

registered and this number grows with each new revision of the standard. If the application
needs special symbols (above the BMP-Basic Multilingual Plane) we must make sure that
the selected fonts contain glyphs for them. To see the relationship between codepoints
and glyphs we can use the BabelMap application (Figure 17.54), and within it the Font
Analysis option. From a Unicode block, it will show those installed sources that include
glyphs for that range. In macOS we have a similar application called Character Viewer
and in Ubuntu another one called Character Map.

294 Chapter 17 - Draw2D library

Figure 17.54: BabelMap Font
Analysis gives us information about
the glyphs included in each typeface.

18C
ha

pt
er

Gui library

18.1 Gui 297
18.1.1 Declarative composition 298
18.1.2 Anatomy of a window. 299
18.1.3 GUI Events 300

18.2 Label 302
18.3 Button 304

18.3.1 RadioGroup 305
18.4 PopUp 306
18.5 Edit 307

18.5.1 Filter texts 308
18.6 Combo 309
18.7 ListBox 309
18.8 UpDown 310
18.9 Slider 311
18.10 Progress 311
18.11 View 312

18.11.1 Draw in views. 313
18.11.2 Scrolling views 314
18.11.3 Using the mouse 315
18.11.4 Using the keyboard 316

18.12 TextView 317
18.12.1 Character format 317
18.12.2 Paragraph format 318
18.12.3 Document format 319

18.13 ImageView 319

296 Chapter 18 - Gui library

18.14 TableView 320
18.14.1 Data connection 320
18.14.2 Data cache 323
18.14.3 Multiple selection 324
18.14.4 Configure columns 325
18.14.5 Grid drawing 326

18.15 SplitView 326
18.15.1 Add controls 327
18.15.2 Split modes 328

18.16 Layout 329
18.16.1 Natural sizing 330
18.16.2 Margins and format 331
18.16.3 Alignment 332
18.16.4 Sub-layouts 333
18.16.5 Cell expansion 335
18.16.6 Tabstops 335

18.17 Cell 337
18.18 Panel 338

18.18.1 Understanding panel sizing 339
18.19 Window 344

18.19.1 Window size 345
18.19.2 Closing the window 346
18.19.3 Modal windows 347
18.19.4 Hotkeys 349

18.20 GUI Data binding 349
18.20.1 Basic type binding 349
18.20.2 Limits and ranges 353
18.20.3 Nested structures 353
18.20.4 Notifications and calculated fields 357

18.21 Menu 359
18.22 MenuItem 360
18.23 Common dialogs 361

18.1 - Gui 297

...

draw2d

gui

command
line

desktop

Win32

 Cocoa

GTK+3

Figure 18.1: Dependencies of Gui. See “NAppGUI API” (page 145).

18.1. Gui

The Gui library allows you to create graphical user interfaces in a simple and intuitive
way. Only available for desktop applications for obvious reasons (Figure 18.1), unlike the
rest of libraries that can also be used in command line applications.

Like “Draw2D” (page 256) and “Osbs” (page 166) Gui relies on the APIs of each
operating system. In addition to the advantages already mentioned in these two cases,
native access to interface elements will cause our programs to be fully integrated in the
desktop and according to the visual theme present in each machine (Figure 18.2).

GUI LibraryGUI Library

Win32
GDI+

Win32
GDI+

Cocoa
Quartz2D

Cocoa
Quartz2D

GTK+3
Cairo

GTK+3
Cairo

Figure 18.2: The interfaces created with Gui will adapt to the style of each window
environment.

298 Chapter 18 - Gui library

18.1.1. Declarative composition
The Gui library moves away from the concept of treating windows (or dialog boxes)

as an external resource of the program. On the contrary, these are created directly from
the source code avoiding layout by visual editors (Figure 18.3). We must bear in mind
that window managers use different fonts and templates, so specifying specific positions
and sizes for the elements will not be portable between platforms (Figure 18.4). On the
contrary, in Gui the controls are located in a virtual grid called Layout, which will calculate
its location and final size at runtime and depending on the platform (Figure 18.5).

Figure 18.3: Resource ed-
itors are not good allies to
create complex dynamic in-
terfaces. Even less if we want
to carry them between plat-
forms.

Figure 18.4: Using fixed dimensions
for controls will not adapt well when
migrating the program.

(59,15) (59,15) (59,15)

(101,24) (101,24) (101,24)

Figure 18.5: The Layout calculates
the position and size of the compo-
nents at runtime.

(59,15)

(101,24) (114,22) (115,29)

(66,16) (70,17)

In addition, another relevant fact is that interfaces are living objects subject to constant
changes. A clear example is the translations, which alter the location of the elements due to
the new dimension of the text (Figure 18.6). Gui will adapt to these events automatically,
recalculating positions to maintain a consistent layout.

18.1 - Gui 299

Figure 18.6: The windows automatically adapt to runtime changes.

18.1.2. Anatomy of a window.
In (Figure 18.7) we have the main parts of a window. Controls are the final elements

with which the user interacts to enter data or launch actions. The views are rectangular
regions of relatively large size where information is represented by text and graphics, being
able to respond to keyboard or mouse events. Finally, all these elements will be grouped
into panels and will be layout by layouts.

Window

Panel

Layout

Control

View

Figure 18.7: Notable parts in an interface window.

• “Label” (page 302). Small blocks of descriptive text.

300 Chapter 18 - Gui library

• “Button” (page 304). Push buttons, check boxes or radio.

• “PopUp” (page 306). Button with drop-down list.

• “Edit” (page 307). Text edit box.

• “Combo” (page 309). Edit box with drop-down list.

• “ListBox” (page 309). List box.

• “UpDown” (page 310). Increment and decrement buttons.

• “Slider” (page 311). Sliding bar.

• “Progress” (page 311). Progress bar.

• “View” (page 312). Generic view where you can freely draw.

• “TextView” (page 317). View to show and edit texts in multiple formats.

• “ImageView” (page 319). View to display images.

• “TableView” (page 320). Table view to display information in rows and columns.

• “SplitView” (page 326). View divided into two resizable parts.

• “Layout” (page 329). Virtual and invisible grid where the controls will be located.

• “Panel” (page 338). Sub-window inside the main one with its own controls.

• “Window” (page 344). Main window with title bar and frame.

• “Menu” (page 359). Drop-down list with options.

• “MenuItem” (page 360). Each of the menu items.

18.1.3. GUI Events
Desktop applications are event driven, which means that they are continually waiting

for the user to perform some action on the interface: Press a button, drag a slider, write
a text, etc. When this occurs, the window manager detects the event and notifies the
application (Figure 18.8), which must provide an event handler with the code to execute.
For example in (Listing 18.1) we define a handler to respond to the press of a button.
Obviously, if there is no associated handler, the application will ignore the event.

• Use event_params to obtain the parameters associated with the event. Each type
of event has its own parameters. See (Table 18.1).

• Use event_result to write the response to the event. Very few events require
sending a response.

18.1 - Gui 301

i_OnClick()

listener()

Event
App *app

Figure 18.8: Notification of an event through the handler.

Listing 18.1: Assign a handler for the push of a button.
static void i_OnClick(App *app, Event *e)
{

const EvButton *p = event_params(e, EvButton);
if (p>state == ekGUI_ON)

create_new_file(app);
}

Button *button = button_check();
button_OnClick(button, listener(app, i_OnClick, App));

Event Handler Parameters Response

Click in label label_OnClick EvText -

Click on button button_OnClick EvButton -

Selection in PopUp popup_OnSelect EvButton -

Selection in ListBox listbox_OnSelect EvButton -

Press key on Edit edit_OnFilter EvText EvTextFilter

End of edit in Edit edit_OnChange EvText -

Key press on Combo combo_OnFilter EvText EvTextFilter

End of editing in Combo combo_OnChange EvText -

Slider movement slider_OnMoved EvSlider -

302 Chapter 18 - Gui library

Event Handler Parameters Response

Click on UpDown updown_OnClick EvButton -

Draw the contents of a view view_OnDraw EvDraw -

The size of a view has changed view_OnSize EvSize -

The mouse enters the area of a view view_OnEnter EvMouse -

The mouse leaves the area of a view view_OnExit - -

The mouse moves over a view view_OnMove EvMouse -

A mouse button was pressed view_OnDown EvMouse -

A mouse button has been released view_OnUp EvMouse -

Click on a view view_OnClick EvMouse -

Dragging on a view view_OnDrag EvMouse -

Mouse wheel on a view view_OnWheel EvWheel -

Press key on a view view_OnKeyDown EvKey -

Release key on a view view_OnKeyUp EvKey -

Vista has received keyboard focus view_OnFocus bool_t -

Close a window window_OnClose EvWinClose bool_t

Window moving around the desk window_OnMoved EvPos -

Window is re-dimensioning window_OnResize EvSize -

Click on an item menu menuitem_OnClick EvMenu -

Color change comwin_color color_t -

Table 18.1: List of all interface events.

18.2. Label

Label controls are used to insert small blocks of text into windows and forms. They
are of uniform format, that is, the font and color attributes will be applied to the entire
text. In most cases the content will be limited to a single line, although it is possible to
show blocks that extend in several lines. The control size will be adjusted to the text it
contains (Figure 18.9). In “Hello Label!Hello Label!” (page 489) you have an example of
use.

• Use label_create to create a text control.

18.2 - Label 303

• Use label_multiline to create a multi-line control.

• Use label_align to set the internal alignment of the text.

• Use label_font to set the font.

Figure 18.9: Label controls.

In the case that the column of Layout has a width smaller than the text, some dots
(ellipse) will be displayed at the clipping point (Figure 18.10), except in multi-line labels,
which will expand vertically to accommodate all text (Figure 18.11).

Figure 18.10: Text adjustment by
reducing the width of the control.

Figure 18.11: Multi-line labels will
expand vertically to accommodate all
text.

In (Figure 18.12) we have an example of the use of Label in forms. If necessary, we can
make the texts sensitive to the mouse by varying their style and colors (Figure 18.13).

• Use label_style_over to change the font style.

• Use label_color_over to change text color.

• Use label_bgcolor_over to change background color.

304 Chapter 18 - Gui library

• Use label_OnClick to respond to a click on the text.

Figure 18.12: Using simple and
multiline Label in forms.

Figure 18.13: Label controls sensi-
tive to the mouse.

18.3. Button

The buttons are another classic element in graphic interfaces, where we distinguish
four types: the push button, checkbox, radiobutton and flat button typical of toolbars
(Figure 18.14) . In “Hello Button!Hello Button!” (page 494) you have an example of use.

• Use button_pushto create a push button.

• Use button_checkto create a check box.

• Use button_check3 to create a box with three states.

• Use button_radio to create a radio button.

• Use button_flatto create a flat button.

• Use button_flatgleto create a flat button with status.

• Use button_text to assign text.

• Use button_OnClick to respond to keystrokes.

18.3 - Button 305

Figure 18.14: Buttons on different platforms.

In addition to capturing the event and notifying the application, the checkbox and flatgle
maintain a state (pressed/check or released/uncheck).

• Use button_stateto set the button status.

• Use button_get_state to get the status of the button.

18.3.1. RadioGroup
Special mention is required of the radio buttons, which only make sense when they

appear in a group, since they are used to select a single option within a set. Groups are
formed at the Layout level, that is, all radiobuttons of the same layout will be considered
from the same group, where only one of them can be selected. If we need several sub-
groups, we must create several sub-layout, as shown (Figure 18.15) (Listing 18.2). When
capturing the event, the field indexfrom EvButton will indicate the index of the button
that has been pressed.

One

Two

Three

Four

Five

Six

Seven

Eight

One

Two

Three

Four

Five

Six

Seven

Eight

Group 1
Layout (1, 4)Group 1 - Layout (2, 4)

Group 2
Layout (1, 4)

Figure 18.15: Radio groups linked to different layouts.

Listing 18.2: Radio button groups.
Button *button1 = button_radio();
Button *button2 = button_radio();
Button *button3 = button_radio();

306 Chapter 18 - Gui library

Button *button4 = button_radio();
Button *button5 = button_radio();
Button *button6 = button_radio();
Button *button7 = button_radio();
Button *button8 = button_radio();
button_text(button1, "One");
button_text(button2, "Two");
button_text(button3, "Three");
button_text(button4, "Four");
button_text(button5, "Five");
button_text(button6, "Six");
button_text(button7, "Seven");
button_text(button8, "Eight");

// One group One layout
Layout *layout = layout_create(2, 4);
layout_button(layout, button1, 0, 0);
layout_button(layout, button2, 0, 1);
layout_button(layout, button3, 0, 2);
layout_button(layout, button4, 0, 3);
layout_button(layout, button5, 1, 0);
layout_button(layout, button6, 1, 1);
layout_button(layout, button7, 1, 2);
layout_button(layout, button8, 1, 3);

// Two groups Two sublayouts
Layout *layout1 = layout_create(2, 1);
Layout *layout2 = layout_create(1, 4);
Layout *layout3 = layout_create(1, 4);
layout_button(layout2, button1, 0, 0);
layout_button(layout2, button2, 0, 1);
layout_button(layout2, button3, 0, 2);
layout_button(layout2, button4, 0, 3);
layout_button(layout3, button5, 0, 0);
layout_button(layout3, button6, 0, 1);
layout_button(layout3, button7, 0, 2);
layout_button(layout3, button8, 0, 3);
layout_layout(layout, layout1, 0, 0);
layout_layout(layout, layout2, 1, 0);

18.4. PopUp

PopUps are buttons that have a drop-down menu associated with them (Figure 18.16).
Apparently they look like pushbuttons that when pressed show a list of options. In “Hello
PopUp and Combo!Hello PopUp and Combo!” (page 497) you have an example of use.

• Use popup_create to create a popup.

• Use popup_add_elem to add an item to the list.

18.5 - Edit 307

• Use popup_OnSelect to respond to the selection.

Figure 18.16: PopUps on Windows, macOS and Linux.

18.5. Edit

EditBox are small text boxes with editing capabilities. Like the Label they are of
uniform format: The typeface and colors will affect the entire text (Figure 18.17). They
are usually used to edit fields in forms, normally restricted to a single line, although
they can also be extended to several of them. To edit texts with multiple attributes use
TextView. In Hello Edit and UpDown!1 you have an example of use.

• Use edit_createto create an edit box.

• Use edit_multiline to create a multi-line editing box.

• Use edit_passmode to hide the text of the control.

• Use edit_phtext to set a placeholder.

• Use edit_autoselect to automatically select all text.

Figure 18.17: Edition boxes on different platforms.

1HelloEditandUpDown!

Hello Edit and UpDown!

308 Chapter 18 - Gui library

18.5.1. Filter texts
Depending on the value we are editing, it may be necessary to validate the text entered.

We can do this at the end of editing or while we are writing. For the first case we will use
the event edit_OnChange which will call the handler when the control has lost focus on
the keyboard (Figure 18.18). If we want to implement more elaborate filters, that correct
the text while writing we will use the event edit_OnFilter. For example in (Listing 18.3)
we have a simple filter that only allows numeric characters (Figure 18.19).

• Use edit_OnChange to validate the final text.

• Use edit_OnFilter to detect and correct every user click.

Figure 18.18: The OnChange event
is called when the control loses focus.

Intel i7-8700K Intel BX80684I78700K
8th Gen Core i7-8700K
ProcessorOnChange()

Figure 18.19: The OnFilter event
is called after each key press.

12N

OnFilter()

‘12N’ EvText

EvTextFilter
‘12’

Listing 18.3: Filter that only allows numeric characters.
static void OnFilter(void *noused, Event *e)
{

const EvText *params = event_params(e, EvText);
EvTextFilter *result = event_result(e, EvTextFilter);
uint32_t i = 0, j = 0;
while (params>text[i] != '\0')
{

if (params>text[i] >= '0' && params>text[i] <= '9')
{

result>text[j] = params>text[i];
j += 1;

}

18.6 - Combo 309

i += 1;
}

result>text[j] = '\0';
result>apply = TRUE;

}
...
edit_OnFilter(edit1, listener(NULL, i_OnFilter, void));

18.6. Combo

ComboBox are text editing boxes with drop-down list (Figure 18.20). Therefore, they
will work in the same way as Edit controls on which methods for the management of the
list are added. In “Hello PopUp and Combo!Hello PopUp and Combo!” (page 497) you
have an example of use.

• Use combo_create to create a combo.

• Use combo_text to set edit text.

• Use combo_color to set the text color.

• Use combo_bgcolor to set the background color.

• Use combo_add_elem to add an item to the list.

Figure 18.20: Combos on Windows, macOS and Linux.

18.7. ListBox

The ListBox are controls that display a series of elements as a list (Figure 18.21),
(Figure 18.22), (Figure 18.23). Depending on how it is configured, we can select one or
more elements or view checkboxes to check them. The control enables scroll bars when
necessary and allows keyboard navigation. In “Hello ListBox!Hello ListBox!” (page 503)
you have an example of use.

310 Chapter 18 - Gui library

• Use listbox_create to create a list control.

• Use listbox_add_elem to add an element.

• Use listbox_multisel to enable the multiple selection.

• Use listbox_checkbox to enable the checkboxes.

• Use listbox_OnSelect to respond to the selection.

Figure 18.21: ListBox controls in Windows.

Figure 18.22: ListBox controls in macOS.

18.8. UpDown

UpDown are two-part horizontally divided button controls (Figure 18.24). Each part
has a small arrow printed and is normally used to make discrete increases in numerical
values associated with controls “Edit” (page 307).

• Use updown_create to create an updown button.

18.9 - Slider 311

Figure 18.23: ListBox controls in Linux.

• Use updown_OnClick to respond to keystrokes.

Figure 18.24: UpDown on Win-
dows, macOS and Linux.

18.9. Slider

Sliders are normally used to edit continuous and bounded numerical values (Fig-
ure 18.25). As the control moves, OnMoved events occur that return a value between
0 and 1. In “Hello Slider and Progress!Hello Slider and Progress!” (page 505) you have
an example of use.

• Use slider_create to create a horizontal slider.

• Use slider_vertical to create a vertical slider.

• Use slider_OnMoved to respond to scrolling.

18.10. Progress

Progress bars are passive controls that show the remaining time to complete a certain
task (Figure 18.26). As time passes we must update the control. The undefined state
will show an animation without indicating status, which will be useful when we cannot
determine the required time.

312 Chapter 18 - Gui library

Figure 18.25: Sliders on Windows,
macOS and Linux.

• Use progress_create to create a progress bar.

• Use progress_undefined to set the bar as undefined.

• Use progress_value to update the progress of the task.

Figure 18.26: ProgressBar on Win-
dows, macOS and Linux.

18.11. View

The View controls or custom views (Figure 18.27) are blank areas within the window
that allow us to implement our own components. We will have total freedom to draw and
capture the mouse or keyboard events that allow us to interact with it.

• Use view_create to create a view.

• Use view_data to set a data object.

18.11 - View 313

• Use view_get_data to get this object.

• Use view_size to set the default size. See “Natural sizingNatural sizing” (page 330).

View
(custom drawing)

Figure 18.27: Custom view control.

18.11.1. Draw in views.
We cannot update the drawing area whenever we want. This can be affected by other

windows in the environment, so the framebuffer is managed directly by the operating
system. It will send a notification each time the control must refresh its content.

• Use view_OnDraw to set the drawing handler.

• Use view_update to force an area update.

In “Die” (page 387) you have a simple example application that implements drawing
in custom views. The complete cycle can be summarized in these steps (Figure 18.28):

• Some event occurs that requires updating the content of the view.

• The application calls the view_update method to notify that the view must be
updated.

• At the appropriate moment, the system will send an OnDraw event with a DCtx
context ready to draw.

The operating system can launch OnDraw events at any time without previously calling
view_update.

314 Chapter 18 - Gui library

Figure 18.28: Refresh cycle of a
custom view.

view_update()

OnDraw()

1

2

3

18.11.2. Scrolling views
It is possible that the “scene” to be rendered is much larger than the control itself, so

it will show only a small fragment of it (Figure 18.29). In these cases we will say that the
view is a viewport of the scene. We can manage it in two ways:

Figure 18.29: Scene and view
(viewport).

View (viewport)

Scene (drawing area)(0,0)

(x,y)

width

heightwidth

height

• Use draw_matrixf to indicate the transformation that integrates the movement,
zoom and possible rotation of the viewport with respect to the scene. All this must
be managed by the application and we do not have to do anything special, except
call view_update() when necessary.

• Use scroll bars that allow the user to move freely through the content. In this case,
managing the view is a bit more complicated. This is what we must take into account:

• Use view_scroll to create the view.

• Use view_content_size to indicate the measurements of the scene, so that
the bars are sized correctly.

• Use view_scroll_x, view_scroll_y to move the origin of the visible area.

• Use view_viewport to get the position and dimensions of the visible area.

18.11 - View 315

Something very important is to avoid drawing non-visible elements, especially in very
large scenes or with a multitude of objects. The operating system will send successive
OnDraw() events as the user manipulates the scrollbars, indicating in the EvDraw structure
the parameters of the visible area. In “Scroll drawings” (page 619) you have an example
of how to correctly handle this type of case.

The dimensions of the viewport received in OnDraw() may be slightly larger than the
actual measurements returned by view_viewport(). This is due to the fact that
certain systems (macOS, Linux) force drawing in external non-visible areas near the
edges, in order to avoid flickering in very fast movements.

18.11.3. Using the mouse
In order to interact with the control, it is necessary to define handlers for the different

mouse events (Figure 18.30). The operating system will notify the user’s actions so that
the application can launch the relevant actions. It is not necessary to use all of them, only
the essential ones in each case.

Figure 18.30: View position events.

OnEnter

OnMove

OnExit

• Use view_OnEnter to know when the cursor enters the view.

• Use view_OnExit to know when the cursor leaves the view.

• Use view_OnMove to know when the cursor is moving through the view.

• Use view_OnDown to know when a button is pressed within the view.

• Use view_OnUp to know when a button is released inside the view.

• Use view_OnClick to identify a click (Fast Up + Down).

• Use view_OnDrag to move the cursor with a pressed button.

• Use view_OnWheel to use the mouse wheel.

If the view uses scroll bars, the cursor (x,y) position passed to EvMouse in each event,
refers to the global coordinates of the scene, taking into account the displacement. In
views without scroll bars, they are the control local coordinates.

316 Chapter 18 - Gui library

18.11.4. Using the keyboard
In order to receive keyboard events, it is necessary that the view be able to obtain the

focus, something that by default is disabled.

• Use layout_tabstop to include the view in the tab-list of the window and allow it
to receive keyboard focus using the [TAB] key or by clicking on it.

• Use view_OnKeyDown to know when a key is pressed (if the view has focus).

• Use view_OnKeyUp to know when a key is released.

• Use view_OnFocus to notify the application whenever the view receives (or loses)
keyboard focus. In (Figure 18.31), the view changes the color of the active cell when
it has focus.

Focus OnFocus

Figure 18.31: View without keyboard focus (left) and with it (right).

In the KeyDown and KeyUp events a vkey_t will be received with the value of the
pressed key. In (Figure 18.32) and (Figure 18.33) the correspondence of these codes is
shown.

EkKEY_1 - ekKEY_0

ekKEY_A - ekKEY_Z
ekKEY_BSLASH ekKEY_QUEST ekKEY_EXCLAM

ekKEY_BACK

ekKEY_RETUR

ekKEY_RSHIF

ekKEY_RCTRL

ekKEY_MENUekKEY_RWINekKEY_RALT

ekKEY_SPACE

ekKEY_LALTekKEY_LWIN

ekKEY_LCTRL

ekKEY_LSHIFT

ekKEY_TAB

ekKEY_CAPS

ekKEY_GTLT ekKEY_COMMA
ekKEY_PERIOD
ekKEY_MINUS ekKEY_TILDE ekKEY_LCURLY ekKEY_RCURLY

ekKEY_GRAVE
ekKEY_PLUS

Figure 18.32: Keyboard codes.

18.12 - TextView 317

ekKEY_ESCAPE

ekKEY_F1
...
ekKEY_F12

ekKEY_INSERT
ekKEY_SUP
ekKEY_HOME
ekKEY_END
ekKEY_PAGEUP
ekKEY_PAGEDOWN ekKEY_UP

ekKEY_DOWN
ekKEY_LEFT
ekKEY_RIGHT

ekKEY_NUM0
…
ekKEY_NUM9
ekKEY_NUMLOCK
ekKEY_NUMDIV
ekKEY_NUMMULT
ekKEY_NUMMINUS
ekKEY_NUMADD
ekKEY_NUMRET
ekKEY_NUMDECIMAL

ekKEY_INSERT
ekKEY_SUP
ekKEY_HOME
ekKEY_END
ekKEY_PAGEUP
ekKEY_PAGEDOWN

Figure 18.33: Keyboard Extended Codes.

In “Synchronous applicationsSynchronous applications” (page 369) we may need to
know if a key is pressed or not during the update cycle (synchronous) where we do not
have access to the OnKeyDown and OnKeyUp events (asynchronous). This can be done by
assigning the view a keyboard buffer using view_keybuf, which will capture the events
associated with each key and allow us to consult its status at any time in a comfortable
way.

18.12. TextView

TextView are views designed to work with rich text blocks (Figure 18.34), where fonts,
sizes and colors can be combined. We can consider them as the basis of a text editor. In
“Hello TextView!Hello TextView!” (page 507) you have an example of use.

• Use textview_create to create a text view.

• Use textview_writef to add text to the view.

• Use textview_printf to add text in the format of printf.

• Use textview_rtf to add content in Microsoft RTF format.

• Use textview_clear to erase all text.

18.12.1. Character format
One of the advantages of rich text over plain text is the ability to combine different

character formats within the same paragraph (Figure 18.35). Changes will be applied to
new text added to the control.

Use textview_family to change the font.

Use textview_fsize to change the character size.

Use textview_fstyle to change the style.

318 Chapter 18 - Gui library

Figure 18.34: Plain text and rich text.

Use textview_color to change the color of the text.

Use textview_bgcolor to change the background color of the text.

Figure 18.35: Typical Character
Format Controls.

18.12.2. Paragraph format
You can also set attributes per paragraph (Figure 18.36). The new line character '\n'

is considered the closing or end of the paragraph.

Use textview_halign to set to paragraph alignment.

Use textview_lspacing to set line spacing (line spacing).

Use textview_bfspace to indicate the vertical space before the paragraph.

Use textview_afspace to indicate the vertical space after the paragraph.

18.13 - ImageView 319

Figure 18.36: Typical controls for
paragraph formatting.

18.12.3. Document format
Finally we have several attributes that affect the entire document or control.

Use textview_units to set the text units.

Use textview_pgcolor to set the background color of the control (page).

18.13. ImageView

ImageView are specialized views in visualizing images and GIF animations.

Figure 18.37: ImageView in a
panel.

• Use imageview_create to create an image control.

• Use imageview_image to set the image that the control will display.

• Use imageview_scale to set the image adjustment mode.

320 Chapter 18 - Gui library

18.14. TableView

TableViews are data views that display tabulated information arranged in rows and
columns (Figure 18.38), (Figure 18.39), (Figure 18.40). The control enables scroll bars
and allows keyboard navigation. In “Hello TableView!Hello TableView!” (page 510) you
have an example of use.

• Use tableview_create to create a table view.

• Use tableview_new_column_text to add a column.

• Use tableview_size to set the default size.

Figure 18.38: TableView control in Windows.

18.14.1. Data connection
Let’s think that a table can contain thousands of records and these can change at

any time from different data sources (disk, network, DBMS, etc). For this reason, the
TableView will not maintain any internal cache. It has been designed with the aim
of making a quick visualization of the data, but without going into their management.
Ultimately, it is the application that must provide this information in a fluid manner.

• Use tableview_OnData to bind the table to the data source.

• Use tableview_update to force an update of the table data.

When a table needs to draw its contents, in response to an OnDraw event, it will first
ask the application for the total number of records via a ekGUI_EVENT_TBL_NROWS noti-

18.14 - TableView 321

Figure 18.39: TableView control in macOS.

Figure 18.40: TableView control in Linux.

fication. With this it can calculate the size of the document and configure the scroll bars
(Figure 18.41). Subsequently, it will launch successive ekGUI_EVENT_TBL_CELL events,
where it will ask the application for the content of each cell (Figure 18.42). All these re-
quests will be made through the callback function set in tableview_OnData (Listing 18.4).

TableView will only ask for the content of the visible part at any time.

322 Chapter 18 - Gui library

Figure 18.41: Ask for the number
of rows in the data set. App

TableView

...

1843

TBL_NROWS

0
1
2

1842
1841
1840

Figure 18.42: Request for the data
of a cell. App

TableView

‘John’

TBL_CELL(1,548)

546
547
548
549
550

John

Listing 18.4: Data connection example.
static void i_OnTableData(App *app, Event *e)
{

uint32_t etype = event_type(e);
unref(app);

switch(etype) {
case ekGUI_EVENT_TBL_NROWS:
{

uint32_t *n = event_result(e, uint32_t);
*n = app_num_rows(app);
break;

}

case ekGUI_EVENT_TBL_CELL:
{

const EvTbPos *pos = event_params(e, EvTbPos);
EvTbCell *cell = event_result(e, EvTbCell);

switch(pos>col) {
case 0:

cell>text = app_text_column0(app, pos>row);
break;

case 1:
cell>text = app_text_column1(app, pos>row);
break;

case 2:
cell>text = app_text_column2(app, pos>row);
break;

}

18.14 - TableView 323

break;
}

}
}

TableView *table = tableview_create();
tableview_OnData(table, listener(app, i_OnTableData, App));
tableview_update(table);

18.14.2. Data cache
As we have already commented, at each instant the table will only show a small portion

of the data set. In order to supply this data in the fastest possible way, the application can
keep a cache with those that will be displayed next. To do this, before starting to draw the
view, the table will send an ekGUI_EVENT_TBL_BEGIN type event where it will indicate
the range of rows and columns that need updating (Figure 18.43). This event will precede
any ekGUI_EVENT_TBL_CELL seen in the previous section. In the same way, once all the
visible cells have been updated, the ekGUI_EVENT_TBL_END event will be sent, where the
application will be able to free the resources in the cache (Listing 18.5).

App

TableView

TBL_BEGIN
(546,550,4,7)

546
547
548
549
550

4 5 6 7

SELECT(546,550,4,7)

Figure 18.43: Use of data cache.

Listing 18.5: Example of using data cache.
static void i_OnTableData(App *app, Event *e)
{

uint32_t etype = event_type(e);
unref(app);

switch(etype) {
case ekGUI_EVENT_TBL_NROWS:
{

uint32_t *n = event_result(e, uint32_t);
*n = app_num_rows(app);
break;

}

324 Chapter 18 - Gui library

case ekGUI_EVENT_TBL_BEGIN:
{

const EvTbRect *rect = event_params(e, EvTbRect);
app>cache = app_fill_cache(app, rect>strow, rect>edrow, rect>stcol,

↪→ rect>edcol);
break;

}

case ekGUI_EVENT_TBL_CELL:
{

const EvTbPos *pos = event_params(e, EvTbPos);
EvTbCell *cell = event_result(e, EvTbCell);
cell>text = app_get_cache(app>cache, pos>row, pos>col);
break;

}

case ekGUI_EVENT_TBL_END:
app_delete_cache(app>cache);
break;

}

TableView *table = tableview_create();
tableview_OnData(table, listener(app, i_OnTableData, App));
tableview_update(table);

18.14.3. Multiple selection
When we navigate through a TableView we can activate the multiple selection, which

will allow us to mark more than one row of the table (Figure 18.44).

• Use tableview_multisel to turn multiselect on or off.

• Use tableview_selected to get the selected rows.

• Use tableview_select to select a set of rows.

• Use tableview_deselect to deselect.

• Use tableview_deselect_all to uncheck all rows.

• Use tableview_OnSelect to receive an event when the selection changes.

Navigation through a TableView works the same as other similar controls, such as the
file explorer.

• [UP]/[DOWN] to scroll vertically.

• [LEFT]/[RIGHT] to scroll horizontally.

• [PAGEUP]/[PAGEDOWN] advance or reverse a page.

18.14 - TableView 325

Figure 18.44: TableView with multiple selection.

• [HOME] goes to the beginning of the table.

• [END] goes to the end of the table.

• [CTRL]+click multiple selection with the mouse.

• [SHIFT]+[UP]/[DOWN] multiple selection with the keyboard.

In multiple selection, an automatic de-selection of the rows will occur whenever
we click releasing [CTRL] or press any navigation key releasing [SHIFT]. If we want to
navigate without losing the previous selection, we must activate the preserve flag in
tableview_multisel.

18.14.4. Configure columns
• Use tableview_column_width to set the width of a column.

• Use tableview_column_limits to set limits on the width.

• Use tableview_column_resizable to allow the column to be stretched or col-
lapsed.

• Use tableview_header_visible to show or hide the header.

• Use tableview_OnHeaderClick to notify the header click.

• Use tableview_column_freeze to set one or more columns (Figure 18.45).

326 Chapter 18 - Gui library

Figure 18.45: Columns 0 and 1 frozen.

18.14.5. Grid drawing
• Use tableview_grid to show or hide the inner lines (Figure 18.46), (Figure 18.47).

Figure 18.46: TableView with no interior lines.

18.15. SplitView

The SplitView are views divided into two parts, where in each of them we place
another view or a panel. The dividing line is scrollable, which allows resizing both halves,
dividing the total size of the control between the children (Figure 18.48), (Figure 18.49),
(Figure 18.50). In “Hello SplitView!Hello SplitView!” (page 517) you have an example of
use.

18.15 - SplitView 327

Figure 18.47: TableView with interior lines.

• Use splitview_horizontal to create a split view.

• Use splitview_size to set the initial size.

Figure 18.48: SplitView in Windows.

18.15.1. Add controls
There are several functions for adding “child” controls to the splitview. The first call

to any of them will place the view or panel on the left or top side. The second call will be
on the right or lower side. Successive calls will generate an error.

• Use splitview_view to add a custom view.

328 Chapter 18 - Gui library

Figure 18.49: SplitView in macOS.

Figure 18.50: SplitView in Linux.

• Use splitview_panel to add a panel.

18.15.2. Split modes
We have two modes of behavior of the dividing bar and both are activated from this

function:

• Use splitview_pos to set the mode of the splitter.

• Proportional mode: The position of the divider will always remain constant with
respect to the size of the splitview. That is, a value of 0.3 means that the left view

18.16 - Layout 329

will always occupy 1/3 of the total size and the right view 2/3. To do this, indicate
a value between 0 and 1 in the pos parameter.

• Fixed mode: Resizing the splitview will always leave one of the parts with a constant
size. If pos > 1 the left/top child will keep the indicated number of pixels. On the
contrary, if pos < 0 the same will happen with the right/bottom view.

The ratio or value will change if the user drags the dividing line, but the operating
mode will not.

18.16. Layout

A Layout is a virtual and transparent grid always linked with a Panel which serves to
locate the different interface elements (Figure 18.51). Its inner cells have the ability to be
automatically sized according to their content, which results in great portability because
it is not necessary to indicate specific coordinates or sizes for the controls. To illustrate
the concept, we will slightly simplify the code of “Hello Edit and UpDown!Hello Edit and
UpDown!” (page 499) (Listing 18.6), whose result we can see in (Figure 18.52).

• Use layout_create to create a new layout.

• Use layout_label and similars to place controls in the different cells.

Figure 18.51: A layout is used to
locate controls in the panel area.

Label

RadioButton2

Layout (2, 4)

RadioButton1

CheckBox

Button

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

Listing 18.6: Layout with two columns and five rows.
Layout *layout = layout_create(2, 5);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Label *label5 = label_create();
Edit *edit1 = edit_create();
Edit *edit2 = edit_create();
Edit *edit3 = edit_create();
Edit *edit4 = edit_create();
Edit *edit5 = edit_create();
label_text(label1, "User Name:");
label_text(label2, "Password:");

330 Chapter 18 - Gui library

label_text(label3, "Address:");
label_text(label4, "City:");
label_text(label5, "Phone:");
edit_text(edit1, "Amanda Callister");
edit_text(edit2, "aQwe56nhjJk");
edit_text(edit3, "35, Tuam Road");
edit_text(edit4, "Galway Ireland");
edit_text(edit5, "+35 654 333 000");
edit_passmode(edit2, TRUE);
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 1);
layout_label(layout, label3, 0, 2);
layout_label(layout, label4, 0, 3);
layout_label(layout, label5, 0, 4);
layout_edit(layout, edit1, 1, 0);
layout_edit(layout, edit2, 1, 1);
layout_edit(layout, edit3, 1, 2);
layout_edit(layout, edit4, 1, 3);
layout_edit(layout, edit5, 1, 4);

Figure 18.52: Result of (List-
ing 18.6).

18.16.1. Natural sizing
The result of (Figure 18.52), although it is not very aesthetic, it is what we call natural

sizing which is the default layout applied depending on the content of the cells. In
(Table 18.2) we have the default measurements of each control. The column width is
fixed to that of the widest element and the height of the rows is calculated in the same
way. The final size of the layout will be the sum of the measures of both columns and
rows.

Control Width Height

Label Adjusted to the text. Adjusted to the text considering '\n'.

Button (push) Adjusted to text + margin. According to the theme of the OS.

Button (check/radio) Adjusted to text + icon. Adjusted to the icon.

Button (flat) Adjusted to the icon + margin. Adjusted to the icon + margin.

18.16 - Layout 331

Control Width Height

PopUp Adjusted to the longest text. According to the theme of the OS.

Edit 100 Units (px). Adjusted to text + margin.

Combo 100 Units (px). According to the theme of the OS.

ListBox 128 px or listbox_size. 128 px or listbox_size.

UpDown According to the theme of the OS. According to the theme of the OS.

Slider (horizontal) 100 Units (px). According to the theme of the OS.

Slider (vertical) According to the theme of the OS. 100 Units (px).

Progress 100 Units (px). According to the theme of the OS.

View 128 px or view_size. 128 px or view_size.

TextView 256 px or textview_size. 144 px or textview_size.

ImageView 64 px or imageview_size. 64 px or imageview_size.

TableView 256 px or tableview_size. 128 px or tableview_size.

SplitView 128 px or splitview_size. 128 px or splitview_size.

Panel Natural size. Natural size.

Panel (with scroll) 256 px or panel_size. 256 px or panel_size.

Table 18.2: Natural dimensioning of controls.

The margins and constants applied to the controls are those necessary to comply with
the human guidelines of each window manager. This means that a PushButton with the
text "Hello" will not have the same dimensions in WindowsXP as in macOS Mavericks
or Ubuntu 16.

Empty cells will be 0-sized and will not affect the composition.

18.16.2. Margins and format
The natural sizing we have just seen adjusts the panel to the minimum size necessary to

correctly house all the controls, but it is not always aesthetic. We can shape it by adding
margins or forcing a given size for rows and columns (Listing 18.7) (Figure 18.53).

• Use layout_hsize to force the width of a column.

• Use layout_vsize to force the height of a row.

• Use layout_hmargin to establish an inter-column margin.

332 Chapter 18 - Gui library

• Use layout_vmargin to establish an inter-row margin.

• Use layout_margin to set a margin at the edge of the layout.

Listing 18.7: Applying format to (Listing 18.6).
layout_hsize(layout, 1, 235);
layout_hmargin(layout, 0, 5);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);
layout_vmargin(layout, 2, 5);
layout_vmargin(layout, 3, 5);
layout_margin(layout, 10);

Figure 18.53: Result of (List-
ing 18.7).

18.16.3. Alignment
It is usual for the width of a control to be less than the width of the column that contains

it, either because a fixed width has been forced or because there are wider elements in the
same column. In these cases, we can indicate the horizontal or vertical alignment of
the control with respect to the cell (Figure 18.54). In (Table 18.3) you have the default
alignments.

• Use layout_halign to change the horizontal alignment of a cell.

• Use layout_valignto change the vertical alignment of a cell.

Control Horizontal Vertical

Label ekLEFT ekCENTER

Button (push) ekJUSTIFY ekCENTER

Button (others) ekLEFT ekCENTER

PopUp ekJUSTIFY ekCENTER

Edit ekJUSTIFY ekTOP

Edit (multiline) ekJUSTIFY ekJUSTIFY

18.16 - Layout 333

Figure 18.54: Horizontal align-
ment.

Column 0

ekLEFT

Column 1

ekRIGHT

ekCENTER

ekJUSTIFY

Control Horizontal Vertical

Combo ekJUSTIFY ekCENTER

ListBox ekJUSTIFY ekJUSTIFY

UpDown ekJUSTIFY ekJUSTIFY

Slider (horizontal) ekJUSTIFY ekCENTER

Slider (vertical) ekCENTER ekJUSTIFY

Progress ekJUSTIFY ekCENTER

View ekJUSTIFY ekJUSTIFY

TextView ekJUSTIFY ekJUSTIFY

ImageView ekJUSTIFY ekJUSTIFY

TableView ekJUSTIFY ekJUSTIFY

SplitView ekJUSTIFY ekJUSTIFY

Layout (sublayout) ekJUSTIFY ekJUSTIFY

Panel ekJUSTIFY ekJUSTIFY

Table 18.3: Default alignment of controls.

18.16.4. Sub-layouts
Consider now the panel of (Figure 18.55). It is not difficult to realize that this arrange-

ment does not fit in any way in a rectangular grid, so it is time to use sublayouts. In
addition to individual controls, a cell also supports another layout, so we can divide the
original panel into as many parts as necessary until the desired layout is achieved. The

334 Chapter 18 - Gui library

main layout will size each sublayout recursively and integrate it into the final composition.
In “Hello Sublayout!Hello Sublayout!” (page 535) you have the code that generates this
example.

• Use layout_layout to assign a complete layout to a cell in another layout.

Figure 18.55: Complex panel composition.

In this case we have applied the philosophy of divide and conquer, to ensure that
each part fits into an individual grid (Figure 18.56). Each sublayout has been coded in an
independent function to give greater consistency to the code, applying margins and format
individually within each of them (Listing 18.8).

main_layout

top_layout

bottom_layout

left_layout

left_grid_layout

updown_layout

Figure 18.56: Sublayouts needed to compose the (Figure 18.55) panel.

Listing 18.8: Sublayout integration (partial).
static Layout *i_main_layout(void)
{

Layout *layout1 = layout_create(1, 2);
Layout *layout2 = i_top_layout();
Layout *layout3 = i_bottom_layout();
layout_layout(layout1, layout2, 0, 0);
layout_layout(layout1, layout3, 0, 1);

18.16 - Layout 335

layout_margin(layout1, 5);
layout_vmargin(layout1, 0, 5);
return layout1;

}

18.16.5. Cell expansion
On certain occasions, the size of a layout is forced by external conditions. This happens

when we have a sublayout in a cell with ekJUSTIFY alignment (internal expansion) or when
the user changes the size of a resizable window (external expansion). This will produce
an “pixel excess” between the natural sizing and the actual cell size (Figure 18.57). This
situation is resolved by distributing the pixel surplus equally among all the sublayout
columns, which in turn, will be recursively expanding until they reach an empty cell or an
individual control. We can change this equitable distribution through these functions:

• Use layout_hexpand to expand a single cell and leave the rest with its default size.

• Use layout_hexpand2 to expand two cells indicating the growth rate of each.

• Use layout_hexpand3 to expand three cells.

ekJUSTIFY
Natural size cell

Expanded cell
Sublayout

β

β/4 β/4 β/4 β/4

Figure 18.57: When the size of the sublayout is given by external
conditions, the excess of pixels is equally distributed between the
columns (horizontal expansion) and rows (vertical expansion).

The vertical expansion works exactly the same, distributing the excess space between
the rows of the layout.

18.16.6. Tabstops
It is common practice on most systems to use the [TAB] key and the [SHIFT]+[TAB]

combination to navigate through the different controls in a window or form. Terms such as

336 Chapter 18 - Gui library

taborder or tabstop refer both to the navigation order and to the belonging (or not) of
an element to said list. While it is possible to arrange the elements of a tab-list randomly,
layouts provide a consistent natural order based on the placement of the controls. By
default, each layout creates a tab-list traversing all its cells by rows , but we can change it:

• Use layout_taborder to arrange the tab-list by rows or columns.

• Use layout_tabstop to add or remove controls from the tab-list.

(1) (2) (3)
(6)(5)(4)

(7) (8) (9)

(10)

(11)
(12)

Figure 18.58: Taborder by rows in layouts and sublayouts.

Not every cell in a layout has to be a tabstop, since it doesn’t make sense for static
controls like Label to receive keyboard focus. In (Table 18.4) you have which controls are
included by default in that list. With layout_tabstop you can add or remove controls
from the tab-list. Most of the time we will use it than allowing certain custom views View
to receive keyboard focus.

Control Included

Label NO

Button YES

PopUp YES

Edit YES

Combo YES

ListBox YES

UpDown NO

Slider YES

Progress NO

View NO

TextView NO

18.17 - Cell 337

Control Included

ImageView NO

TableView YES

SplitView YES

Layout (sublayout) YES

Panel YES

Table 18.4: Controls included in the tab-list.

When the taborder enters a sublayout, it will follow the local order of the latter. When
exiting the sublayout it will continue with the main order.

On the other hand, it may be useful to move the keyboard focus from the code itself and
not wait for the user to press [TAB]. In “Hello IP-Input!Hello IP-Input!” (page 544) you
have several Edit that pass to the next control when exactly three numbers are entered.

• Use layout_next_tabstop to jump to the next control in the tab-list.

• Use layout_previous_tabstop to jump to the previous control in the tab-list.

• Use cell_focus to set the focus to a specific cell.

The keyboard focus control will only have an effect on linked layouts with an active
window.

Typically, tabstops will work cyclically (by default). That is, if the last control in the
window has the keyboard focus and we press [TAB], the focus will go back to the first
control in the window (cycle), as we see in . It is possible to disable this behavior, leaving
the focus fixed on the last control even if we repeatedly press the [TAB] key. Likewise, the
focus will remain fixed on the first control in the window even if we press [SHIFT]+[TAB].

• Use window_cycle_tabstop to enable/disable cycling tabstops.

18.17. Cell
Cells are the inner elements of a “Layout” (page 329) and will house a control or a

(Figure 18.59) sublayout.

• Use layout_cell to get the cell.

• Use cell_button to get the control inside.

• Use cell_layout to get the inner sublayout.

338 Chapter 18 - Gui library

• Use cell_enabled to enable or disable the controls.

• Use cell_visible to show and hide the content.

• Use cell_focus to assign keyboard focus.

• Use cell_padding to set the (Figure 18.60) padding.

Figure 18.59: Cells inside a Layout

Label

RadioButton2

Layout (2, 4)

RadioButton1

CheckBox

Button

(0, 0)

(0, 1)

(0, 2)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

Cell

Sublayout

Figure 18.60: Interior padding of a
cell.

pt

pb

pl pr

18.18. Panel

A Panel is a control within a window that groups other controls. It defines its own
reference system, that is, if we move a panel all its descendants will move in unison since
their locations will be relative to its origin. It will support other (sub)-panels as descen-
dants, which allows to form a Window Hierarchy (Figure 18.61). For portability, this
Gui library does not support specific coordinates and sizes for elements linked to a panel,
but the association is carried out by a Layout object which is responsible for calculating
at runtime the final locations of controls based on the platform and window manager. In
“Hello Subpanel!Hello Subpanel!” (page 539) you have an elementary example of using
panels.

• Use panel_create to create a new panel.

• Use panel_scroll to create a panel with scroll bars.

• Use panel_layout to add child controls to the panel.

18.18 - Panel 339

• Use panel_size to set the default size of the visible area.

Figure 18.61: Window hierarchy.

Main PanelMain Panel

SubpanelSubpanel

WindowWindow

EditBoxEditBox

Push ButtonPush Button SliderSlider

LabelLabel

LabelLabel

(0, 0, 411, 105)

(x, y, width, height)

(10, 5, 59, 15) (10, 30, 281, 65) (301, 30, 100, 21)

(10, 5, 49, 15) (10, 30, 101, 24) (121, 30, 150, 25)

Each panel supports several layouts and allows you to switch between them at runtime
(Figure 18.62). This allows to create dynamic responsive interfaces with very little effort,
since the panel itself is responsible for linking and sizing the controls according to the
active layout in each case. In “Hello Multi-layout!Hello Multi-layout!” (page 540) you
have an example.

• Use panel_visible_layout to change the layout.

Because the layouts are logical structures outside the window hierarchy, they can share
controls as they are linked to the same panel (Figure 18.63). What is not allowed is to use
the same objects in different panels, due to the hierarchy concept.

18.18.1. Understanding panel sizing
We are going to show, by means of an example, the logic behind the composition and

dimensioning of panels. We start with (Listing 18.9) where we create a relatively large
panel in height.

Listing 18.9: Composition of a panel with multiple edit rows.

340 Chapter 18 - Gui library

PanelPanel

Layout1 (Visible)

Layout2 (Hidden)

Figure 18.62: Panel with two different organizations for the same controls.

Figure 18.63: It is possible to reuse
the same components between lay-
outs of the same panel.

PanelPanel

EditBoxEditBoxLabelLabel

Layout1Layout1 Layout2Layout2

PanelPanel

LayoutLayout

static Window *i_window(void)
{

uint32_t i, n = 20;
Window *window_create(ekWINDOW_STDRES);
Panel *panel = panel_create();
Layout *layout = layout_create(2, n);

for (i = 0; i < n; ++i)
{

char_t text[64];
Label *label = label_create();
Edit *edit = edit_create();
bstd_sprintf(text, sizeof(text), "Value %02d", i);
label_text(label, text);
bstd_sprintf(text, sizeof(text), "Edit here value %02d", i);
edit_text(edit, text);
layout_label(layout, label, 0, i);
layout_edit(layout, edit, 1, i);

}

for (i = 0; i < n 1; ++i)

18.18 - Panel 341

layout_vmargin(layout, i, 3);

layout_hmargin(layout, 0, 5);
layout_margin4(layout, 10, 10, 10, 10);
panel_layout(panel, layout);
window_panel(window, panel);
return window;

}

• Lines 3-6 create the window, panel, and layout.

• Loop 8-19 adds various labels and edit boxes to the layout.

• Loop 21-22 establishes a small gap between rows.

• Lines 24-25 establish a column spacing and border margin.

• Lines 26-27 link the layout to the panel and the layout to the window.

The result of this code is the “Natural sizingNatural sizing” (page 330) of the panel
(Figure 18.64), which defaults to a width of 100 pixels for the editing controls. Labels fit
to the text they contain. Separations and margins have also been applied.

Figure 18.64: Natural sizing of the
panel defined in (Listing 18.9).

In this case it is possible to resize the window, since we have used the ekWINDOW_STDRES
flag when creating it (Figure 18.65).

This behavior may not be the most appropriate for the case at hand. By default, the
layout performs the “Cell expansionCell expansion” (page 335) proportionally. But what
we really want is to “stretch” the editing controls so that the rows keep their default height
(Listing 18.10).

Listing 18.10: Change in horizontal and vertical expansion.
Layout *layout = layout_create(2, n + 1);
...
layout_hexpand(layout, 1);
layout_vexpand(layout, n);

342 Chapter 18 - Gui library

Figure 18.65: Behavior of the panel
when the window grows.

The previous lines cause the horizontal expansion to fall exclusively on column 1 (that
of the EditBoxes). On the other hand, an extra empty row has been created, pouring all
the vertical expansion into it (Figure 18.66).

Figure 18.66: Desired behavior,
when the window expands.

Although the panel now behaves correctly when the window grows, we have difficulties
when we want to “shrink” it below a certain limit (Figure 18.67). This is because natural
dimensioning imposes a minimum size, since there comes a time when it is impossible to
reduce the controls associated with the layout.

This can be a problem as we may have panels large enough that they even exceed the
size of the monitor and cannot be fully displayed. To solve this, we can set a default size
for the entire panel (Listing 18.11), which will be the one displayed when the window starts
(Figure 18.68).

Listing 18.11: Panel default size.
...
panel_size(panel, s2df(400, 300));

18.18 - Panel 343

Figure 18.67: Minimum panel size.

...

Figure 18.68: Natural sizing, forced
to 400x300.

This command decouples, in a way, the size of the panel from the size of its content. In
this way, the Layout is free to reduce the size of the view, regardless of whether or not it
can display the entire content (Figure 18.69).

Figure 18.69: Panel boundary re-
duction.

344 Chapter 18 - Gui library

And finally, if we want, we can create the panel with scroll bars (Listing 18.12) and
scroll through the non-visible content (Figure 18.70).

Listing 18.12: Panel with scroll bars.
...
Panel *panel = panel_scroll(TRUE, TRUE);
...

Figure 18.70: Panel with
scroll bars.

And, of course, everything said will work the same on any platform .

Figure 18.71: Our panel running on macOS and Linux.

18.19. Window
Window objects are the top-level containers within the user interface (Figure 18.72).

They are made up of the title bar, where the close, maximize and minimize buttons are

18.19 - Window 345

located, the interior zone and the frame. If the window supports resizing, said frame can be
dragged with the mouse to change its size. The interior zone or client area of the window
is configured by means of a main “Panel” (page 338). In “Hello World!” (page 23) you
have a simple example of composing and displaying a window.

• Use window_create to create a window.

• Use window_panel to assign the main panel.

• Use window_show to show a window.

• Use the ekWINDOW_TITLE flag to include the title bar.

• Use window_title to assign a title.

Figure 18.72: The concept of a window appears from the first desk-
top systems.

18.19.1. Window size
In principle, the size of the window is calculated automatically based on the “Natural

sizingNatural sizing” (page 330) of its main panel, but it can be altered at any time.

• Use window_size to resize the main panel.

• Use the ekWINDOW_MAX flag to include the maximize button in the title bar.

• Use the ekWINDOW_MIN flag to include the minimize button in the title bar.

• Use the ekWINDOW_RESIZE flag to create a window with resizable borders.

346 Chapter 18 - Gui library

The change in the dimensions of the client area implies a re-location and re-sizing
of the interior controls. This is handled automatically by Layout objects based on how
their “Cell expansionCell expansion” (page 335) has been configured, which will propagate
recursively through all sublayouts. In “Die” (page 387) you have an example of resizing a
window (Figure 18.73).

Figure 18.73: Resizing the window
in the demo Die.

18.19.2. Closing the window
Normally a window is closed by pressing the [X] button located to the right of the

title bar. But sometimes it can be useful to also close it with the [ENTER] or [ESC] keys.
Closing a window implies hiding it, but not destroying it. That is, we can show an already
closed window again using window_show. In the case that the closing is conditioned to
a state of the application, such as saving a file for example, we must assign a handler
through window_OnClose and decide there whether to close it or not.

• Use window_hide to hide a window.

• Use window_destroy to permanently destroy a window.

• Use the ekWINDOW_CLOSE flag to include the close button in the title bar.

• Use the ekWINDOW_RETURN flag to enable [ENTER] closing.

• Use the ekWINDOW_ESC flag to enable [ESC] closing.

• Use the window_OnClose flag to prevent the closing of a (Listing 18.13) window.

18.19 - Window 347

Listing 18.13: Prevents closing the window.
static void i_OnClose(App *app, Event *e)
{

const EvWinClose *params = event_params(e, EvWinClose);
if (can_close(app, params>origin) == FALSE)
{

bool_t *result = event_result(e, bool_t);
*result = FALSE;

}
}
...
window_OnClose(window, listener(app, i_OnClose, App));

Destroying a window implicitly destroys all of its internal elements and controls.

18.19.3. Modal windows
They are those that, when launched, block the previous window (or parent) until it is

closed (Figure 18.74). Being “modal” or not is not a characteristic of the window itself,
but of the way it is launched. In “Hello Modal Window!Hello Modal Window!” (page 519)
you have an example of use.

• Use window_modal to display a window in modal mode.

• Use window_stop_modal to hide it and stop the modal loop.

Figure 18.74: Multiple modal windows.

After calling window_modal, the program stops at this point, waiting for the window to
close, which can be done using [X], [ENTER], [ESC] or by calling window_stop_modal
(Listing 18.14). The value returned by this function will be:

348 Chapter 18 - Gui library

• ekGUI_CLOSE_ESC (1). If the modal window was closed by pressing [ESC].

• ekGUI_CLOSE_INTRO (2). If the modal window was closed by pressing [ENTER].

• ekGUI_CLOSE_BUTTON (3). If the modal window was closed by pressing [X].

• The value indicated in window_stop_modal.

Listing 18.14: Using modal windows.
static void i_OnAcceptClick(Window *window, Event *e)
{

window_stop_modal(window, 300);
}

Window *window = i_create_window_with_accept_button();
// The program will stop HERE until window is closed
uint32_t ret = window_modal(window);

if (ret == 1)
{

// Closed by ESC
}
else if (ret == 2)
{

// Closed by INTRO
}
else if (ret == 3)
{

// Closed by [X]
}
else if (ret == 300)
{

// Closed by window_stop_modal
}

window_destroy(&window);

By default, the modal window will be hidden after receiving the call to window_stop_modal
, but it will not be destroyed as we indicated above. On certain occasions (although not
very common), we may want to relaunch the window after finishing the modal cycle with-
out producing an unsightly “flicker” due to a new (and fast) display after closing the
window.

• Use the ekWINDOW_MODAL_NOHIDE flag when creating the window to prevent it from
being hidden after the modal loop.

18.20 - GUI Data binding 349

18.19.4. Hotkeys
Normally, the keyboard focus will be fixed to some control inside the window like Edit,

Button or View. But it is possible that we want to define global actions associated with
a specific key.

• Use window_hotkey to assign an action to a key.

hotkeys will take precedence over keyboard (Figure 18.75) focus. That is, if we have
an action linked to the [F9] key, it will be executed when the key is pressed and the
ekGUI_EVENT_KEYDOWN(F9) event will not be received by the control that has the focus.

Figure 18.75: Processing a
hotkey.

Intel i7-8700K

[F9]

Keyboard focus

Hotkey?
[F9]

NO

Hotkey action

YES

18.20. GUI Data binding

By GUI Data Binding we mean automatic mapping between program variables and
user interface controls (Figure 18.76). In this way both will be synchronized without
the programmer having to do any extra work such as capturing events, assigning values,
checking ranges, etc. In “Hello Gui Binding!Hello Gui Binding!” (page 524) you have the
complete source code of the example that we will show below.

18.20.1. Basic type binding
We start from a data structure composed of several basic types fields (Listing 18.15),

where no other structures or objects are nested.

Listing 18.15: Simple data model.
typedef struct _basictypes_t BasicTypes;

typedef enum _myenum_t

350 Chapter 18 - Gui library

struct BasicTypes
{
 String *str_val;
 bool_t bool_val;
 gui_state_t enum3_val
 uint16_t uint16_val;
 myenum_t enum_val;
 real32_t real32_val;
};

Figure 18.76: Automatic data synchronization with the user interface.

{
ekRED,
ekBLUE,
ekGREEN,
ekBLACK,
ekMAGENTA,
ekCYAN,
ekYELLOW,
ekWHITE

} myenum_t;

struct _basictypes_t
{

bool_t bool_val;
uint16_t uint16_val;
real32_t real32_val;
myenum_t enum_val;
gui_state_t enum3_val;
String *str_val;

};

The first thing we must do is register the fields of the structure with dbind (List-
ing 18.16):

Listing 18.16: Register in dbind de los campos de la estructura.
dbind_enum(gui_state_t, ekGUI_OFF, "");
dbind_enum(gui_state_t, ekGUI_ON, "");
dbind_enum(gui_state_t, ekGUI_MIXED, "");

18.20 - GUI Data binding 351

dbind_enum(myenum_t, ekRED, "Red");
dbind_enum(myenum_t, ekBLUE, "Blue");
dbind_enum(myenum_t, ekGREEN, "Green");
dbind_enum(myenum_t, ekBLACK, "Black");
dbind_enum(myenum_t, ekMAGENTA, "Magenta");
dbind_enum(myenum_t, ekCYAN, "Cyan");
dbind_enum(myenum_t, ekYELLOW, "Yellow");
dbind_enum(myenum_t, ekWHITE, "While");
dbind(BasicTypes, bool_t, bool_val);
dbind(BasicTypes, uint16_t, uint16_val);
dbind(BasicTypes, real32_t, real32_val);
dbind(BasicTypes, gui_state_t, enum3_val);
dbind(BasicTypes, myenum_t, enum_val);
dbind(BasicTypes, String*, str_val);
dbind_range(BasicTypes, real32_t, real32_val, 50, 50);
dbind_increment(BasicTypes, real32_t, real32_val, 5);

DBind is a registry, within the application, that allows automating certain operations
on the data, as well as establishing ranges, precisions or aliases. Its use goes beyond
graphical user interfaces. More information in “Data binding” (page 225).

On the other hand, we build a “Layout” (page 329) that hosts the different controls of
the user interface (Listing 18.17):

Listing 18.17: Interface controls organized in a layout (Figure 18.76).
static Layout *i_layout(void)
{

Layout *layout = layout_create(3, 9);
Label *label = label_create();
Edit *edit = edit_create();
Button *check = button_check();
Button *check3 = button_check3();
Layout *radios = i_radio_layout();
PopUp *popup = popup_create();
ListBox *listbox = listbox_create();
Slider *slider = slider_create();
UpDown *updown = updown_create();
layout_label(layout, label, 1, 0);
layout_edit(layout, edit, 1, 1);
layout_button(layout, check, 1, 2);
layout_button(layout, check3, 1, 3);
layout_layout(layout, radios, 1, 4);
layout_popup(layout, popup, 1, 5);
layout_listbox(layout, listbox, 1, 6);
layout_slider(layout, slider, 1, 7);
layout_updown(layout, updown, 1, 8);
layout_halign(layout, 1, 0, ekJUSTIFY);
layout_halign(layout, 1, 8, ekLEFT);

352 Chapter 18 - Gui library

return layout;
}

Now we will link the cells of our layout with the fields of the structure (Listing 18.18).
Pay attention that we have not yet created any object of type BasicTypes. Therefore,
it is a semantic link where memory positions do not intervene, but the displacements
(offset) of the fields within the data structure.

• Use cell_dbind to bind a field to an individual cell.

• Use layout_dbind to link a structure with a layout.

• Use layout_cell to get a cell from a Layout.

Listing 18.18: Binding variables with cells in the layout.
cell_dbind(layout_cell(layout, 1, 0), BasicTypes, String*, str_val);
cell_dbind(layout_cell(layout, 1, 1), BasicTypes, String*, str_val);
cell_dbind(layout_cell(layout, 1, 2), BasicTypes, bool_t, bool_val);
cell_dbind(layout_cell(layout, 1, 3), BasicTypes, gui_state_t, enum3_val);
cell_dbind(layout_cell(layout, 1, 4), BasicTypes, uint16_t, uint16_val);
cell_dbind(layout_cell(layout, 1, 5), BasicTypes, myenum_t, enum_val);
cell_dbind(layout_cell(layout, 1, 6), BasicTypes, myenum_t, enum_val);
cell_dbind(layout_cell(layout, 1, 7), BasicTypes, real32_t, real32_val);
cell_dbind(layout_cell(layout, 1, 8), BasicTypes, real32_t, real32_val);
layout_dbind(layout, NULL, BasicTypes);

When linking a data structure with layout_dbind we must bear in mind that the cells
of said layout can only be associated with fields of the same structure. Otherwise,
we will get a run-time error, due to the data inconsistency that would occur. In other
words, we cannot mix structures within the same layout.

Isolated variables cannot be used in Data Binding. They must all belong to a struct
since, internally, the relations (Layout –> Struct) and (Cell –> Field or Variable) are
established.

Finally, we will associate an object of type BasicTypes with the layout created previ-
ously (Listing 18.19).

• Use layout_dbind_obj to bind an object to the user interface.

Listing 18.19: Binding an object to the interface.
BasicTypes *data = heap_new(BasicTypes);
data>bool_val = TRUE;
data>uint16_val = 4;
data>real32_val = 15.5f;
data>enum3_val = ekGUI_MIXED;
data>enum_val = ekCYAN;

18.20 - GUI Data binding 353

data>str_val = str_c("Text String");
layout_dbind_obj(layout, data, BasicTypes);

• You can change the object being “edited” at any time, with a new call to layout_dbind_obj
.

• If we pass NULL to layout_dbind_obj the cells linked to fields of the structure will
be disabled.

18.20.2. Limits and ranges
Keep in mind that the expressiveness of controls will, generally, be well below the range

of values supported by data types (Listing 18.20). For example, if we link a uint16_t with
a RadioGroup the latter will only support values between 0 and n1, where n is the total
number of radios. The controls are set up to handle out-of-range values as consistently as
possible, but this does not exempt the programmer from getting it right. In (Table 18.5)
you have a summary of the data types and ranges supported by the standard controls.

Listing 18.20: Value not representable in the RadioGroup of (Figure 18.76).
data>uint16_val = 1678;
cell_dbind(layout_cell(layout, 1, 4), BasicTypes, uint16_t, uint16_val);

Control Data Type

“Label” (page 302) String, Number, Enum

“Edit” (page 307) String, Number

“Button” (page 304) (CheckBox) Boolean

“Button” (page 304) (CheckBox3) Enum (3 values), Integer (0,1,2)

“RadioGroupRadioGroup” (page 305) Enum, Integer (0,1,2...n-1)

“PopUp” (page 306) Enum, Integer (0,1,2...n-1)

“ListBox” (page 309) Enum, Integer (0,1,2...n-1)

“Slider” (page 311) Number (min..max)

“UpDown” (page 310) Enum, Number

Table 18.5: Data types and ranges of GUI controls.

18.20.3. Nested structures
Let’s now look at a somewhat more complicated data model, which includes nested

structures in addition to the basic types (Figure 18.77). In this case we have a structure

354 Chapter 18 - Gui library

called StructTypes that contains instances of another structure called Vector (List-
ing 18.21). You can find the complete source code for this second example at “Hello Struct
Binding!Hello Struct Binding!” (page 528).

struct StructTypes
{
 String *name;
 real32_t length1;
 Vector vec3;
 Vector *pvec3;
};

struct Vector
{
 real32_t x;
 real32_t y;
 real32_t z;
};

Figure 18.77: Data binding with substructures.

Listing 18.21: Data model with nested structures and registry in dbind.
typedef struct _vector_t Vector;
typedef struct _structtypes_t StructTypes;

struct _vector_t
{

real32_t x;
real32_t y;
real32_t z;

};

struct _structtypes_t
{

String *name;
Vector vec1;
Vector vec2;
Vector vec3;
Vector *pvec1;
Vector *pvec2;
Vector *pvec3;
real32_t length1;
real32_t length2;
real32_t length3;
real32_t length4;
real32_t length5;
real32_t length6;

18.20 - GUI Data binding 355

};

dbind(Vector, real32_t, x);
dbind(Vector, real32_t, y);
dbind(Vector, real32_t, z);
dbind(StructTypes, String*, name);
dbind(StructTypes, Vector, vec1);
dbind(StructTypes, Vector, vec2);
dbind(StructTypes, Vector, vec3);
dbind(StructTypes, Vector*, pvec1);
dbind(StructTypes, Vector*, pvec2);
dbind(StructTypes, Vector*, pvec3);
dbind(StructTypes, real32_t, length1);
dbind(StructTypes, real32_t, length2);
dbind(StructTypes, real32_t, length3);
dbind(StructTypes, real32_t, length4);
dbind(StructTypes, real32_t, length5);
dbind(StructTypes, real32_t, length6);
dbind_range(Vector, real32_t, x, 5, 5);
dbind_range(Vector, real32_t, y, 5, 5);
dbind_range(Vector, real32_t, z, 5, 5);
dbind_increment(Vector, real32_t, x, .1f);
dbind_increment(Vector, real32_t, y, .1f);
dbind_increment(Vector, real32_t, z, .1f);

We started with the same methodology that we used with the first example. We create
a layout and link it with the Vector structure (Listing 18.22). This does not present
problems, as it is composed exclusively of basic types real32_t.

Listing 18.22: Layout for editing objects of type Vector.
static Layout *i_vector_layout(void)
{

Layout *layout = layout_create(3, 3);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Edit *edit1 = edit_create();
Edit *edit2 = edit_create();
Edit *edit3 = edit_create();
UpDown *updown1 = updown_create();
UpDown *updown2 = updown_create();
UpDown *updown3 = updown_create();
label_text(label1, "X:");
label_text(label2, "Y:");
label_text(label3, "Z:");
edit_align(edit1, ekRIGHT);
edit_align(edit2, ekRIGHT);
edit_align(edit3, ekRIGHT);
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 1);

356 Chapter 18 - Gui library

layout_label(layout, label3, 0, 2);
layout_edit(layout, edit1, 1, 0);
layout_edit(layout, edit2, 1, 1);
layout_edit(layout, edit3, 1, 2);
layout_updown(layout, updown1, 2, 0);
layout_updown(layout, updown2, 2, 1);
layout_updown(layout, updown3, 2, 2);
cell_dbind(layout_cell(layout, 1, 0), Vector, real32_t, x);
cell_dbind(layout_cell(layout, 1, 1), Vector, real32_t, y);
cell_dbind(layout_cell(layout, 1, 2), Vector, real32_t, z);
cell_dbind(layout_cell(layout, 2, 0), Vector, real32_t, x);
cell_dbind(layout_cell(layout, 2, 1), Vector, real32_t, y);
cell_dbind(layout_cell(layout, 2, 2), Vector, real32_t, z);
layout_dbind(layout, NULL, Vector);
return layout;

}

The idea now is to use this function to create “Sub-layoutsSub-layouts” (page 333)
and associate them to cells of a higher level layout, which can support objects of type
StructTypes (Listing 18.23). Sub-layouts of type Vector are linked to the fields {Vector
vec1, Vector * pvec1, ...} using cell_dbind, so similar to how we did it with the

basic types.

Listing 18.23: Layout that supports objects of type StructTypes.
static Layout *i_struct_types_layout(void)
{

Layout *layout1 = i_create_layout();
Layout *layout2 = i_vector_layout();
Layout *layout3 = i_vector_layout();
Layout *layout4 = i_vector_layout();
Layout *layout5 = i_vector_layout();
Layout *layout6 = i_vector_layout();
Layout *layout7 = i_vector_layout();
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
layout_layout(layout1, layout2, 0, 0);
layout_layout(layout1, layout3, 1, 0);
layout_layout(layout1, layout4, 2, 0);
layout_layout(layout1, layout5, 0, 1);
layout_layout(layout1, layout6, 1, 1);
layout_layout(layout1, layout7, 2, 1);
layout_label(layout1, label1, 0, 2);
layout_label(layout1, label2, 1, 2);
layout_label(layout1, label3, 2, 2);
cell_dbind(layout_cell(layout1, 0, 0), StructTypes, Vector, vec1);
cell_dbind(layout_cell(layout1, 1, 0), StructTypes, Vector, vec2);
cell_dbind(layout_cell(layout1, 2, 0), StructTypes, Vector, vec3);
cell_dbind(layout_cell(layout1, 0, 1), StructTypes, Vector*, pvec1);
cell_dbind(layout_cell(layout1, 1, 1), StructTypes, Vector*, pvec2);

18.20 - GUI Data binding 357

cell_dbind(layout_cell(layout1, 2, 1), StructTypes, Vector*, pvec3);
cell_dbind(layout_cell(layout1, 0, 2), StructTypes, real32_t, length1);
cell_dbind(layout_cell(layout1, 1, 2), StructTypes, real32_t, length2);
cell_dbind(layout_cell(layout1, 2, 2), StructTypes, real32_t, length3);
layout_dbind(layout1, NULL, StructTypes);
return layout1;

}

And finally, we only have to link objects of type StructTypes with the main layout
(Listing 18.24). DBind will detect sub-layouts of type Vector and will automatically
associate the corresponding sub-objects (by value or by pointer). Therefore, only one call
to layout_dbind_obj will be necessary (the one of the main object).

Listing 18.24: Associate object and sub-objects to a layout.
StructTypes *data = heap_new(StructTypes);
Layout *layout = i_struct_types_layout();
data>name = str_c("Generic Object");
data>pvec1 = heap_new(Vector);
data>pvec2 = heap_new(Vector);
data>pvec3 = heap_new(Vector);
data>vec1 = i_vec_init(1.2f, 2.1f, 3.4f);
data>vec2 = i_vec_init(0.2f, 1.8f, 2.3f);
data>vec3 = i_vec_init(3.2f, 4.9f, 4.7f);
*data>pvec1 = i_vec_init(0.9f, 7.9f, 2.0f);
*data>pvec2 = i_vec_init(6.9f, 2.2f, 8.6f);
*data>pvec3 = i_vec_init(3.9f, 5.5f, 0.3f);
data>length1 = i_vec_length(&data>vec1);
data>length2 = i_vec_length(&data>vec2);
data>length3 = i_vec_length(&data>vec3);
data>length4 = i_vec_length(data>pvec1);
data>length5 = i_vec_length(data>pvec2);
data>length6 = i_vec_length(data>pvec3);

layout_dbind_obj(layout, data, StructTypes);

In summary:

• For each sub-structure we create a sub-layout, linking the fields locally.

• The cells that contain these sub-layouts will be linked to the main structure.

• We assign the object to edit to the main layout.

18.20.4. Notifications and calculated fields
If we apply what was seen in the previous sections, the synchronization between data

and interface is carried out in these two situations:

358 Chapter 18 - Gui library

• When the program calls layout_dbind_obj. At that time the interface will reflect
the state of the object.

• When the user manipulates any control, then the object’s value will be updated.

However, it is possible that the program must be notified when the user modifies the
object, in order to carry out certain actions (update drawings, save data in files, launch
calculus algorithms, etc.). This will be resolved by events, as reflected in (Figure 18.78).
On the other hand, the program can alter the values of certain fields of the object and
must notify the changes to the interface (layout) so that it remains updated.

Layout

App

Listener
Event

OnDataChange()

layout_dbind_update()

Figure 18.78: Notification of value change to main program.

• Use layout_dbind to include a listener that notifies changes to the application.

• Use evbind_object to obtain, within the callback, the object that is being edited.

• Use event_sender to obtain, within the callback, the layout that sent the notifi-
cation.

• Use evbind_modify to know, inside the callback, if a field of the object has changed
or not.

• Use layout_dbind_update to notify the layout that a field of the object has been
modified by the application.

All of this can be seen in (Listing 18.25). Every time the user changes any StructTypes
value, a notification of type ekGUI_EVENT_OBJCHANGE will be launched that will check if
the vec1 field has changed. If so, its length will be recalculated and the GUI controls
associated with that variable will be updated.

Listing 18.25: Notification of object values modification.
static void i_OnDataChange(App *app, Event *e)
{

18.21 - Menu 359

StructTypes *data = evbind_object(e, StructTypes);
Layout *layout = event_sender(e, Layout);
cassert(event_type(e) == ekGUI_EVENT_OBJCHANGE);

if (evbind_modify(e, StructTypes, Vector, vec1) == TRUE)
{

app_update_drawing(app);
data>length1 = i_vec_length(&data>vec1);
layout_dbind_update(layout, StructTypes, real32_t, length1);

}
}

layout_dbind(layout, listener(app, i_OnDataChange, App), StructTypes);

If, for some reason, the modified value is not allowed by the application, it can be
reverted by returning FALSE as a result of the event (Listing 18.26).

Listing 18.26: Canceling changes made by the user.
static void i_OnDataChange(App *app, Event *e)
{

StructTypes *data = evbind_object(e, StructTypes);
Layout *layout = event_sender(e, Layout);

if (evbind_modify(e, StructTypes, Vector, vec1) == TRUE)
{

real32_t length = i_vec_length(&data>vec1);
if (length < 5.f)
{

app_update_drawing(app);
data>length1 = length;
layout_dbind_update(layout, StructTypes, real32_t, length1);

}
else
{

// This will REVERT the changes in 'vec1' variable
bool_t *res = event_result(e, bool_t);
*res = FALSE;

}
}

}

18.21. Menu

A Menu is nothing more than a container (or window) that integrates a series of
options, also called items or MenuItems (Figure 18.79). Each one of them have a short
text, optionally an icon and optionally also a keyboard shortcut, such as the classic Ctrl
+C/Ctrl+V to copy and paste. Additionally, an item can house a submenu forming a

360 Chapter 18 - Gui library

hierarchy with different levels of depth. In “Products” (page 429) you have a sample
application that uses menus.

Figure 18.79: Menu bar in Windows, macOS and Linux.

The concept of the menu, like that of the window, exists from the origin of the graphic
interfaces. The first computer to incorporate them was the Xerox Alto that appeared in
1973 and its commercial successor the Xerox Star. Concepts still very alive today such as:
Menu, Window, Icon, Desk, or Mouse were already present on these computers that served
as inspiration to Steve Jobs in the creation of Apple Lisa (Figure 18.80), predecessor of
Machintosh and inspirer of Microsoft Windows.

18.22. MenuItem

Represents an option within a “Menu” (page 359). They will always have an associated
action that will be executed when activated.

18.23 - Common dialogs 361

Figure 18.80: The Apple Lisa was one of the first systems to incorporate menus as
part of the graphical interface.

• Use menuitem_create to create an item.

• Use menuitem_text to assign a text.

• Use menuitem_image to assign an icon.

18.23. Common dialogs
Common dialogs are default windows provided by the operating system to perform

daily tasks such as: Open files (Figure 18.81), select colors, fonts, etc. Its use is doubly
beneficial. On the one hand we avoid programming them as part of the application and,
on the other, we take advantage of the user’s previous knowledge since they will surely
have been used in other programs.

362 Chapter 18 - Gui library

Figure 18.81: File explorer in Windows.

Figure 18.82: File explorer in macOS.

18.23 - Common dialogs 363

Figure 18.83: File explorer in Linux.

Figure 18.84: Color selection in ma-
cOS.

364 Chapter 18 - Gui library

Figure 18.85: Color selection in Windows.

Figure 18.86: Color selection in Linux.

19C
ha

pt
er

OSApp library

19.1 OSApp 365
19.2 main() and osmain() 365
19.3 Synchronous applications 369
19.4 Multi-threaded tasks 370

19.1. OSApp

The OSApp library starts and manages the message cycle of a desktop application
(Figure 19.1). Although the Gui library could be integrated into existing applications
through a plugin, if we want to create an application from scratch, we will need to manage
the events that the operating system sends to the program.

• Use osmain to start a desktop application.

• Use osapp_finish to end a desktop application.

19.2. main() and osmain()

The classic main function is the starting point of any C/C++ command line program
(Figure 19.2). Its operation does not involve any difficulty and can be summarized in:

• 1 The operating system loads the program into memory and calls the function
main() to start its execution.

• 2 The sentences are executed sequentially and in the order in which they are written.
This order can be altered by means of control sentences (for, if, switch, etc.) or
function calls.

366 Chapter 19 - OSApp library

Figure 19.1: OSApp dependencies.
See “NAppGUI API” (page 145).

osbsosbs

sewersewer

corecore

geom2dgeom2d

draw2ddraw2d

guigui

command
line

desktop

osapposapp
runloop

Figure 19.2: Running a con-
sole C application.

main()main()

exit()exit()

1

2

3

4

• 3 If input/output is necessary, the program will wait for the communication to end
and continue with the execution.

19.2 - main() and osmain() 367

• 4 When the end of the function is reached main () or an exit() sentence is
executed, the program will end and the operating system will download it from
memory.

However, in desktop applications (event driven), the execution cycle is a bit more com-
plicated. In essence, the program is continuously executing a loop waiting for the user to
perform some action (Figure 19.3) (Listing 19.1). In “Hello World!” (page 23) you have a
simple example:

osmain()osmain()

5

create()

event_handler()

destroy()

main()main()

exit()exit()

6

7

1 2

3
4

runlooprunloop

finishfinish

*app_obj

Figure 19.3: Running a desktop C application.

• 1 The operating system loads the program into memory and calls the main() func-
tion. Now it is encapsulated inside the osmain macro which initiates certain struc-
tures necessary for event capture and management.

• 2 At some point in this initial process, the application constructor will be called
(the first parameter of osmain()) that the main object should create. Since the
program is continuously returning control to the operating system, the state of the
data and windows will be maintained in this object.

368 Chapter 19 - OSApp library

• 3 Once initialized, the application will enter a loop known as a message cycle
(Figure 19.4), while waiting for the user to perform some action on the program
interface.

Figure 19.4: Message cycle
implementation.

while(GetMessage()>0)

[NSApplication run]

g_application_run()

runloop()runloop()

• 4 When this occurs, the operating system will capture the event and send it to the
application.

• 5 If the application has defined a handle for that event, it will be invoked and the
response code will be executed. An application can receive hundreds of messages but
will only respond to those it deems necessary, ignoring the rest.

• 6 There is a special exit event that is generated by calling osapp_finish. When
this happens, osmain() start freeing up resources and preparing a clean exit. At
some point the destructor of the application will be called (second parameter of
osmain()) to do its part of the job, closing possible open files and destroying the
main object.

• 7 The operating system unload the application from memory.

• The pink blocks are platform dependent and are implemented within NAppGUI.

• The orange blocks are multiplatform (fully portable) and are implemented within
the application.

Listing 19.1: Elementary skeleton of a desktop application.
typedef struct _app_t App;
struct _app_t
{

// Program data
Window *window;

};

static App* i_create(void)
{

App *app = heap_new(App);
// Init program data, GUI and Event handlers
app>window = ...
return app;

}

19.3 - Synchronous applications 369

static void i_destroy(App *app)
{

// Destroy program data
window_destroy(&(*app)>window);
heap_delete(app, App);

}

osmain(i_create, i_destroy, "", App);

19.3. Synchronous applications
Certain types of applications including video games, media players or simulators, need

to be updated at regular intervals, whether or not the user intervenes (Figure 19.5) (List-
ing 19.2). For these cases we will need a variant of osmain, which accepts an update
function and a time interval. In “Bricks” (page 403) you have an example.

• Use osmain_sync to start a synchronous application.

Figure 19.5: Events in syn-
chronous applications.

event_handler()

update()

runlooprunloop

Listing 19.2: Elemental skeleton of a synchronous application.
typedef struct _app_t App;
struct _app_t
{

// Program data
Window *window;

};

static App* i_create(void)
{

App *app = heap_new(App);
// Init program data, GUI and Event handlers
app>window = ...
return app;

}

370 Chapter 19 - OSApp library

static void i_update(App *app, const real64_t prtime, const real64_t ctime
↪→)

{
// Update program state every 40ms

}

static void i_destroy(App *app)
{

// Destroy program data
window_destroy(&(*app)>window);
heap_delete(app, App);

}

osmain_sync(0.04, i_create, i_destroy, i_update, "", App);

19.4. Multi-threaded tasks

Both synchronous and asynchronous applications execute the message cycle on a single
CPU thread. This means that if, in response to an event, a relatively slow task must
be executed, the application will be “frozen” until it is finished (Figure 19.6)(a). This
will produce an unwanted effect since the program will not respond for a few seconds,
giving the impression that it has been blocked. The solution is to launch a task in par-
allel (Figure 19.6)(b) (Listing 19.3), quickly release the thread that manages the GUI. In
“Multi-threaded loginMulti-threaded login” (page 444) you have an example of the use of
tasks.

• Use osapp_task to launch a new task in a parallel thread.

Listing 19.3: New task in a parallel thread.
// Runs in new thread
static uint32_t i_task_main(TaskData *data)
{

// Do the task work here!
}

// Runs in GUI thread
static void i_task_update(TaskData *data)
{

// Update the GUI here!
}

// Runs in GUI thread
static void i_task_end(TaskData *data, const uint32_t rvalue)
{

// Finish task code here!
}

19.4 - Multi-threaded tasks 371

event_handlerevent_handler

(a)

Gui Thread

frozen

Slow task

event_handlerevent_handler

task_maintask_main task_endtask_end

(b)

Gui Thread

Slow task
thread

Figure 19.6: (a) Interface lock due to a slow function. (b) Slow function in a parallel
thread.

osapp_task(tdata, .04, i_task_main, i_task_update, i_task_end, TaskData);

The new thread will begin its execution in task_main. This function should not access
the interface elements, just perform calculations or input/output tasks. If it is necessary to
update the GUI for the duration of the task (increasing a progress bar or similar), it must
be done in task_update, indicating in updtime the update interval. The new thread will
end when it returns from task_main, moment to be called task_end in the main thread.
Obviously, if both threads access shared variables, they must be protected by a Mutex.

372 Chapter 19 - OSApp library

20C
ha

pt
er

INet library

20.1 INet 373
20.2 HTTP 373
20.3 JSON 375

20.3.1 JSON parsing and conversion to data in C 377
20.3.2 Mapping between Json and C 380
20.3.3 Convert from C to JSON 380

20.4 URL 383
20.5 Base64 384

20.1. INet

The INet library implements general Internet protocols. Although “Sockets” (page 179)
allow us to open a communication channel between two remote machines, it is necessary
to define a format for the messages that both interlocutors will exchange, in order for
communication to be carried out satisfactorily. Any modern operating system provides
APIs to use the most popular Internet services, like HTTP. INet accesses this functionality
under a common unified and simplified interface (Figure 20.1).

20.2. HTTP

It is common for an application to need information beyond that stored on the com-
puter itself. The simplest and most common way to share information is to store it on
a Web Server and publish a URL that provides the desired content (Figure 20.2). This
client/server scheme uses the HTTP/HTTPS protocol, which was originally designed to
transmit HTML documents between web servers and browsers. Due to the great impact

374 Chapter 20 - INet library

Figure 20.1: INet dependencies.
See “NAppGUI API” (page 145) .

osbs

sewer

core

inet

command
line

WinINet

NSURLSession

curl

it has had over the years, its use has been expanding for the exchange of structured infor-
mation between any application that “understands” HTTP. The response from the server
will usually be a block of text formatted in JSON or XML.

Figure 20.2: Requesting a remote
resource using HTTP.

HTTP Request

HTTP Response (JSON)

App
Web Server

Database

• Use http_dget to download a resource from its “URL” (page 383) (Listing 20.1).

• Use http_create to create an HTTP session.

• Use http_secure to create an HTTPS session (encrypted).

Listing 20.1: Direct download of content from a URL.
Stream *webpage = http_dget("https://nappgui.com/en/start/win_mac_linux.

↪→ html", NULL, NULL);
Stream *imgdata = http_dget("http://test.nappgui.com/image_formats/

↪→ sea_02_rgb.png", NULL, NULL);
Image *image = image_read(imgdata);

if (webpage != NULL)
{

...
stm_close(&webpage);

}

On the other hand, if we are going to make successive calls to the same server or if we
need more control over the HTTP headers, we must create a session (Listing 20.2).

Listing 20.2: HTTP session.

20.3 - JSON 375

Stream *webpage = NULL;

Http *http = http_secure("nappgui.com", UINT16_MAX);
if (http_get(http, "/en/start/win_mac_linux.html", NULL, 0, NULL) == TRUE)
{

if (http_response_status(http) == 200)
{

webpage = stm_memory(1024);
if (http_response_body(http, webpage, NULL) == FALSE)

stm_close(&webpage);
}

}

http_destroy(&http);

if (webpage != NULL)
{

...
stm_close(&webpage);

}

20.3. JSON

JSON JavaScript Object Notation, is a data format in text mode that allows to easily
represent basic types, objects and arrays. Although its use has become popular in the
Web environment, it can also be used for other purposes, such as configuration files or
local exchange. Its syntax is easy to understand for humans and simple to process for
machines. In (Listing 20.3) we reproduce a small fragment of the JSON response of a Web
service:

Listing 20.3: JSON fragment returned by a Web Service.
{

"code":0,
"size":80,
"data":[
{

"id":0,
"code":"i78700K",
"description":"Intel BX80684I78700K 8th Gen Core i78700K Processor",
type":0,
"price":374.89,
"image":"cpu_00.jpg",
"image64":"\/9j\/4AAQSkZJRgABAQ...."

},
{

"id":1,
"code":"G3930",

376 Chapter 20 - INet library

"description":"Intel BX80677G3930 7th Gen Celeron Desktop Processors",
"type":0,
"price":51.95,
"image":"cpu_01.jpg",
"image64":"\/9j\/4AAQSkZJRgABAQAAAQABAAD..."

},
...
]

}

In its structure we can find these data types:

• Booleans: Represented by constants true or false.

• Numbers: Use the exponential notation of C for floating-point values: 2.3, .76
, 0.54 or 5.6e12 they are valid examples of numerical values. JSON does not
distinguish between integers, negatives or reals.

• Strings: Any text in quotes is considered a string. Supports any Unicode character
in “UTF-8UTF-8” (page 158) or through the escape sequence <c >\uXXXX</c
>to indicate the codepoint.

• Arrays: Lists of items delimited by brackets [...] and separated by commas. The
values do not have to be the same type as usually happens in some programming
languages (Listing 20.4).

Listing 20.4: JSON array
[

"Red", "Green", "Blue", "Yellow"
]

• Objects: They are delimited by keys and composed of several fields separated by
commas. Each field is formed by an identifier (string) followed by a colon and a value
that can be any simple type, object or array (Listing 20.5).

Listing 20.5: JSON object
{

"field1" : true,
"field2" : 24.67,
"field3" : "Hello Pibe",
"field4" : [1, 2, 4, 8.4],
"field5" : { "x" : 34.32, "y" : 6.19 }

}

• null: Indicates the absence of value.

• Binaries: JSON does not support binary data so opaque objects (images, for ex-
ample) must be encoded in text and transmitted as a string type value. The most

20.3 - JSON 377

widespread and globally supported format is the “Base64” (page 384) where each
character represents 6 bits of information.

NAppGUI’s JSON parser automatically transforms Image objects to Base64 and vicev-
ersa, allowing images to be embedded as data fields.

20.3.1. JSON parsing and conversion to data in C
NAppGUI allows automatic parsing of Json information.

• Use json_read to translate a Json to C.

• Use json_destroy to destroy a previously read object.

Next we will show different examples with basic types, arrays and objects. In “Read-
/Write Json” (page 645) you have the complete code. The first step is to create a Stream
with the content of the Json (Listing 20.6):

Listing 20.6: Create a Stream with Json data.
/* Json data from web service */
Stream *stm = http_dget("http://serv.nappgui.com/dproducts.php", NULL, NULL);

/* Json data from disk file */
Stream *stm = hfile_stream("/home/fran/appdata/products.json", NULL);

/* Json data from memory block */
const char_t *data = "[12, 34, 67, 45]";
Stream *stm = stm_from_block((const byte_t*)data, str_len_c(data));

The Stream should be destroyed with stm_close at the end of the analysis.

Later we will use json_read indicating the expected data type of the Json.

Listing 20.7: Json boolean.
json: true

bool_t *json = json_read(stm, NULL, bool_t);
bstd_printf("Json boolean: %d\n", *json);
json_destroy(&json, bool_t);

Listing 20.8: Json number.
json: 6654

uint16_t *json = json_read(stm, NULL, uint16_t);
bstd_printf("Json unsigned int: %d\n", *json);
json_destroy(&json, uint16_t);

378 Chapter 20 - INet library

Listing 20.9: Json string.
json: "Hello World"

String *json = json_read(stm, NULL, String);
bstd_printf("Json string: %s\n", tc(json));
json_destroy(&json, String);

Listing 20.10: Json string/b64 image (jpg, png, bmp).
json: "/9j/4QB4RXhpZgAASUkqAAgAAA..."

Image *json = json_read(stm, NULL, Image);
uint32_t width = image_width(json);
uint32_t height = image_height(json);
bstd_printf("Json image: width: %d height: %d\n", width, height);
json_destroy(&json, Image);

Listing 20.11: Json integer array
json: [321, 12, 8943, 228, 220, 347]

ArrSt(int16_t) *json = json_read(stm, NULL, ArrSt(int16_t));
bstd_printf("Json array: ");
arrst_foreach(id, json, int16_t)

bstd_printf("%d ", *id);
arrst_end()
bstd_printf("\n");
json_destroy(&json, ArrSt(int16_t));

Listing 20.12: Json string array
json: ["Red", "Green", "Blue", "Yellow", "Orange"]

ArrPt(String) *json = json_read(stm, NULL, ArrPt(String));
bstd_printf("Json array: ");
arrpt_foreach(str, json, String)

bstd_printf("%s ", tc(str));
arrpt_end()
bstd_printf("\n");
json_destroy(&json, ArrPt(String));

For the analysis of objects it is necessary that we register with “Data binding” (page 225)
their structure, in such a way that the types and names of the fields of the Json object
coincide with the struct from C. Given this Json:

Listing 20.13: Json object
{

"size" : 3,
"data" : [

20.3 - JSON 379

{
"description" : "Intel i77700K",
"price" : 329.99

},
{

"description" : "Ryzen51600",
"price" : 194.99

},
{

"description" : "GTX1060",
"price" : 449.99

}
]

}

We define these structs and register them:

Listing 20.14: Structures that will hold the data of the Json object.
typedef struct _product_t Product;
typedef struct _products_t Products;

struct _product_t
{

String *description;
real32_t price;

};

struct _products_t
{

uint32_t size;
ArrSt(Product) *data;

};

DeclSt(Product);

dbind(Product, String*, description);
dbind(Product, real32_t, price);
dbind(Products, uint32_t, size);
dbind(Products, ArrSt(Product)*, data);

This way we can now call json_read:

Listing 20.15: Reading the Json object.
Products *json = json_read(stm, NULL, Products);
bstd_printf("Json object: Size %d\n", json>size);
arrst_foreach(elem, json>data, Product)

bstd_printf("Product: %s Price %.2f\n", tc(elem>description), elem>price)
↪→ ;

arrst_end()

380 Chapter 20 - INet library

bstd_printf("\n");
json_destroy(&json, Products);

json_read() ignores (skips) those fields of Json objects that are not registered with
dbind. In no case will they generate caches or dynamic memory.

20.3.2. Mapping between Json and C
json_read recognizes the basic NAppGUI types, as well as String, Image, ArrSt, and

ArrPt. Will not work with other data types such as int or float. It will also not
recognize the STL structures vector, map, etc. In (Table 20.1) we show the equivalence
between the fields of a Json and the C types that we need to map it correctly.

Json C

boolean bool_t true, false

number int8_t, int16_t, int32_t, int64_t -6785, 45, 0

number uint8_t, uint16_t, uint32_t, uint64_t 1, 36734, 255, 0, 14

number real32_t, real64_t 67.554, -3.456, 1.5e7

string String “Intel Celeron”, “Red”

string Image “/9j/4QB4RXhpZgAASUkqAAgAAA...”

array ArrSt(uint16_t) [12, 111, 865]

array ArrSt(real32_t) [-34.89, 0.0001, 567.45, 1e6]

array ArrPt(String) [“red”, “green”, “blue”]

array ArrPt(Image) [“/9j/4QB4RXh...”, “/9j/4QB4RXh...”, ...]

object struct Product (“Data binding” (page 225)) { “description” : “i7-8700K”, “ ”price“ : 234.54 }

array ArrSt(Product) [{ “description” : “i7-8700K”, “ ”price“ : 234.54 }, ...]

array ArrPt(Product) [{ “description” : “i7-8700K”, “ ”price“ : 234.54 }, ...]

Table 20.1: Equivalence between Json and NAppGUI types.

20.3.3. Convert from C to JSON
• Use json_write to write data/objects from C to Json.

Based again on (Table 20.1), let’s do the reverse process and generate Json data from
C types and objects. First, create a write stream to hold the result (Listing 20.16):

20.3 - JSON 381

Listing 20.16: Create a write Stream.
/* Write stream in memory */
Stream *stm = stm_memory(2048);

/* Write stream in disk */
Stream *stm = stm_to_file("/home/fran/appdata/products.json", NULL);

The Stream should be destroyed with stm_close when it is no longer needed.

Later we will use json_write indicating the expected data type of the Json.

Listing 20.17: Write boolean to Json.
bool_t data_bool = TRUE;
stm_writef(stm, "Json from bool_t: ");
json_write(stm, &data_bool, NULL, bool_t);

// Json from bool_t: true

Listing 20.18: Write integer to Json.
uint16_t data_uint = 6654;
stm_writef(stm, "Json from uint16_t: ");
json_write(stm, &data_uint, NULL, uint16_t);

// Json from uint16_t: 6654

Listing 20.19: Write String to Json.
String *data_str = str_c("Hello World");
stm_writef(stm, "Json from String: ");
json_write(stm, data_str, NULL, String);
str_destroy(&data_str);

// Json from String: "Hello World"

Listing 20.20: Write Image to Json.
Image *data_image = load_image();
stm_writef(stm, "Json from Image: ");
json_write(stm, data_image, NULL, Image);
image_destroy(&data_image);

// Json from Image: "iVBORw0KGgoAAAANSUhEUgAAAAIA..."

Listing 20.21: Write ArrSt(int16_t) to Json.
ArrSt(int16_t) *array = arrst_create(int16_t);
arrst_append(array, 321, int16_t);

382 Chapter 20 - INet library

arrst_append(array, 12, int16_t);
arrst_append(array, 8943, int16_t);
arrst_append(array, 228, int16_t);
arrst_append(array, 220, int16_t);
arrst_append(array, 347, int16_t);
stm_writef(stm, "Json from int array: ");
json_write(stm, array, NULL, ArrSt(int16_t));
arrst_destroy(&array, NULL, int16_t);

// Json from int array: [321, 12, 8943, 228, 220, 347]

Listing 20.22: Write ArrPt(String) to Json.
ArrPt(String) *array = arrpt_create(String);
arrpt_append(array, str_c("Red"), String);
arrpt_append(array, str_c("Green"), String);
arrpt_append(array, str_c("Blue"), String);
arrpt_append(array, str_c("Yellow"), String);
arrpt_append(array, str_c("Orange"), String);
stm_writef(stm, "Json from string array: ");
json_write(stm, array, NULL, ArrPt(String));
arrpt_destroy(&array, str_destroy, String);

// Json from string array: ["Red", "Green", "Blue", "Yellow", "Orange"]

Listing 20.23: Write Products object to Json.
Products *products = heap_new(Products);
products>size = 3;
products>data = arrst_create(Product);

{
Product *product = arrst_new(products>data, Product);
product>description = str_c("Intel i77700K");
product>price = 329.99f;

}

{
Product *product = arrst_new(products>data, Product);
product>description = str_c("Ryzen51600");
product>price = 194.99f;

}

{
Product *product = arrst_new(products>data, Product);
product>description = str_c("GTX1060");
product>price = 449.99f;

}

stm_writef(stm, "Json from object: ");
json_write(stm, products, NULL, Products);

20.4 - URL 383

dbind_destroy(&products, Products);

// Json from object: {"size" : 3, "data" : [{"description" : "Intel i77700K",
↪→ "price" : 329.989990 }, {"description" : "Ryzen51600", "price" :
↪→ 194.990005 }, {"description" : "GTX1060", "price" : 449.989990 }] }

20.4. URL

URL is the acronym for Uniform Resource Locator that identifies a unique resource on
the Internet. The most common use is found when making requests to a Web server. For
example https://www.google.com is a widely recognized and used URL. Being some-
what more specific, we can say that it is a string of characters with a specific format
composed of a series of fields that allow unambiguously locating a unique global resource
(Listing 20.24) (Figure 20.3).

Listing 20.24: Parsing a URL string.
Url *url = url_parse("https://frang@www.nappgui.com/services/demo/userlist.php?

↪→ id=peter&city=Alicante");
const char_t *scheme = url_scheme(url); // https
const char_t *host = url_host(url); // www.nappgui.com
const char_t *path = url_path(url); // /services/demo/userlist.php
const char_t *query = url_query(url); // id=peter&city=Alicante

• Scheme: Communication protocol used. http, https, ftp, smtp, mailto, etc.

• Authority: Access string to the server composed of several fields, where only the
host name is required. The rest are optional.

• Host: Server name or IP address.

• User: User name. Optional, only if the service requires it.

• Password: Password. Optional, only if the service requires it.

• Port: Access port. Each protocol has a default port, which will be the one
used if none is specified. 80 = http, 413 = https.

• Resource: Path within the server where the resource we are looking for is located.
The pathname is the only one required.

• Pathname: Directory and name of the file or resource.

• Parameters: List of name = value arguments that the service may need. Not
normally used. If there are multiple values, they are separated by the character
'&'.

384 Chapter 20 - INet library

http://www.nappgui.com/path/to/file.html#head2

Scheme Authority Resource Fragment
URL

frang:p6sW0rd@www.nappgui.com:80

User HostPassword Port

Authority

/path/to/file.html;param=value?query=value

Parameters QueriesPathname

Resource

Figure 20.3: The different fields that make up a URL.

• Queries: List of name = value arguments that the service may need. These
are the ones normally used by Web services. That is, in the URL you must
use the '?' separator instead of ';' after the pathname. If there are multiple
values, they are separated by the character '&'.

• Fragment: It is an anchor to a specific part of the document that we request from
the server. Normally used to access a specific point in an HTML page.

20.5. Base64

Part 3

Sample Applications

385

21C
ha

pt
er

Die

Beautiful code is likely to be simple – clear and easy to understand. Beautitful code is likely to be
compact – just enough code to do the job and no more – but not cryptic, to the point where it
cannot be understood. Beautiful code may well be general, solving a broad class of problems in a
uniform way. One might even describe it as elegant, showing good taste and refinement.

Brian Kernighan

21.1 Use of sublayouts 388

21.2 Use of Custom Views 390

21.3 Parametric drawing 391

21.4 Resizing 393

21.5 Use of resources 395

21.6 Die and Dice 396

21.7 The complete Die program 397

As the road is made by walking, we will devote a few chapters to deepen the use of
NAppGUI hand in hand with real applications. Our goal is to present programs of a certain
level, halfway between the simple “book examples” and the commercial applications. In
this first demo we have a program that allows us to draw the silhouette of a die (Figure 21.1)
and that will serve as an excuse to introduce concepts of parametric drawing, composition
of layouts and use of resources. The source code is in folder /src/demo/die of the SDK
distribution. In “Create new application” (page 99) and “Resources” (page 129) we saw
how to create the project from scratch.

388 Chapter 21 - Die

Figure 21.1: Die Simulator application, Windows version. Inspired
by DieView (Cocoa Programming for OSX, Hillegass et al.)

Figure 21.2: MacOS version.

21.1. Use of sublayouts

We started working on the user interface, which we have divided into two areas: a
customized view (View) where we will draw the representation of the die in 2D, and a
zone of controls where we can interact with this drawing. As we already saw in “Hello
World!” (page 23) we will use Layout objects to locate the controls inside the main
window. However, we observe that this arrangement of elements does not fit well in a
single table, therefore, we will use two horizontal cells as the main container and a grid of
two columns and six rows for the controls (Listing 21.1) (Listing 21.1). This second layout
will be located in the right cell of the first container and we will say that it is a sublayout
of the main layout.

21.1 - Use of sublayouts 389

Figure 21.3: Linux/GTK+ version.

Listing 21.1: Composition through sublayouts.
Layout *layout = layout_create(2, 1);
Layout *layout1 = layout_create(2, 6);
layout_view(layout, view, 0, 0);
layout_label(layout1, label1, 0, 0);
layout_label(layout1, label2, 0, 1);
layout_label(layout1, label3, 0, 2);
layout_label(layout1, label4, 0, 3);
layout_label(layout1, label5, 0, 4);
layout_view(layout1, vimg, 0, 5);
layout_popup(layout1, popup1, 1, 0);
layout_popup(layout1, popup2, 1, 1);
layout_slider(layout1, slider1, 1, 2);
layout_slider(layout1, slider2, 1, 3);
layout_slider(layout1, slider3, 1, 4);
layout_label(layout1, label6, 1, 5);
layout_layout(layout, layout1, 1, 0);

In the same way that we did in “Layout formatLayout format” (page 29) we have
established certain margins and a fixed width for the controls column.

Listing 21.2: Layout format
view_size(view, s2df(200.f, 200.f));
layout_margin(layout, 10.f);
layout_hsize(layout1, 1, 150.f);
layout_hmargin(layout, 0, 10.f);
layout_hmargin(layout1, 0, 5.f);
layout_vmargin(layout1, 0, 5.f);
layout_vmargin(layout1, 1, 5.f);
layout_vmargin(layout1, 2, 5.f);

390 Chapter 21 - Die

layout(2, 1) sublayout(2, 6)

Figure 21.4: The use of sublayouts adds flexibility when designing
the gui .

layout_vmargin(layout1, 3, 5.f);
layout_vmargin(layout1, 4, 5.f);

21.2. Use of Custom Views

View are controls that will allow us to design our own widgets. On the contrary that
happens with another type of components, like “Slider” (page 311) or “Button” (page 304),
here we will have total freedom to draw anything. We can interact with the control by
capturing its events (mouse, keyboard, etc) and implementing the appropriate handlers.
These views are integrated into the layout like any other component (Listing 21.3).

Listing 21.3: Creating a custom view.
View *view = view_create();
view_size(view, s2df(200.f, 200.f));
layout_view(layout, view, 0, 0);

We can not draw inside a View whenever we want. We will have to make a request to
the operating system through the method view_update (Listing 21.4), since the drawing
area can affect overlapping windows and this must be managed centrally. When the control
is ready to refresh, the system will send an event EvDraw that we must capture through
view_OnDraw.

Listing 21.4: Code basic of View refresh.
static void i_OnPadding(App *app, Event *e)
{

const EvSlider *params = event_params(e, EvSlider);

21.3 - Parametric drawing 391

app>padding = params>pos;
view_update(app>view);

}

static void i_OnDraw(App *app, Event *e)
{

const EvDraw *params = event_params(e, EvDraw);
die_draw(params>context, params>width, params>height, app);

}

slider_OnMoved(slider1, listener(app, i_OnPadding, App));
view_OnDraw(view, listener(app, i_OnDraw, App));

Each time the user moves a slider (padding parameter, for example) the operating sys-
tem captures the action and informs the application through the method i_OnPadding
(Figure 21.5). Because the action involves a change in the drawing, this method calls
view_update to inform the system again that the view must be updated. When it con-
siders it appropriate, send the event EvDraw, which is captured by i_OnDraw where the
drawing is regenerated with the new parameters.

Figure 21.5: Understanding
the event flow in interactive
drawings.

i_OnPadding()

view_update()

i_OnDraw()

1

2

3

4

21.3. Parametric drawing

Under this concept we describe the ability to generate vector images from a few numeri-
cal values known as parameters (Figure 21.6). It is used a lot in the computer-aided design
(CAD), it allows you to make adjustments easily in planes or models without having to
edit, one by one, a lot of primitives.

In our application, the representation of the die can change at runtime as the user
manipulates the sliders or sizes the window, so we calculate the position and size of their
primitives using parametric formulas. Once resolved, we created the drawing with three
simple API commands “Drawing primitives” (page 265).

• draw_clear. Clear the entire drawing area using a solid color.

392 Chapter 21 - Die

Figure 21.6: Principles of
parametric drawing, applied in
Die.

w

h
p

r

c

• draw_rndrect. Draw a rectangle with rounded corners.

• draw_circle. Draw a circle.

Listing 21.5: demo/casino/ddraw.c
/* Die drawing */

#include "ddraw.h"
#include <draw2d/draw2dall.h>

/*
↪→
↪→ */

static const real32_t i_MAX_PADDING = 0.2f;
const real32_t kDEF_PADDING = .15f;
const real32_t kDEF_CORNER = .15f;
const real32_t kDEF_RADIUS = .35f;

/*
↪→
↪→ */

void die_draw(DCtx *ctx, const real32_t x, const real32_t y, const
↪→ real32_t width, const real32_t height, const real32_t padding,
↪→ const real32_t corner, const real32_t radius, const uint32_t face)

{
color_t white = color_rgb(255, 255, 255);
color_t black = color_rgb(0, 0, 0);
real32_t dsize, dx, dy;
real32_t rc, rr;
real32_t p1, p2, p3;

dsize = width < height ? width : height;
dsize = bmath_floorf(2.f * dsize * padding * i_MAX_PADDING);
dx = x + .5f * (width dsize);

21.4 - Resizing 393

dy = y + .5f * (height dsize);
rc = dsize * (.1f + .3f * corner);
rr = dsize * (.05f + .1f * radius);
p1 = 0.5f * dsize;
p2 = 0.2f * dsize;
p3 = 0.8f * dsize;

draw_fill_color(ctx, white);
draw_rndrect(ctx, ekFILL, dx, dy, dsize, dsize, rc);
draw_fill_color(ctx, black);

if (face == 1 || face == 3 || face == 5)
draw_circle(ctx, ekFILL, dx + p1, dy + p1, rr);

if (face != 1)
{

draw_circle(ctx, ekFILL, dx + p3, dy + p2, rr);
draw_circle(ctx, ekFILL, dx + p2, dy + p3, rr);

}

if (face == 4 || face == 5 || face == 6)
{

draw_circle(ctx, ekFILL, dx + p2, dy + p2, rr);
draw_circle(ctx, ekFILL, dx + p3, dy + p3, rr);

}

if (face == 6)
{

draw_circle(ctx, ekFILL, dx + p2, dy + p1, rr);
draw_circle(ctx, ekFILL, dx + p3, dy + p1, rr);

}
}

The drawing commands are reflected on a canvas, also known as context DCtx. This
object reaches to i_OnDraw as parameter of the event EvDraw. In this case, the canvas
is provided by the View control itself, but it is also possible to create contexts to draw
directly in memory.

21.4. Resizing
In this application, the window can be resized by stretching the cursor over its edges,

which is common in desktop programs. Let’s see some basic aspects about this feature
not present in “Hello World!” (page 23), which had a static window. The first thing is to
enable the option inside the window’s constructor.
window_create(ekWINDOW_STDRES, &panel);

When a window changes in size, the inner controls should do so proportionally as well as

394 Chapter 21 - Die

change its location within the panel. This management is carried out within each Layout
object. When the window starts, the default size of each layout is calculated by applying
the natural sizing, which is the result of the initial size of the controls plus the margins,
as we saw in “Layout formatLayout format” (page 29). When we stretch or contract the
window, the pixel difference between natural and real dimensioning is distributed between
the columns of the layout (Figure 21.7). The same happens with the vertical difference,
which is distributed among its rows. If a cell contains a sublayout, this increment will be
recursively distributed by its own columns and rows.

Figure 21.7: When resizing, the excess of pixels is distributed pro-
portionally by the rows and columns of the Layout.

But in this particular case, we want the whole increment to go to the drawing area
(column 0). In other words, we want the column of the controls to remain fixed and not
grow (Figure 21.8). For this we must change the proportion of the resized:
layout_hexpand(layout, 0);

With this function 100% of the horizontal surplus will go to column 0. By default, they
had a proportion of (50%, 50%) since they are two columns (33% for three, 25% for four,
etc). With this we would have resolved the resizing for the X dimension of the window,
but what happens with the vertical? In the main layout, we only have one row that, when
expanded, will change the height of the custom view. But this expansion will also affect the

21.5 - Use of resources 395

cell on the right, where the controls will also grow vertically due to the recursive increase
of pixels in the sublayout rows. To solve it, we force the vertical alignment ekTOP in the
right cell of the layout.
layout_valign(layout, 1, 0, ekTOP);

instead of ekJUSTIFY, which is the default alignment for sublayouts. In this way, the
content of the cell (the entire sublayout) will not expand vertically, but it will adjust to
the upper edge leaving all the free space in the lower part of the cell. Obviously, if we use
ekCENTER or ekBOTTOM, the sublayout will center or adjust to the bottom edge.

Figure 21.8: Playing with the horizontal ratio and vertical align-
ment, only the drawing area will be affected by the size changes.

21.5. Use of resources

Both the text and the icons that we have used in Die have been outsourced in the
resource package all. Thanks to this, we can perform an automatic translation of the in-
terface between the English and Spanish languages. You can check “Resources” (page 129)

396 Chapter 21 - Die

to get detailed information on how text and images have been assigned in the program
interface.

Listing 21.6: demo/die/res/res_die/strings.msg
/* Die strings */
TEXT_FACE Face
TEXT_PADDING Padding
TEXT_CORNER Corner
TEXT_RADIUS Radius
TEXT_ONE One
TEXT_TWO Two
TEXT_THREE Three
TEXT_FOUR Four
TEXT_FIVE Five
TEXT_SIX Six
TEXT_TITLE Die Simulator
TEXT_INFO Move the sliders to change the parametric representation of the

↪→ die face.
TEXT_LANG Language
TEXT_ENGLISH English
TEXT_SPANISH Spanish

Listing 21.7: demo/die/res/res_die/es_es/strings.msg
/* Die strings */
TEXT_FACE Cara
TEXT_PADDING Margen
TEXT_CORNER Borde
TEXT_RADIUS Radio
TEXT_ONE Uno
TEXT_TWO Dos
TEXT_THREE Tres
TEXT_FOUR Cuatro
TEXT_FIVE Cinco
TEXT_SIX Seis
TEXT_TITLE Simulador de dado
TEXT_INFO Mueve los sliders para cambiar la representación paramétrica de

↪→ la cara del dado.
TEXT_LANG Idioma
TEXT_ENGLISH Inglés
TEXT_SPANISH Español

21.6. Die and Dice

This application has been used as a guiding thread of the “Create new application”
(page 99) chapter and following from the NAppGUI tutorial. The complete example
consists of two applications (Die and Dice), as well as the casino library that groups the

21.7 - The complete Die program 397

common routines for both programs (Figure 21.9). You have the three complete projects
ready to compile and test in the folder src/demo of SDK distribution.

casinocasino

draw2ddraw2d

DieDie DiceDice

guiguiguigui

Common routines

Figure 21.9: Common routines for both applications are shared
through the casino library.

21.7. The complete Die program

Listing 21.8: demo/die/die.hxx
/* Die Types */

#ifndef __DIE_HXX__
#define __DIE_HXX__

#include <gui/gui.hxx>

typedef struct _app_t App;

struct _app_t
{

real32_t padding;
real32_t corner;
real32_t radius;
uint32_t face;
View *view;

398 Chapter 21 - Die

Window *window;
};

#endif

Listing 21.9: demo/die/main.c
/* Die application */

#include "dgui.h"
#include <nappgui.h>

/**/

static void i_OnClose(App *app, Event *e)
{

osapp_finish();
unref(app);
unref(e);

}

/**/

static App *i_create(void)
{

App *app = heap_new0(App);
app>padding = 0.2f;
app>corner = 0.1f;
app>radius = 0.5f;
app>face = 5;
app>window = dgui_window(app);
window_origin(app>window, v2df(200.f, 200.f));
window_OnClose(app>window, listener(app, i_OnClose, App));
window_show(app>window);
return app;

}

/**/

static void i_destroy(App **app)
{

window_destroy(&(*app)>window);
heap_delete(app, App);

}

/**/

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

Listing 21.10: demo/die/dgui.c

21.7 - The complete Die program 399

/* Die Gui */

#include "dgui.h"
#include "ddraw.h"
#include "res_die.h"
#include <gui/guiall.h>

/**/

static void i_OnDraw(App *app, Event *e)
{

color_t green = color_rgb(102, 153, 26);
const EvDraw *params = event_params(e, EvDraw);
draw_clear(params>ctx, green);
die_draw(params>ctx, 0, 0, params>width, params>height, app>padding,

↪→ app>corner, app>radius, app>face);
}

/**/

static void i_OnFace(App *app, Event *e)
{

const EvButton *params = event_params(e, EvButton);
app>face = params>index + 1;
view_update(app>view);

}

/**/

static void i_OnPadding(App *app, Event *e)
{

const EvSlider *params = event_params(e, EvSlider);
app>padding = params>pos;
view_update(app>view);

}

/**/

static void i_OnCorner(App *app, Event *e)
{

const EvSlider *params = event_params(e, EvSlider);
app>corner = params>pos;
view_update(app>view);

}

/**/

static void i_OnRadius(App *app, Event *e)
{

const EvSlider *params = event_params(e, EvSlider);
app>radius = params>pos;

400 Chapter 21 - Die

view_update(app>view);
}

/**/

static void i_OnLang(App *app, Event *e)
{

const EvButton *params = event_params(e, EvButton);
const char_t *lang = params>index == 0 ? "en_us" : "es_es";
gui_language(lang);
unref(app);

}

/**/

static Panel *i_panel(App *app)
{

Panel *panel = panel_create();
Layout *layout = layout_create(2, 1);
Layout *layout1 = layout_create(2, 6);
View *view = view_create();
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Label *label5 = label_create();
Label *label6 = label_multiline();
PopUp *popup1 = popup_create();
PopUp *popup2 = popup_create();
Slider *slider1 = slider_create();
Slider *slider2 = slider_create();
Slider *slider3 = slider_create();
ImageView *img = imageview_create();
app>view = view;
view_size(view, s2df(200, 200));
view_OnDraw(view, listener(app, i_OnDraw, App));
label_text(label1, TEXT_LANG);
label_text(label2, TEXT_FACE);
label_text(label3, TEXT_PADDING);
label_text(label4, TEXT_CORNER);
label_text(label5, TEXT_RADIUS);
label_text(label6, TEXT_INFO);
popup_add_elem(popup1, TEXT_ENGLISH, resid_image(USA_PNG));
popup_add_elem(popup1, TEXT_SPANISH, resid_image(SPAIN_PNG));
popup_OnSelect(popup1, listener(app, i_OnLang, App));
popup_add_elem(popup2, TEXT_ONE, NULL);
popup_add_elem(popup2, TEXT_TWO, NULL);
popup_add_elem(popup2, TEXT_THREE, NULL);
popup_add_elem(popup2, TEXT_FOUR, NULL);
popup_add_elem(popup2, TEXT_FIVE, NULL);
popup_add_elem(popup2, TEXT_SIX, NULL);

21.7 - The complete Die program 401

popup_OnSelect(popup2, listener(app, i_OnFace, App));
popup_selected(popup2, app>face 1);
slider_value(slider1, app>padding);
slider_value(slider2, app>corner);
slider_value(slider3, app>radius);
slider_OnMoved(slider1, listener(app, i_OnPadding, App));
slider_OnMoved(slider2, listener(app, i_OnCorner, App));
slider_OnMoved(slider3, listener(app, i_OnRadius, App));
imageview_image(img, (const Image*)CARDS_PNG);
layout_view(layout, view, 0, 0);
layout_label(layout1, label1, 0, 0);
layout_label(layout1, label2, 0, 1);
layout_label(layout1, label3, 0, 2);
layout_label(layout1, label4, 0, 3);
layout_label(layout1, label5, 0, 4);
layout_imageview(layout1, img, 0, 5);
layout_popup(layout1, popup1, 1, 0);
layout_popup(layout1, popup2, 1, 1);
layout_slider(layout1, slider1, 1, 2);
layout_slider(layout1, slider2, 1, 3);
layout_slider(layout1, slider3, 1, 4);
layout_label(layout1, label6, 1, 5);
layout_layout(layout, layout1, 1, 0);
layout_margin(layout, 10);
layout_hsize(layout1, 1, 150);
layout_hmargin(layout, 0, 10);
layout_hmargin(layout1, 0, 5);
layout_vmargin(layout1, 0, 5);
layout_vmargin(layout1, 1, 5);
layout_vmargin(layout1, 2, 5);
layout_vmargin(layout1, 3, 5);
layout_vmargin(layout1, 4, 5);
layout_hexpand(layout, 0);
layout_valign(layout, 1, 0, ekTOP);
panel_layout(panel, layout);
return panel;

}

/**/

Window *dgui_window(App *app)
{

gui_respack(res_die_respack);
gui_language("");

{
Panel *panel = i_panel(app);
Window *window = window_create(ekWINDOW_STDRES);
window_panel(window, panel);
window_title(window, TEXT_TITLE);
return window;

402 Chapter 21 - Die

}
}

Listing 21.11: demo/die/dgui.h
/* Die Gui */

#include "die.hxx"

__EXTERN_C

Window *dgui_window(App *app);

__END_C

22C
ha

pt
er

Bricks

Briks is a very simplistic imitation of the Atari Breakout video game, which will
allow us to make an introduction to the world of “Synchronous applicationsSynchronous
applications” (page 369). Any real-time application must be constantly updating whether
or not the user intervenes. The source code is in folder /src/demo/bricks of the SDK
distribution.

• Use osmain_sync to start a synchronous application, indicating an interval and
update callback function. NAppGUI will periodically launch time events that will
update the program.

Figure 22.1: Bricks video game on Windows, macOS and Linux.

404 Chapter 22 - Bricks

This application is managed by two events (Figure 22.2). On the one hand the slider
movement, which can occur at any time (asynchronous event), and will update the player
position. On the other a synchronous event produced by osmain_sync every 40 mil-
liseconds and will be notified through i_update() to update the game state and graphic
view.

Figure 22.2: Synchronous and
asynchronous events.

i_OnSlider()

i_update()

i_OnDraw()

Listing 22.1: demo/bricks/bricks.c
/* Simplistic Breakoutlike game */

#include <nappgui.h>

#define NUM_BRICKS 40

typedef struct _brick_t Brick;
typedef struct _app_t App;

struct _brick_t
{

real32_t x;
real32_t y;
uint8_t color;
bool_t is_visible;

};

struct _app_t
{

bool_t is_running;
Brick bricks[NUM_BRICKS];
color_t color[4];
real32_t brick_width;
real32_t player_pos;
real32_t ball_x;
real32_t ball_y;
V2Df ball_dir;
real32_t ball_speed;
Cell *button;
Slider *slider;

405

View *view;
Window *window;

};

/**/

static const real32_t i_BALL_RADIUS = .03f;
static const real32_t i_BRICK_HEIGHT = .03f;
static const real32_t i_BRICK_SEPARATION = .005f;
static const uint32_t i_BRICKS_PER_ROW = 10;
static const uint32_t i_NUM_ROWS = 4;

/**/

static void i_OnDraw(App *app, Event *e)
{

const EvDraw *params = event_params(e, EvDraw);
uint32_t i = 0;

draw_clear(params>ctx, color_rgb(102, 153, 26));
draw_line_color(params>ctx, kCOLOR_BLACK);

for (i = 0; i < NUM_BRICKS; ++i)
{

if (app>bricks[i].is_visible == TRUE)
{

real32_t x = app>bricks[i].x * params>width;
real32_t y = app>bricks[i].y * params>height;
real32_t width = app>brick_width * params>width;
real32_t height = i_BRICK_HEIGHT * params>height;
draw_fill_color(params>ctx, app>color[app>bricks[i].color]);
draw_rect(params>ctx, ekFILLSK, x, y, width, height);

}
}

{
real32_t x = (app>player_pos app>brick_width) * params>width;
real32_t y = (1 i_BRICK_HEIGHT i_BRICK_SEPARATION) * params>height

↪→ ;
real32_t width = 2 * app>brick_width * params>width;
real32_t height = i_BRICK_HEIGHT * params>height;
draw_fill_color(params>ctx, kCOLOR_BLACK);
draw_rect(params>ctx, ekFILL, x, y, width, height);

}

{
real32_t x = app>ball_x * params>width;
real32_t y = app>ball_y * params>height;
real32_t rad = i_BALL_RADIUS * params>width;
draw_fill_color(params>ctx, kCOLOR_WHITE);
draw_circle(params>ctx, ekFILL, x, y, rad);

406 Chapter 22 - Bricks

}
}

/**/

static void i_OnSlider(App *app, Event *e)
{

const EvSlider *params = event_params(e, EvSlider);
app>player_pos = params>pos;

}

/**/

static void i_OnStart(App *app, Event *e)
{

unref(e);
app>is_running = TRUE;
cell_enabled(app>button, FALSE);

}

/**/

static Panel *i_panel(App *app)
{

Panel *panel = panel_create();
Layout *layout = layout_create(1, 4);
View *view = view_create();
Slider *slider = slider_create();
Label *label = label_create();
Button *button = button_push();
view_size(view, s2df(258, 344));
view_OnDraw(view, listener(app, i_OnDraw, App));
slider_OnMoved(slider, listener(app, i_OnSlider, App));
label_text(label, "Use the slider!");
button_text(button, "Start");
button_OnClick(button, listener(app, i_OnStart, App));
layout_view(layout, view, 0, 0);
layout_slider(layout, slider, 0, 1);
layout_label(layout, label, 0, 2);
layout_button(layout, button, 0, 3);
layout_vexpand(layout, 0);
layout_vmargin(layout, 0, 10);
layout_vmargin(layout, 2, 10);
layout_margin(layout, 10);
panel_layout(panel, layout);
app>view = view;
app>slider = slider;
app>button = layout_cell(layout, 0, 3);
return panel;

}

407

/**/

static void i_init_game(App *app)
{

real32_t hoffset;
Brick *brick = NULL;
uint32_t j, i;

app>color[0] = color_rgb(255, 0, 0);
app>color[1] = color_rgb(0, 255, 0);
app>color[2] = color_rgb(0, 0, 255);
app>color[3] = color_rgb(0, 255, 255);

hoffset = i_BRICK_SEPARATION;
brick = app>bricks;

app>is_running = FALSE;
app>brick_width = (1 ((real32_t)i_BRICKS_PER_ROW + 1) *

↪→ i_BRICK_SEPARATION) / (real32_t)i_BRICKS_PER_ROW;

for (j = 0; j < i_NUM_ROWS; ++j)
{

real32_t woffset = i_BRICK_SEPARATION;

for (i = 0; i < i_BRICKS_PER_ROW; ++i)
{

brick>x = woffset;
brick>y = hoffset;
brick>is_visible = TRUE;
brick>color = (uint8_t)j;
woffset += app>brick_width + i_BRICK_SEPARATION;
brick++;

}

hoffset += i_BRICK_HEIGHT + i_BRICK_SEPARATION;
}

app>player_pos = slider_get_value(app>slider);
app>ball_x = .5f;
app>ball_y = .5f;
app>ball_dir.x = .3f;
app>ball_dir.y = .1f;
app>ball_speed = .6f;
v2d_normf(&app>ball_dir);

}

/**/

static void i_OnClose(App *app, Event *e)
{

osapp_finish();

408 Chapter 22 - Bricks

unref(app);
unref(e);

}

/**/

static App *i_create(void)
{

App *app = heap_new0(App);
Panel *panel = i_panel(app);
app>window = window_create(ekWINDOW_STDRES);
window_panel(app>window, panel);
window_origin(app>window, v2df(200, 200));
window_title(app>window, "Bricks A 2D Game");
window_OnClose(app>window, listener(app, i_OnClose, App));
window_show(app>window);
i_init_game(app);
return app;

}

/**/

static void i_destroy(App **app)
{

window_destroy(&(*app)>window);
heap_delete(app, App);

}

/**/

static bool_t i_collision(Brick *brick, real32_t brick_width, real32_t ball_x,
↪→ real32_t ball_y)

{
if (ball_x + i_BALL_RADIUS < brick>x)

return FALSE;
if (ball_x i_BALL_RADIUS > brick>x + brick_width)

return FALSE;
if (ball_y + i_BALL_RADIUS < brick>y)

return FALSE;
if (ball_y i_BALL_RADIUS > brick>y + i_BRICK_HEIGHT)

return FALSE;
return TRUE;

}

/**/

static void i_update(App *app, const real64_t prtime, const real64_t ctime)
{

if (app>is_running == TRUE)
{

real32_t step = (real32_t)(ctime prtime);

409

bool_t collide;
uint32_t i;

/* Update ball position */
app>ball_x += step * app>ball_speed * app>ball_dir.x;
app>ball_y += step * app>ball_speed * app>ball_dir.y;

/* Collision with limits */
if (app>ball_x + i_BALL_RADIUS >= 1.f && app>ball_dir.x >= 0.f)

app>ball_dir.x = app>ball_dir.x;

if (app>ball_x i_BALL_RADIUS <= 0.f && app>ball_dir.x <= 0.f)
app>ball_dir.x = app>ball_dir.x;

if (app>ball_y i_BALL_RADIUS <= 0.f && app>ball_dir.y <= 0.f)
app>ball_dir.y = app>ball_dir.y;

/* Collision with bricks */
collide = FALSE;
for (i = 0; i < NUM_BRICKS; ++i)
{

if (app>bricks[i].is_visible == TRUE)
{

if (i_collision(&app>bricks[i], app>brick_width, app>ball_x,
↪→ app>ball_y) == TRUE)

{
app>bricks[i].is_visible = FALSE;
if (collide == FALSE)
{

real32_t brick_x = app>bricks[i].x + .5f * app>
↪→ brick_width;

app>ball_dir.x = 5.f * (app>ball_x brick_x);
app>ball_dir.y = app>ball_dir.y;
v2d_normf(&app>ball_dir);
collide = TRUE;

}
}

}
}

/* Collision with player */
{

Brick player;
player.x = app>player_pos app>brick_width;
player.y = 1.f i_BRICK_HEIGHT i_BRICK_SEPARATION;
if (i_collision(&player, 2.f * app>brick_width, app>ball_x, app>

↪→ ball_y) == TRUE)
{

app>ball_dir.x = 5.f * (app>ball_x app>player_pos);
app>ball_dir.y = app>ball_dir.y;
v2d_normf(&app>ball_dir);

410 Chapter 22 - Bricks

}
}

/* Game Over */
if (app>ball_y + i_BALL_RADIUS >= 1.f)
{

i_init_game(app);
cell_enabled(app>button, TRUE);

}
}

view_update(app>view);
}

/**/

#include "osmain.h"
osmain_sync(.04, i_create, i_destroy, i_update, "", App)

23C
ha

pt
er

Fractals

In this application we create an procedural image by calculating the color of each pixel
using fractal algorithms . Some of the most fascinating results produced by a dynamic
system occur when we iterate a complex variable function instead of a real one. This is
the case of Julia’s sets. The source code is in folder /src/demo/fractals of the SDK
distribution.

Figure 23.1: Fractals application Windows and macOS version.

Due to the large computational load of this algorithm we have divided the calcula-
tion into several threads (Figure 23.3). This problem is easily parallelizable simply by
fractioning the image, because each pixel is obtained independently.

Listing 23.1: demo/fractals/fractals.c
/* Multithreaded fractals */

412 Chapter 23 - Fractals

Figure 23.2: Ubuntu and Raspbian version.

Figure 23.3: Collaboration of sev-
eral threads. i_julia()

i_julia_thread()

1 2 3 4

#include <nappgui.h>

413

typedef struct _app_t App;
typedef struct _thdata_t ThData;

struct _app_t
{

Window *window;
ImageView *view;
Label *time_label;
Clock *clock;
uint32_t threads;
bool_t vertical;
real64_t fct;

};

struct _thdata_t
{

real64_t fct;
real64_t kreal;
real64_t kimag;
Pixbuf *pixbuf;
uint32_t i;
uint32_t j;
uint32_t width;
uint32_t height;

};

static const real64_t i_FCT = 2.85;
static const uint32_t i_ITERATIONS = 512;
static const uint32_t i_WIDTH = 601;
static const uint32_t i_HEIGHT = 601;

/**/

static uint32_t i_inset(real64_t zreal, real64_t zimag, real64_t creal,
↪→ real64_t cimag)

{
uint32_t i;
for(i = 0; i < i_ITERATIONS; ++i)
{

real64_t ztmp, zdist;
ztmp = zreal * zreal zimag * zimag;
zimag = zreal * zimag + zreal * zimag;
zreal = ztmp;
zreal = zreal + creal;
zimag = zimag + cimag;
zdist = zimag * zimag + zreal * zreal;
if (zdist > 3)

return i;
}

return 0;

414 Chapter 23 - Fractals

}

/**/

static uint32_t i_julia_thread(ThData *data)
{

real64_t fct = data>fct;
uint32_t imgwidth = pixbuf_width(data>pixbuf);
real64_t freal = fct / imgwidth;
real64_t fimag = fct / pixbuf_height(data>pixbuf);
real64_t kreal = data>kreal;
real64_t kimag = data>kimag;
uint32_t val;
real64_t creal, cimag;
register uint32_t stj = data>j;
register uint32_t edj = data>j + data>height;
register uint32_t sti = data>i;
register uint32_t edi = data>i + data>width;
register uint32_t i, j;

for(j = stj; j < edj; ++j)
{

cimag = fimag * j (fct / 2);

for(i = sti; i < edi; ++i)
{

creal = freal * i (fct / 2);
val = i_inset(creal, cimag, kreal, kimag);
if (val > 0)
{

uint8_t n_val = (uint8_t)(val % 255);
if (val < (i_ITERATIONS >> 1))

val = color_rgb((uint8_t)(n_val << 2), (uint8_t)(n_val <<
↪→ 3), (uint8_t)(n_val << 4));

else
val = color_rgb((uint8_t)(n_val << 4), (uint8_t)(n_val <<

↪→ 2), (uint8_t)(n_val << 5));
}
else
{

val = kCOLOR_BLACK;
}

pixbuf_set(data>pixbuf, i, j, val);
}

}

return 5;
}

/**/

415

static void i_julia(const uint32_t nthreads, const bool_t vertical, const
↪→ real64_t fct, const real64_t kreal, const real64_t kimag, Pixbuf *pixbuf
↪→)

{
ThData data[8];
uint32_t width = pixbuf_width(pixbuf);
uint32_t height = pixbuf_height(pixbuf);
data[0].fct = fct;
data[0].kreal = kreal;
data[0].kimag = kimag;
data[0].pixbuf = pixbuf;

if (nthreads == 1)
{

data[0].i = 0;
data[0].j = 0;
data[0].width = width;
data[0].height = height;
i_julia_thread(&data[0]);

}
else
{

Thread *thread[8];

register uint32_t i;
if (vertical == TRUE)
{

uint32_t twidth = width / nthreads;
for (i = 0; i < nthreads; ++i)
{

data[i] = data[0];
data[i].i = i * twidth;
data[i].j = 0;
data[i].width = twidth;
data[i].height = height;

}

data[nthreads1].width += (width (twidth * nthreads));
}
else
{

uint32_t theight = height / nthreads;
for (i = 0; i < nthreads; ++i)
{

data[i] = data[0];
data[i].i = 0;
data[i].j = i * theight;
data[i].width = width;
data[i].height = theight;

}

416 Chapter 23 - Fractals

data[nthreads1].height += (height (theight * nthreads));
}

for (i = 0; i < nthreads; ++i)
thread[i] = bthread_create(i_julia_thread, &data[i], ThData);

for (i = 0; i < nthreads; ++i)
{

uint32_t thid = bthread_wait(thread[i]);
cassert_unref(thid == 5, thid);
bthread_close(&thread[i]);

}
}

}

/**/

static void i_image(App *app)
{

Pixbuf *pixbuf = pixbuf_create(i_WIDTH, i_HEIGHT, ekRGBA32);
real64_t rfactor = app>fct / i_WIDTH;
real64_t ifactor = app>fct / i_HEIGHT;
real64_t kreal = rfactor * 307 2;
real64_t kimag = ifactor * 184 1.4;
Image *image = NULL;
real64_t timems;
String *str;
clock_reset(app>clock);
i_julia(app>threads, app>vertical, app>fct, kreal, kimag, pixbuf);
timems = 1000. * clock_elapsed(app>clock);
str = str_printf("%.3f milliseconds", timems);
label_text(app>time_label, tc(str));
str_destroy(&str);
image = image_from_pixbuf(pixbuf, NULL);
imageview_image(app>view, image);
image_destroy(&image);
pixbuf_destroy(&pixbuf);

}

/**/

static void i_OnSlider(App *app, Event *e)
{

const EvSlider *p = event_params(e, EvSlider);
real64_t st = i_FCT 1;
real64_t ed = i_FCT + 1;
app>fct = ((ed st) * p>pos) + st;
i_image(app);

}

417

/**/

static void i_OnThreads(App *app, Event *e)
{

const EvButton *p = event_params(e, EvButton);
switch(p>index) {
case 0: app>threads = 1; break;
case 1: app>threads = 2; break;
case 2: app>threads = 3; break;
case 3: app>threads = 4; break;
case 4: app>threads = 8; break; }
i_image(app);

}

/**/

static void i_OnVertical(App *app, Event *e)
{

const EvButton *p = event_params(e, EvButton);
app>vertical = p>index == 0 ? TRUE : FALSE;
i_image(app);

}

/**/

static Panel *i_panel(App *app)
{

Panel *panel = panel_create();
Layout *layout1 = layout_create(1, 3);
Layout *layout2 = layout_create(5, 1);
Label *label1 = label_create();
Label *label2 = label_create();
PopUp *popup = popup_create();
Slider *slider = slider_create();
Button *button1 = button_radio();
Button *button2 = button_radio();
ImageView *view = imageview_create();
label_text(label1, "Threads:");
popup_add_elem(popup, "1", NULL);
popup_add_elem(popup, "2", NULL);
popup_add_elem(popup, "3", NULL);
popup_add_elem(popup, "4", NULL);
popup_add_elem(popup, "8", NULL);
popup_selected(popup, 0);
popup_OnSelect(popup, listener(app, i_OnThreads, App));
slider_value(slider, .5f);
slider_OnMoved(slider, listener(app, i_OnSlider, App));
button_text(button1, "Vert");
button_text(button2, "Hotz");
button_state(button1, ekGUI_ON);
button_OnClick(button1, listener(app, i_OnVertical, App));

418 Chapter 23 - Fractals

imageview_size(view, s2di(i_WIDTH, i_HEIGHT));
layout_slider(layout1, slider, 0, 0);
layout_label(layout2, label1, 0, 0);
layout_popup(layout2, popup, 1, 0);
layout_button(layout2, button1, 2, 0);
layout_button(layout2, button2, 3, 0);
layout_label(layout2, label2, 4, 0);
layout_halign(layout2, 4, 0, ekJUSTIFY);
layout_hexpand(layout2, 4);
layout_layout(layout1, layout2, 0, 1);
layout_imageview(layout1, view, 0, 2);
layout_vmargin(layout1, 1, 5);
layout_margin2(layout2, 0, 5);
layout_hmargin(layout2, 0, 5);
layout_hmargin(layout2, 1, 10);
layout_hmargin(layout2, 2, 5);
layout_hmargin(layout2, 3, 15);
panel_layout(panel, layout1);
app>fct = i_FCT;
app>threads = 1;
app>vertical = TRUE;
app>view = view;
app>time_label = label2;
return panel;

}

/**/

static void i_OnClose(App *app, Event *e)
{

osapp_finish();
unref(app);
unref(e);

}

/**/

static App *i_create(void)
{

App *app = heap_new0(App);
Panel *panel = i_panel(app);
app>window = window_create(ekWINDOW_STD);
app>clock = clock_create(0);
i_image(app);
window_panel(app>window, panel);
window_title(app>window, "Fractals");
window_origin(app>window, v2df(500, 200));
window_OnClose(app>window, listener(app, i_OnClose, App));
window_show(app>window);
return app;

}

419

/**/

static void i_destroy(App **app)
{

window_destroy(&(*app)>window);
clock_destroy(&(*app)>clock);
heap_delete(app, App);

}

/**/

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

420 Chapter 23 - Fractals

24C
ha

pt
er

Bode

In this project we approach the construction of an interactive user interface for Bode
Plots, a tool widely used in Control Engineering (Figure 24.1). The calculus module
has been written in C language by Javier Gil Chica1, Phd of Physics Department of the
University of Alicante. The complete source code is available in folder /src/demo/bode
of the SDK distribution.

Figure 24.1: Windows version.

The main window has been divided vertically into two parts, using a layout(2,1)
(Figure 24.4). On the left side we have the parameters P, Q, T, R and some buttons.

1mailto:francisco.gil@ua.es

mailto:francisco.gil@ua.es

422 Chapter 24 - Bode

Figure 24.2: macOS version.

Figure 24.3: Ubuntu version.

Sublayouts have been used i_coeffs(4,9) and i_ranges(3,3) to group controls. In
the right area are two View drawing controls for graphics and other sublayout i_sliders
(3,3) with the parameters I, P, D.

The horizontal resizing is done entirely on the right cell (graphs and sliders), keeping

423

the parameter area a constant horizontal size. During the vertical resizing the graphs will
grow with a proportion of 50% each. For the left part, an empty cell has been reserved,
which will expand horizontally, aligning the button [More Info] to the bottom edge of
the window.

layout(1,2)

i_sliders(3,3)

view1

view2

vexpand 50%

vexpand 50%

i_coeffs
(4,9)

i_ranges
(3,3)

vexpand
100%

hexpand 100%

Figure 24.4: Bode user interface distribution.

Listing 24.1: demo/bode/bdview.c
/* Bode View */

#include "bdview.h"
#include "bdctrl.h"
#include <gui/guiall.h>

static const real32_t kEDIT_WIDTH = 60;

/**/

static Cell *i_coeff(Layout *layout, const char_t *text, const uint32_t col,
↪→ const uint32_t row)

{
Label *label = label_create();
Edit *edit = edit_create();
label_text(label, text);
edit_align(edit, ekRIGHT);
layout_halign(layout, col * 2, row, ekCENTER);
layout_label(layout, label, col * 2, row);
layout_edit(layout, edit, col * 2 + 1, row);

424 Chapter 24 - Bode

return layout_cell(layout, col * 2 + 1, row);
}

/**/

static Layout *i_coeffs(void)
{

Layout *layout = layout_create(4, 9);
cell_dbind(i_coeff(layout, "P[0]", 0, 0), Params, real32_t, P[0]);
cell_dbind(i_coeff(layout, "P[1]", 1, 0), Params, real32_t, P[1]);
cell_dbind(i_coeff(layout, "P[2]", 0, 1), Params, real32_t, P[2]);
cell_dbind(i_coeff(layout, "P[3]", 1, 1), Params, real32_t, P[3]);
cell_dbind(i_coeff(layout, "P[4]", 0, 2), Params, real32_t, P[4]);
cell_dbind(i_coeff(layout, "Q[0]", 0, 3), Params, real32_t, Q[0]);
cell_dbind(i_coeff(layout, "Q[1]", 1, 3), Params, real32_t, Q[1]);
cell_dbind(i_coeff(layout, "Q[2]", 0, 4), Params, real32_t, Q[2]);
cell_dbind(i_coeff(layout, "Q[3]", 1, 4), Params, real32_t, Q[3]);
cell_dbind(i_coeff(layout, "Q[4]", 0, 5), Params, real32_t, Q[4]);
cell_dbind(i_coeff(layout, "Q[5]", 1, 5), Params, real32_t, Q[5]);
cell_dbind(i_coeff(layout, "Q[6]", 0, 6), Params, real32_t, Q[6]);
cell_dbind(i_coeff(layout, "Q[7]", 1, 6), Params, real32_t, Q[7]);
cell_dbind(i_coeff(layout, "Q[8]", 0, 7), Params, real32_t, Q[8]);
cell_dbind(i_coeff(layout, "T", 0, 8), Params, real32_t, T);
cell_dbind(i_coeff(layout, "R", 1, 8), Params, real32_t, R);
layout_hsize(layout, 1, kEDIT_WIDTH);
layout_hsize(layout, 3, kEDIT_WIDTH);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);
layout_vmargin(layout, 2, 10);
layout_vmargin(layout, 3, 5);
layout_vmargin(layout, 4, 5);
layout_vmargin(layout, 5, 5);
layout_vmargin(layout, 6, 5);
layout_vmargin(layout, 7, 10);
layout_hmargin(layout, 1, 5);
layout_hmargin(layout, 0, 3);
layout_hmargin(layout, 2, 3);
return layout;

}

/**/

static void i_range(Layout *layout, const char_t *text, const uint32_t i)
{

Label *label = label_create();
Edit *edit1 = edit_create();
Edit *edit2 = edit_create();
label_text(label, text);
edit_align(edit1, ekRIGHT);
edit_align(edit2, ekRIGHT);
layout_label(layout, label, 0, i);

425

layout_edit(layout, edit1, 1, i);
layout_edit(layout, edit2, 2, i);

}

/**/

static Layout *i_ranges(void)
{

Layout *layout = layout_create(3, 3);
i_range(layout, "I", 0);
i_range(layout, "P", 1);
i_range(layout, "D", 2);
layout_hsize(layout, 1, kEDIT_WIDTH);
layout_hsize(layout, 2, kEDIT_WIDTH);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);
layout_hmargin(layout, 0, 5);
layout_hmargin(layout, 1, 5);
cell_dbind(layout_cell(layout, 1, 0), Params, real32_t, KRg[0]);
cell_dbind(layout_cell(layout, 2, 0), Params, real32_t, KRg[1]);
cell_dbind(layout_cell(layout, 1, 1), Params, real32_t, KRg[2]);
cell_dbind(layout_cell(layout, 2, 1), Params, real32_t, KRg[3]);
cell_dbind(layout_cell(layout, 1, 2), Params, real32_t, KRg[4]);
cell_dbind(layout_cell(layout, 2, 2), Params, real32_t, KRg[5]);
return layout;

}

/**/

static Layout *i_left(Ctrl *ctrl)
{

Layout *layout = layout_create(1, 10);
Layout *layout1 = i_coeffs();
Button *button = button_push();
Label *label = label_create();
Button *button2 = button_push();
Button *button3 = button_push();
Button *button4 = button_push();
Label *label2 = label_create();
Layout *layout2 = i_ranges();
Button *button5 = button_push();
button_text(button, "Reset defaults");
button_text(button2, "Take");
button_text(button3, "Restore");
button_text(button4, "Clear");
button_text(button5, "More info");
label_text(label, "SnapShot");
label_text(label2, "Slider Range");
layout_layout(layout, layout1, 0, 0);
layout_button(layout, button, 0, 1);
layout_label(layout, label, 0, 2);

426 Chapter 24 - Bode

layout_button(layout, button2, 0, 3);
layout_button(layout, button3, 0, 4);
layout_button(layout, button4, 0, 5);
layout_label(layout, label2, 0, 6);
layout_layout(layout, layout2, 0, 7);
layout_button(layout, button5, 0, 9);
layout_halign(layout, 0, 7, ekLEFT);
layout_vmargin(layout, 0, 10);
layout_vmargin(layout, 1, 10);
layout_vmargin(layout, 2, 5);
layout_vmargin(layout, 3, 5);
layout_vmargin(layout, 4, 5);
layout_vmargin(layout, 5, 10);
layout_vmargin(layout, 6, 5);
layout_vmargin(layout, 7, 10);
layout_vexpand(layout, 8);
ctrl_reset(ctrl, button);
ctrl_take(ctrl, layout_cell(layout, 0, 3));
ctrl_restore(ctrl, layout_cell(layout, 0, 4));
ctrl_clear(ctrl, layout_cell(layout, 0, 5));
ctrl_info(ctrl, button5);
return layout;

}

/**/

static void i_slider_K(Layout *layout, const char_t *title, const uint32_t row)
{

Label *label = label_create();
Slider* slider = slider_create();
Edit* edit = edit_create();
label_text(label, title);
edit_align(edit, ekRIGHT);
layout_label(layout, label, 0, row);
layout_slider(layout, slider, 1, row);
layout_edit(layout, edit, 2, row);

}

/**/

static Layout *i_sliders(Ctrl *ctrl)
{

Layout *layout = layout_create(3, 3);
i_slider_K(layout, "I", 0);
i_slider_K(layout, "P", 1);
i_slider_K(layout, "D", 2);
layout_hsize(layout, 2, kEDIT_WIDTH);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);
layout_hmargin(layout, 0, 5);
layout_hmargin(layout, 1, 5);

427

layout_hexpand(layout, 1);
cell_dbind(layout_cell(layout, 1, 0), Params, real32_t, K[0]);
cell_dbind(layout_cell(layout, 2, 0), Params, real32_t, K[0]);
cell_dbind(layout_cell(layout, 1, 1), Params, real32_t, K[1]);
cell_dbind(layout_cell(layout, 2, 1), Params, real32_t, K[1]);
cell_dbind(layout_cell(layout, 1, 2), Params, real32_t, K[2]);
cell_dbind(layout_cell(layout, 2, 2), Params, real32_t, K[2]);
ctrl_slider1(ctrl, layout_cell(layout, 1, 0));
return layout;

}

/**/

static Layout* i_right(Ctrl *ctrl)
{

Layout *layout = layout_create(1, 3);
Layout* layout1 = i_sliders(ctrl);
View* view1 = view_create();
View* view2 = view_create();
layout_view(layout, view1, 0, 0);
layout_view(layout, view2, 0, 1);
layout_layout(layout, layout1, 0, 2);
layout_vmargin(layout, 0, 2);
layout_vmargin(layout, 1, 5);
layout_vexpand2(layout, 0, 1, .5f);
ctrl_view1(ctrl, view1);
ctrl_view2(ctrl, view2);
return layout;

}

/**/

static Panel *i_panel(Ctrl *ctrl)
{

Panel *panel = panel_create();
Layout *layout = layout_create(2, 1);
Layout *layout1 = i_left(ctrl);
Layout* layout2 = i_right(ctrl);
layout_layout(layout, layout1, 0, 0);
layout_layout(layout, layout2, 1, 0);
layout_hmargin(layout, 0, 5);
layout_hexpand(layout, 1);
layout_margin(layout, 10);
panel_layout(panel, layout);
layout_dbind(layout1, NULL, Params);
layout_dbind(layout2, NULL, Params);
cell_dbind(layout_cell(layout, 0, 0), Model, Params, cparams);
cell_dbind(layout_cell(layout, 1, 0), Model, Params, cparams);
layout_dbind(layout, listener(ctrl, ctrl_OnModelChange, Ctrl), Model);
ctrl_layout(ctrl, layout);
return panel;

428 Chapter 24 - Bode

}

/**/

Window* bdview_create(Ctrl *ctrl)
{

Panel *panel = i_panel(ctrl);
Window *window = window_create(ekWINDOW_STDRES);
window_panel(window, panel);
window_title(window, "Bode plot");
return window;

}

25C
ha

pt
er

Products

25.1 Specifications 430
25.2 Model-View-Controller 432
25.3 Model 432

25.3.1 JSON WebServices 433
25.3.2 Write/Read on disk 434
25.3.3 Add/Delete records 436

25.4 View 436
25.4.1 Multi-layout panel 438
25.4.2 Hide columns 439
25.4.3 Bar graphs 439
25.4.4 Translations 441
25.4.5 Dark Mode themes 442

25.5 Controller 443
25.5.1 Multi-threaded login 444
25.5.2 Synchronize Model and View 445
25.5.3 Change the image 447
25.5.4 Memory management 448

25.6 The complete program 449

In this project we will face the construction of an application that allows browsing
through a database of products obtained from a Web server (Figure 25.1). This client-
server pattern is widely used today, so we will have a stable base to create any application
based on this model. The source code is in folder /src/demo/products of the SDK
distribution.

430 Chapter 25 - Products

Figure 25.1: Application Products, Windows version.

Figure 25.2: macOS version.

25.1. Specifications

• The database is remote and we will access it through Web services that will encap-
sulate the data in JSON. To obtain the products we will use this service1 and to

1http://serv.nappgui.com/dproducts.php

http://serv.nappgui.com/dproducts.php

25.1 - Specifications 431

Figure 25.3: Linux/GTK+ version.

register a user this other2. We have four users registered in our database: amanda,
brenda, brian and john all with password 1234.

• The remote database is read-only. We do not have web services to edit it.

• The moment a user registers, all articles will automatically be downloaded.

• A small graph with the sales statistics of each product will be displayed.

• You can edit the database locally, as well as add or delete records.

• You can export the local database to disk, as well as import it.

• We will have the typical navigation controls: First, last, next, previous.

• We can establish a filter by description. Only those products whose description
matches partially with the filter will be displayed.

• The interface will be in seven languages: English, Spanish, Portuguese, Italian, Viet-
namese, Russian and Japanese. We can change the language without closing the
application.

• The application must run on Windows, macOS and Linux.

2http://serv.nappgui.com/duser.php?user=amanda&pass=1234

http://serv.nappgui.com/duser.php?user=amanda&pass=1234

432 Chapter 25 - Products

25.2. Model-View-Controller
Since this program has a medium level of complexity, we will fragment it into three

parts using the well-known pattern model-view-controller MVC (Figure 25.4).

prmodel.cprmodel.c prview.cprview.c

prmenu.cprmenu.c

prctrl.cprctrl.c

products.cproducts.c

MVVM

Figure 25.4: MVC modules that make up the application.

• Model: It will deal with the data itself, the connection with the server and the
reading/writing on disk. It will be implemented in prmodel.c.

• View: Here we will implement the data presentation layer, composed of the main
window (in prview.c) and the menu bar (in prmenu.c).

• Controller: Will take care of the logic of the program prctrl.c. It will respond to
user events and maintain consistency between the model and the view. Due to the
amount of extra work involved in synchronizing each field of the structure with the
interface controls, we will use the pattern Model-View-ViewModel MVVM where
the model data will be automatically synchronized with the interface and the I/O
channels.

• Main: module products.c. It contains the function osmain and load the three
previous actors.

25.3. Model
The data model of this application is quite simple (Listing 25.1), since it only requires

manipulating an array of structures of type Product.

Listing 25.1: Structures that make up the data model.
typedef struct _model_t Model;
typedef struct _product_t Product;

typedef enum _type_t

25.3 - Model 433

{
ekCPU,
ekGPU,
ekHDD,
ekSCD

} type_t;

struct _product_t
{

type_t type;
String *code;
String *description;
Image *image64;
real32_t price;

};

struct _model_t
{

ArrSt(uint32_t) *filter;
ArrPt(Product) *products;

};

As a previous step, we will register the model structures which will allow us to automate
I/O tasks without having to explicitly coding them thanks to “Data binding” (page 225)
(Listing 25.2).

Listing 25.2: Registration of data model struct fields.
dbind_enum(type_t, ekCPU);
dbind_enum(type_t, ekGPU);
dbind_enum(type_t, ekHDD);
dbind_enum(type_t, ekSCD);
dbind(Product, type_t, type);
dbind(Product, String*, code);
dbind(Product, String*, description);
dbind(Product, Image*, image64);
dbind(Product, real32_t, price);

25.3.1. JSON WebServices
We will get the articles data from the Web server in two steps. On the one hand we

will download a Stream with the JSON using HTTP and, later, we will parse it to a C
object (Listing 25.3).

Listing 25.3: JSON data download and processing.
wserv_t model_webserv(Model *model)
{

Stream *stm = http_dget("serv.nappgui.com",80,"/dproducts.php",NULL);

434 Chapter 25 - Products

if (stm != NULL)
{

PJson *json = json_read(stm, NULL, PJson);
stm_close(&stm);
...

The JSON of this web service3 consists of a header and a list of products (Listing 25.4),
so we must register a new structure in order to json_read can create the object correctly
(Listing 25.5). Note that JSON-C pairing is carried out by the field name, so these must
be identical (Figure 25.5).

Listing 25.4: Web service format.
{

"code":0,
"size":80,
"data":[
{"id":0,
"code":"i78700K",
"description":"Intel BX80684I78700K 8th Gen Core i78700K Processor",
type":0,
"price":374.8899999999999863575794734060764312744140625,
"image":"cpu_00.jpg",
"image64":"\/9j\/4AAQSkZJRgABAQ....
},
...

}

Listing 25.5: JSON header registration.
typedef struct _pjson_t PJson;
struct _pjson_t
{

int32_t code;
uint32_t size;
ArrPt(Product) *data;

};

dbind(PJson, int32_t, code);
dbind(PJson, uint32_t, size);
dbind(PJson, ArrPt(Product)*, data);

25.3.2. Write/Read on disk
Serialization (Listing 25.6) and de-serialization (Listing 25.7) of objects using binary

streams can also be performed automatically simply by registering the data types (Fig-
ure 25.6). We do not need to explicitly program reading and writing class methods.

3http://serv.nappgui.com/dproducts.php

http://serv.nappgui.com/dproducts.php

25.3 - Model 435

struct Product
{
 type_t type;
 String *code;
 String *description;
 Image *image64;
 real32_t price;
};

dbind

Product
type
code
description
image64
price

struct PJSon
{
 int32_t code;
 uint32_t size;
 ArrPt(Product) *data;
};

PJson
code
size
data

{
 "code":0,
 "size":80,
 "data":[
 {"id":0,
 "code":"i7-8700K",
 "description":"Intel BX8068..
 type":0,
 "price":374.88999,
 "image":"cpu_00.jpg",
 "image64":"\/9j\/4AAQSkZJR...
 }, ...

JSON

Figure 25.5: json_read access dbind registry to create a C object from a JSON stream.

Listing 25.6: Export of the database to disk.
bool_t model_export(Model *model, const char_t *pathname, ferror_t *err)
{

Stream *stm = stm_to_file(pathname, err);
if (stm != NULL)
{

dbind_write(stm, model>products, ArrPt(Product));
stm_close(&stm);
return TRUE;

}

return FALSE;
}

Listing 25.7: Importing the database from disk.
bool_t model_import(Model *model, const char_t *pathname, ferror_t *err)
{

Stream *stm = stm_from_file(pathname, err);
if (stm != NULL)
{

ArrPt(Product) *products = dbind_read(stm, ArrPt(Product));
stm_close(&stm);

if (products != NULL)
{

dbind_destroy(&model>products, ArrPt(Product));
model>products = products;
return TRUE;

}
}

return FALSE;
}

436 Chapter 25 - Products

struct Product
{
 type_t type;
 String *code;
 String *description;
 Image *image64;
 real32_t price;
};

dbind
Product
type
code
description
image64
price

11110001101011011

Figure 25.6: (De)serialization of binary objects by dbind.

25.3.3. Add/Delete records
And finally we will see how to add or delete records to the database using the construc-

tors and destructors provided dbind by default. In (Listing 25.8) we create a new article
and in (Listing 25.9) we destroy another existing one from its index.

Listing 25.8: Default constructor.
void model_add(Model *model)
{

Product *product = dbind_create(Product);
arrpt_append(model>products, product, Product);

}

Listing 25.9: Destructor.
static void i_destroy(Product **product)
{

dbind_destroy(product, Product);
}

void model_delete(Model *model, const uint32_t index)
{

arrpt_delete(model>products, index, i_destroy, Product);
}

25.4. View

We have fragmented the design of the main window into several blocks, each one im-
plemented in its own sublayout. In “Use of sublayoutsUse of sublayouts” (page 388) and
“Sub-layoutsSub-layouts” (page 333) you have examples about it. We start with a layout
of a column and two rows (Listing 25.10) (Figure 25.7). In the upper cell we will place a
sublayout with two other cells horizontally: one for the form and one for the login panel.
The lower cell will be used for the status bar.

25.4 - View 437

Listing 25.10: Composition of the main layout.
static Layout *i_layout(Ctrl *ctrl)
{

Layout *layout = layout_create(1, 2);
Layout *layout0 = layout_create(2, 1);
Layout *layout1 = i_form(ctrl);
Layout *layout2 = i_status_bar(ctrl);
Panel *panel1 = i_login_panel(ctrl);
layout_layout(layout0, layout1, 0, 0);
layout_panel(layout0, panel1, 1, 0);
layout_layout(layout, layout0, 0, 0);
layout_layout(layout, layout2, 0, 1);
return layout;

}

layout(1,2)
sublayout(2,1)

i_form()
i_login
panel()

i_status_bar()
Figure 25.7: Main window layout.

In turn, the layout that integrates the form, implemented in i_form(), is composed
of three cells in vertical (Figure 25.8): One for the toolbar i_toolbar(), another for the
selection slider and another for the article data i_product(). This last cell is a sublayout
of two columns and three rows. In the central row we locate the labels Type and Price and,

438 Chapter 25 - Products

in the other two, four sublayout created by the functions i_code_desc() , i_n_img(),
i_type() and i_price().

i_toolbar()

i_code_desc() i_n_img()

 Type Price

i_type() i_price()

i_form(1,3) i_product(2,3)

200px 100%

Figure 25.8: Layout que implementa el formulario.

If we look at the code of i_product(), reproduced partially in (Listing 25.11), we have
made a “Layout formatLayout format” (page 29), assigning a minimum width and height
for the upper cells. We also indicate that the vertical expansion is performed on row 0,
avoiding the expansion of rows 1 and 2, corresponding to the label, the radiobutton and
the price.

Listing 25.11: Format of layout i_product()).
static Layout *i_product()
{

Layout *layout = layout_create(2, 3);
...
layout_hsize(layout, 0, 200.f);
layout_hsize(layout, 1, 200.f);
layout_vsize(layout, 0, 200.f);
layout_vexpand(layout, 0);
...

}

25.4.1. Multi-layout panel
For user login we have used a panel with two different layouts: One for registration

and another to show user data once registered (Listing 25.12) (Figure 25.9). This way,
the controller can easily switch between them by calling panel_visible_layout. This

25.4 - View 439

function will be responsible for displaying/hiding controls and recalculating the size of the
window, since it may have suffered variations due to the change in layout.

Listing 25.12: Creation of a multi-layout panel.
static Panel *i_login_panel(Ctrl *ctrl)
{

Panel *panel = panel_create();
Layout *layout0 = i_login(ctrl);
Layout *layout1 = i_logout(ctrl);
panel_layout(panel, layout0);
panel_layout(panel, layout1);
return panel;

}

i_login(1,10)

100%

i_logout(1,6)

100%

Figure 25.9: Login panel with two layouts.

25.4.2. Hide columns
It is also possible to hide the login panel through the menu or the corresponding button

(Figure 25.10). This is simple to do inside the controller, acting on the column that
contains said panel.
layout_show_col(ctrl>layout, 1, state == ekGUI_ON ? TRUE : FALSE);

25.4.3. Bar graphs
One of the requirements is that the interface includes a small bar chart that shows the

sales statistics of each product (Figure 25.11). The code generated by this graphic is in

440 Chapter 25 - Products

Figure 25.10: Show/Hide the login panel.

(Listing 25.13). In “Use of Custom ViewsUse of Custom Views” (page 390), “Parametric
drawingParametric drawing” (page 391) and “2D Contexts” (page 257) you have more
information about interactive graphics.

Listing 25.13: Parametric drawing of a bar graph.
static void i_OnStats(Ctrl *ctrl, Event *e)
{

const EvDraw *params = event_params(e, EvDraw);
uint32_t i, n = sizeof(ctrl>stats) / sizeof(real32_t);
real32_t p = 10.f, x = p, y0 = params>height p;
real32_t w = (params>width p * 2) / n;
real32_t h = params>height p * 2;
real32_t avg = 0, pavg;
char_t tavg[16];
color_t c[2];
real32_t stop[2] = {0, 1};
c[0] = kHOLDER;
c[1] = kCOLOR_VIEW;
draw_fill_linear(params>ctx, c,stop, 2, 0, p, 0, params>height p + 1);

for (i = 0; i < n; ++i)
{

real32_t hr = h * (ctrl>stats[i] / i_MAX_STATS);
real32_t y = p + h hr;
draw_rect(params>ctx, ekFILL, x, y, w 2, hr);
avg += ctrl>stats[i];
x += w;

}

avg /= n;
pavg = h * (avg / i_MAX_STATS);

25.4 - View 441

pavg = p + h pavg;
bstd_sprintf(tavg, sizeof(tavg), "%.2f", avg);
draw_fill_color(params>ctx, kTXTRED);
draw_line_color(params>ctx, kTXTRED);
draw_line(params>ctx, p 2, pavg, params>width p, pavg);
draw_line_color(params>ctx, kCOLOR_LABEL);
draw_line(params>ctx, p 2, y0 + 2, params>width p, y0 + 2);
draw_line(params>ctx, p 2, y0 + 2, p 2, p);
draw_text(params>ctx, ekFILL, tavg, p, pavg);

}

Figure 25.11: Dynamic graphs in
the login panel.

25.4.4. Translations
The interface has been translated into seven languages, with English as default (Fig-

ure 25.12). To change the language, we call to gui_language within the PopUp event
handler (Listing 25.14). In “Resources” (page 129) you have a step-by-step guide to locat-
ing and translating applications.

Listing 25.14: Code that changes the language of the program.
static void i_OnLang(Ctrl *ctrl, Event *e)
{

const EvButton *params = event_params(e, EvButton);
static const char_t *LANGS[] = { "en_US", "es_ES", "pt_PT", "it_IT", "vi_VN

↪→ ", "ru_RU", "ja_JP" };
gui_language(LANGS[params>index]);

}

442 Chapter 25 - Products

Figure 25.12: Automatic translations.

25.4.5. Dark Mode themes
NAppGUI uses native interface controls, which causes windows to integrate seamlessly

with the active desktop theme on each machine. However, if we use custom icons or colors,
these may not always be consistent when porting to other systems.

• In “Gui” (page 297) a series of “system” colors are defined, for example gui_label_color
, whose RGB value will be resolved at runtime depending on the target platform.
Using these functions, we will be certain that our applications will always look good
and present a consistent color scheme. In “Color table” (page 639) you have a demo
that shows these colors.

• Use gui_alt_color to define colors with two versions: One for light themes and
one for dark ones. NAppGUI will be responsible for resolving the RGB whenever
necessary (Listing 25.15).

Listing 25.15: Custom colors used in Products.
kHOLDER = gui_alt_color(color_bgr(0x4681Cf), color_bgr(0x1569E6));
kEDITBG = gui_alt_color(color_bgr(0xFFFFe4), color_bgr(0x101010));
kSTATBG = gui_alt_color(color_bgr(0xFFC165), color_bgr(0x523d1d));
kSTATSK = gui_alt_color(color_bgr(0xFF8034), color_bgr(0xFF8034));
kTXTRED = gui_alt_color(color_bgr(0xFF0000), color_bgr(0xEB665A));

• For the images, we must include two versions in the program resources and select
one or the other depending on the gui_dark_mode value (Listing 25.16).

25.5 - Controller 443

Listing 25.16: Icon selection for Light or Dark Themes.
void ctrl_theme_images(Ctrl *ctrl)
{

bool_t dark = color_dark_mode();
button_image(cell_button(ctrl>first_cell), dark ? FIRSTD_PNG :

↪→ FIRST_PNG);
button_image(cell_button(ctrl>back_cell), dark ? BACKD_PNG : BACK_PNG

↪→);
button_image(cell_button(ctrl>next_cell), dark ? NEXTD_PNG : NEXT_PNG

↪→);
button_image(cell_button(ctrl>last_cell), dark ? LASTD_PNG : LAST_PNG

↪→);
button_image(cell_button(ctrl>add_cell), ADD_PNG);
button_image(cell_button(ctrl>minus_cell), MINUS_PNG);
button_image(cell_button(ctrl>setting_cell), SETTINGS_PNG);
button_image(cell_button(ctrl>login_cell), LOGIN16_PNG);
button_image(cell_button(ctrl>logout_cell), dark ? LOGOUT16D_PNG :

↪→ LOGOUT16_PNG);
menuitem_image(ctrl>import_item, OPEN_PNG);
menuitem_image(ctrl>export_item, dark ? SAVED_PNG : SAVE_PNG);
menuitem_image(ctrl>first_item, dark ? FIRST16D_PNG : FIRST16_PNG);
menuitem_image(ctrl>back_item, dark ? BACK16D_PNG : BACK16_PNG);
menuitem_image(ctrl>next_item, dark ? NEXT16D_PNG : NEXT16_PNG);
menuitem_image(ctrl>last_item, dark ? LAST16D_PNG : LAST16_PNG);
menuitem_image(ctrl>login_item, LOGIN16_PNG);
menuitem_image(ctrl>logout_item, dark ? LOGOUT16D_PNG : LOGOUT16_PNG)

↪→ ;
}

• Use gui_OnThemeChanged to update custom icons at runtime (Listing 25.17) (Fig-
ure 25.13).

Listing 25.17: Runtime icon update.
static void i_OnThemeChanged(App *app, Event *e)
{

ctrl_theme_images(app>ctrl);
unref(e);

}

gui_OnThemeChanged(listener(app, i_OnThemeChanged, App));

25.5. Controller
The controller is responsible for maintaining consistency between the Model and the

View, as well as for implementing the business logic. Specifically, this program does
virtually nothing with the data, regardless of downloading and displaying, which presents
a good opportunity to practice.

444 Chapter 25 - Products

Figure 25.13: Desktop theme change.

25.5.1. Multi-threaded login
When the user presses the button [Login] the program calls two Web services. One

to register the user and another to download the data. This process lasts about a second,
which is an eternity from the point of view of a process. During this time you will come
to appreciate that the program remains “frozen” waiting for the calls to the server to be
resolved. This occurs because a “slow” task is running on the same thread that manages
the program message loop (Figure 25.14)(a).

To avoid this unpleasant effect, which can be aggravated if the request lasts longer,
we will use “Multi-threaded tasksMulti-threaded tasks” (page 370) by osapp_task (List-
ing 25.18) (Figure 25.14)(b). This creates a new execution thread that begins in i_login_begin
. At the time the data has been downloaded, the NAppGUI task manager will call
i_login_end (already in the main thread) and the program will continue with its (mono-
thread) execution.

Listing 25.18: Multi-thread login process.
static void i_OnLogin(Ctrl *ctrl, Event *e)
{

ctrl>status = ekIN_LOGIN;
i_status(ctrl);
osapp_task(ctrl, 0., i_login_begin, NULL, i_login_end, Ctrl);
unref(e);

}

25.5 - Controller 445

i_OnLogini_OnLogin

i_OnLogini_OnLogin

i_login_begini_login_begin i_login_endi_login_end

(a) (b)

Figure 25.14: Execution of a “slow” task. Single-thread (a), Multi-thread (b). With
a single thread the interface will be “frozen”.

25.5.2. Synchronize Model and View
Keeping the Data Model and the View synchronized is also the controller’s task. As

the user interacts with the interface, it must capture the events, filter data and update the
model objects. Similarly, every time the model changes it has to refresh the interface. This
bidirectional synchronization can be done using dbind, saving a lot of extra programming
code (Figure 25.15).

model.cmodel.c view.cview.c

ctrl.cctrl.c

dbinddbind

MVVM

Figure 25.15: DBind helps the controller in the recurring task of
synchronizing objects with the interface.

The implementation of this MVVM pattern Model-View-ViewModel is quite simple
and we have it summarized in (Listing 25.19) (Figure 25.16).

• Use cell_dbind to link a layout cell with a model field.

• Use layout_dbind to link the layout containing the previous cells with the struct
which contains the fields.

• Use layout_dbind_obj to assign an object to the layout. From here the Model-View
updates will be made automatically.

Listing 25.19: Binding struct with layout.

446 Chapter 25 - Products

// In View
Cell *cell0 = layout_cell(layout, 0, 1);
...
cell_dbind(cell0, Product, String*, code);
cell_dbind(cell1, Product, String*, description);
cell_dbind(cell2, Product, type_t, type);
cell_dbind(cell3, Product, Image*, image64);
cell_dbind(cell4, Product, real32_t, price);
layout_dbind(layout, Product);

// In Controller
Product *product = model_product(model, index);
layout_dbind_obj(layout, product, Product);

Product
type
code
description
image64
price

dbind

layout_dbindcell_dbind

Figure 25.16: Data binding in GUI.

It is common for data to be reviewed (filtered) after editing to verify that the values
are consistent with the model. dbind supports different formats for registered fields. In
(Listing 25.20) we have applied formatting to the field pricefrom Product.

Listing 25.20: Field format price from Product.
dbind_default(Product, real32_t, price, 1);
dbind_range(Product, real32_t, price, .50f, 1e6f);
dbind_precision(Product, real32_t, price, .05f);
dbind_increment(Product, real32_t, price, 5.f);

25.5 - Controller 447

dbind_suffix(Product, real32_t, price, "€");

25.5.3. Change the image
To change the image associated with the product, the controller has slightly modified

the operation of the ImageView, which will show an edit icon each time the mouse is
placed on top of the image (Listing 25.21), (Figure 25.17).

Listing 25.21: Drawing an overlay when the mouse is over the image.
static void i_OnImgDraw(Ctrl *ctrl, Event *e)
{

const EvDraw *params = event_params(e, EvDraw);
const Image *image = gui_respack_image(EDIT_PNG);
uint32_t w, h;
image_size(image, &w, &h);
draw_image(params>context, image, params>width w 10, params>height

↪→ h 10);
unref(ctrl);

}
...
imageview_OnOverDraw(view, listener(ctrl, i_OnImgDraw, Ctrl));

Figure 25.17: Superimposed icon on image control.

Clicking on the image will open the file opening dialog that will allow us to select
a new one. If the dialog is accepted, the image will be loaded and assigned to control
(Listing 25.22). The object will update automatically.

Listing 25.22: Drawing an overlay when the mouse is over the image.
static void i_OnImgClick(Ctrl *ctrl, Event *e)
{

const char_t *type[] = { "png", "jpg" };
const char_t *file = comwin_open_file(type, 2, NULL);

448 Chapter 25 - Products

if (file != NULL)
{

Image *image = image_from_file(file, NULL);
if (image != NULL)
{

View *view = cell_view(ctrl>image_cell);
imageview_image(view, image);
image_destroy(&image);

}
}
unref(e);

}
...
imageview_OnClick(view, listener(ctrl, i_OnImgClick, Ctrl));

25.5.4. Memory management
After closing the program, a report will be printed with the use of memory, alerting us

to possible memory leaks (Listing 25.23). It does not hurt to check it periodically in order
to detect anomalies as soon as possible.

Listing 25.23: Memory usage statistics, generated at the close of any NAppGUI application.
[22:17:21] [OK] Heap Memory Staticstics
[22:17:21] ============================
[22:17:21] Total a/dellocations: 2065, 2065
[22:17:21] Total bytes a/dellocated: 2831766, 2831766
[22:17:21] Max bytes allocated: 1642879
[22:17:21] Effective reallocations: (0/55)
[22:17:21] Real allocations: 13 pages of 65536 bytes
[22:17:21] 5 pages greater than 65536 bytes
[22:17:21] ============================

If we want more detailed information about the use of memory, we can pass the pa-
rameter "hv" in the options field of osmain (Listing 25.24).
osmain(i_create, i_destroy, "hv", App)

Listing 25.24: Detailed output of memory usage.
[12:01:41] 'App' a/deallocations: 1, 1 (32) bytes
[12:01:41] 'ArrPt::Cell' a/deallocations: 24, 24 (576) bytes
[12:01:41] 'ArrPt::GuiComponent' a/deallocations: 8, 8 (192) bytes
...
[12:01:41] 'Button' a/deallocations: 13, 13 (1664) bytes
[12:01:41] 'View' a/deallocations: 5, 5 (840) bytes
[12:01:41] 'Clock' a/deallocations: 1, 1 (48) bytes
[12:01:41] 'Combo' a/deallocations: 1, 1 (176) bytes
...

25.6 - The complete program 449

[12:01:41] 'UpDown' a/deallocations: 1, 1 (64) bytes
[12:01:41] 'VImgData' a/deallocations: 4, 4 (160) bytes
[12:01:41] 'Window' a/deallocations: 1, 1 (80) bytes
[12:01:41] 'bool_t::arr' a/deallocations: 6, 6 (27) bytes
[12:01:41] 'i_App' a/deallocations: 1, 1 (184) bytes
[12:01:41] 'i_Task' a/deallocations: 1, 1 (64) bytes

25.6. The complete program

Listing 25.25: demo/products/products.hxx
/* Products Types */

#ifndef __TYPES_HXX__
#define __TYPES_HXX__

#include <gui/gui.hxx>

typedef enum _wserv_t
{

ekWS_CONNECT = 1,
ekWS_JSON,
ekWS_ACCESS,
ekWS_OK

} wserv_t;

typedef struct _model_t Model;
typedef struct _product_t Product;
typedef struct _ctrl_t Ctrl;

__EXTERN_C

extern color_t kHOLDER;
extern color_t kEDITBG;
extern color_t kSTATBG;
extern color_t kSTATSK;
extern color_t kTXTRED;

__END_C

#endif

Listing 25.26: demo/products/products.c
/* NAppGUI Products Demo */

#include "nappgui.h"
#include "prmodel.h"
#include "prmenu.h"
#include "prctrl.h"

450 Chapter 25 - Products

#include "prview.h"
#include "res_products.h"
#include <inet/inet.h>

typedef struct _app_t App;
struct _app_t
{

Model *model;
Ctrl *ctrl;
Window *window;
Menu *menu;

};

color_t kHOLDER;
color_t kEDITBG;
color_t kSTATBG;
color_t kSTATSK;
color_t kTXTRED;

/**/

static void i_OnThemeChanged(App *app, Event *e)
{

ctrl_theme_images(app>ctrl);
unref(e);

}

/**/

static App *i_create(void)
{

App *app = heap_new(App);
kHOLDER = gui_alt_color(color_bgr(0x4681Cf), color_bgr(0x1569E6));
kEDITBG = gui_alt_color(color_bgr(0xFFFFe4), color_bgr(0x101010));
kSTATBG = gui_alt_color(color_bgr(0xFFC165), color_bgr(0x523d1d));
kSTATSK = gui_alt_color(color_bgr(0xFF8034), color_bgr(0xFF8034));
kTXTRED = gui_alt_color(color_bgr(0xFF0000), color_bgr(0xEB665A));
inet_start();
gui_respack(res_products_respack);
gui_language("");
gui_OnThemeChanged(listener(app, i_OnThemeChanged, App));
model_bind();
app>model = model_create();
app>ctrl = ctrl_create(app>model);
app>menu = prmenu_create(app>ctrl);
app>window = prview_create(app>ctrl);
osapp_menubar(app>menu, app>window);
ctrl_run(app>ctrl);
window_origin(app>window, v2df(100.f, 100.f));
window_show(app>window);
return app;

25.6 - The complete program 451

}

/**/

static void i_destroy(App **app)
{

cassert_no_null(app);
cassert_no_null(*app);
ctrl_destroy(&(*app)>ctrl);
window_destroy(&(*app)>window);
menu_destroy(&(*app)>menu);
model_destroy(&(*app)>model);
inet_finish();
heap_delete(app, App);

}

/**/

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

Listing 25.27: demo/products/prmodel.c
/* Products Model */

#include "prmodel.h"
#include "res_products.h"
#include <gui/guiall.h>
#include <inet/httpreq.h>
#include <inet/json.h>

typedef struct _pjson_t PJson;

typedef enum _type_t
{

ekCPU,
ekGPU,
ekHDD,
ekSCD

} type_t;

struct _product_t
{

type_t type;
String *code;
String *description;
Image *image64;
real32_t price;

};

struct _pjson_t

452 Chapter 25 - Products

{
int32_t code;
uint32_t size;
ArrPt(Product) *data;

};

struct _model_t
{

ArrSt(uint32_t) *filter;
ArrPt(Product) *products;

};

DeclPt(Product);

/**/

Model *model_create(void)
{

Model *model = heap_new(Model);
model>filter = arrst_create(uint32_t);
model>products = arrpt_create(Product);
return model;

}

/**/

void model_destroy(Model **model)
{

arrst_destroy(&(*model)>filter, NULL, uint32_t);
dbind_destroy(&(*model)>products, ArrPt(Product));
heap_delete(model, Model);

}

/**/

static Stream *i_http_get(void)
{

Http *http = http_create("serv.nappgui.com", 80);
Stream *stm = NULL;

if (http_get(http, "/dproducts.php", NULL, 0, NULL) == TRUE)
{

uint32_t status = http_response_status(http);
if (status >= 200 && status <= 299)
{

stm = stm_memory(4096);
if (http_response_body(http, stm, NULL) == FALSE)

stm_close(&stm);
}

}

25.6 - The complete program 453

http_destroy(&http);
return stm;

}

/**/

wserv_t model_webserv(Model *model)
{

Stream *stm = i_http_get();
if (stm != NULL)
{

PJson *json = json_read(stm, NULL, PJson);
stm_close(&stm);

if (json != NULL)
{

cassert(json>size == arrpt_size(json>data, Product));
dbind_destroy(&model>products, ArrPt(Product));
model>products = json>data;
json>data = NULL;
json_destroy(&json, PJson);
return ekWS_OK;

}

return ekWS_JSON;
}

return ekWS_CONNECT;
}

/**/

bool_t model_import(Model *model, const char_t *pathname, ferror_t *err)
{

Stream *stm = stm_from_file(pathname, err);
if (stm != NULL)
{

ArrPt(Product) *products = dbind_read(stm, ArrPt(Product));
stm_close(&stm);

if (products != NULL)
{

dbind_destroy(&model>products, ArrPt(Product));
model>products = products;
return TRUE;

}
}

return FALSE;
}

454 Chapter 25 - Products

/**/

bool_t model_export(Model *model, const char_t *pathname, ferror_t *err)
{

Stream *stm = stm_to_file(pathname, err);
if (stm != NULL)
{

dbind_write(stm, model>products, ArrPt(Product));
stm_close(&stm);
return TRUE;

}

return FALSE;
}

/**/

uint32_t model_count(const Model *model)
{

uint32_t total = arrst_size(model>filter, uint32_t);
if (total == 0)

total = arrpt_size(model>products, Product);
return total;

}

/**/

void model_clear(Model *model)
{

dbind_destroy(&model>products, ArrPt(Product));
arrst_clear(model>filter, NULL, uint32_t);
model>products = dbind_create(ArrPt(Product));

}

/**/

void model_add(Model *model)
{

Product *product = dbind_create(Product);
arrpt_append(model>products, product, Product);
arrst_clear(model>filter, NULL, uint32_t);

}

/**/

static uint32_t i_index(ArrSt(uint32_t) *filter, const uint32_t index)
{

if (arrst_size(filter, uint32_t) > 0)
return *arrst_get(filter, index, uint32_t);

else
return index;

25.6 - The complete program 455

}

/**/

static __INLINE void i_destroy(Product **product)
{

dbind_destroy(product, Product);
}

/**/

void model_delete(Model *model, const uint32_t index)
{

uint32_t lindex = i_index(model>filter, index);
arrpt_delete(model>products, lindex, i_destroy, Product);
arrst_clear(model>filter, NULL, uint32_t);

}

/**/

bool_t model_filter(Model *model, const char_t *filter)
{

ArrSt(uint32_t) *new_filter = arrst_create(uint32_t);

arrpt_foreach(product, model>products, Product)
if (str_str(tc(product>description), filter) != NULL)

arrst_append(new_filter, product_i, uint32_t);
arrpt_end();

arrst_destroy(&model>filter, NULL, uint32_t);
model>filter = new_filter;

return (bool_t)(arrst_size(new_filter, uint32_t) > 0);
}

/**/

Product *model_product(Model *model, const uint32_t product_id)
{

uint32_t lindex = i_index(model>filter, product_id);
return arrpt_get(model>products, lindex, Product);

}

/**/

void model_bind(void)
{

dbind_enum(type_t, ekCPU, "");
dbind_enum(type_t, ekGPU, "");
dbind_enum(type_t, ekHDD, "");
dbind_enum(type_t, ekSCD, "");

456 Chapter 25 - Products

dbind(Product, type_t, type);
dbind(Product, String*, code);
dbind(Product, String*, description);
dbind(Product, Image*, image64);
dbind(Product, real32_t, price);
dbind(PJson, int32_t, code);
dbind(PJson, uint32_t, size);
dbind(PJson, ArrPt(Product)*, data);
dbind_default(Product, real32_t, price, 1);
dbind_range(Product, real32_t, price, .50f, 1e6f);
dbind_precision(Product, real32_t, price, .05f);
dbind_increment(Product, real32_t, price, 5.f);
dbind_suffix(Product, real32_t, price, "€");
dbind_default(Product, Image*, image64, gui_image(NOIMAGE_PNG));

}

/**/

void model_layout(Layout *layout)
{

layout_dbind(layout, NULL, Product);
}

/**/

void model_type(Cell *cell)
{

cell_dbind(cell, Product, type_t, type);
}

/**/

void model_code(Cell *cell)
{

cell_dbind(cell, Product, String*, code);
}

/**/

void model_desc(Cell *cell)
{

cell_dbind(cell, Product, String*, description);
}

/**/

void model_image(Cell *cell)
{

cell_dbind(cell, Product, Image*, image64);
}

25.6 - The complete program 457

/**/

void model_price(Cell *cell)
{

cell_dbind(cell, Product, real32_t, price);
}

Listing 25.28: demo/products/prview.c
/* Products View */

#include "prview.h"
#include "prctrl.h"
#include "res_products.h"
#include <gui/guiall.h>

/**/

static Layout *i_toolbar(Ctrl *ctrl)
{

Layout *layout = layout_create(8, 1);
Button *button0 = button_flat();
Button *button1 = button_flat();
Button *button2 = button_flat();
Button *button3 = button_flat();
Button *button4 = button_flat();
Button *button5 = button_flat();
Button *button6 = button_flatgle();
Combo *combo = combo_create();
button_text(button0, TWIN_FIRST);
button_text(button1, TWIN_BACK);
button_text(button2, TWIN_NEXT);
button_text(button3, TWIN_LAST);
button_text(button4, TWIN_ADD);
button_text(button5, TWIN_DEL);
button_text(button6, TWIN_SETTINGS_PANEL);
combo_tooltip(combo, TWIN_FILTER_DESC);
combo_bgcolor_focus(combo, kEDITBG);
combo_phtext(combo, TWIN_FILTER);
combo_phcolor(combo, kHOLDER);
combo_phstyle(combo, ekFITALIC | ekFUNDERLINE);
layout_button(layout, button0, 0, 0);
layout_button(layout, button1, 1, 0);
layout_button(layout, button2, 2, 0);
layout_button(layout, button3, 3, 0);
layout_button(layout, button4, 4, 0);
layout_button(layout, button5, 5, 0);
layout_combo(layout, combo, 6, 0);
layout_button(layout, button6, 7, 0);
layout_hmargin(layout, 5, 5);
layout_hmargin(layout, 6, 5);

458 Chapter 25 - Products

layout_hexpand(layout, 6);
ctrl_first_cell(ctrl, layout_cell(layout, 0, 0));
ctrl_back_cell(ctrl, layout_cell(layout, 1, 0));
ctrl_next_cell(ctrl, layout_cell(layout, 2, 0));
ctrl_last_cell(ctrl, layout_cell(layout, 3, 0));
ctrl_add_cell(ctrl, layout_cell(layout, 4, 0));
ctrl_minus_cell(ctrl, layout_cell(layout, 5, 0));
ctrl_filter_cell(ctrl, layout_cell(layout, 6, 0));
ctrl_setting_cell(ctrl, layout_cell(layout, 7, 0));
return layout;

}

/**/

static Layout *i_code_desc(Ctrl *ctrl)
{

Layout *layout = layout_create(1, 4);
Label *label0 = label_create();
Label *label1 = label_create();
Edit *edit0 = edit_create();
Edit *edit1 = edit_multiline();
label_text(label0, TWIN_CODE);
label_text(label1, TWIN_DESC);
edit_phtext(edit0, TWIN_TYPE_CODE);
edit_phtext(edit1, TWIN_TYPE_DESC);
edit_bgcolor_focus(edit0, kEDITBG);
edit_bgcolor_focus(edit1, kEDITBG);
edit_phcolor(edit0, kHOLDER);
edit_phcolor(edit1, kHOLDER);
edit_phstyle(edit0, ekFITALIC | ekFUNDERLINE);
edit_phstyle(edit1, ekFITALIC | ekFUNDERLINE);
layout_label(layout, label0, 0, 0);
layout_edit(layout, edit0, 0, 1);
layout_label(layout, label1, 0, 2);
layout_edit(layout, edit1, 0, 3);
layout_vmargin(layout, 1, 10);
layout_vexpand(layout, 3);
ctrl_code_cell(ctrl, layout_cell(layout, 0, 1));
ctrl_desc_cell(ctrl, layout_cell(layout, 0, 3));
return layout;

}

/**/

static Layout *i_type(void)
{

Layout *layout = layout_create(4, 1);
Button *button0 = button_radio();
Button *button1 = button_radio();
Button *button2 = button_radio();
Button *button3 = button_radio();

25.6 - The complete program 459

button_text(button0, TWIN_CPU);
button_text(button1, TWIN_GPU);
button_text(button2, TWIN_HDD);
button_text(button3, TWIN_SCD);
layout_button(layout, button0, 0, 0);
layout_button(layout, button1, 1, 0);
layout_button(layout, button2, 2, 0);
layout_button(layout, button3, 3, 0);
return layout;

}

/**/

static Layout *i_n_img(Ctrl *ctrl)
{

Layout *layout = layout_create(1, 2);
Label *label = label_create();
ImageView *view = imageview_create();
label_align(label, ekCENTER);
layout_halign(layout, 0, 0, ekJUSTIFY);
layout_label(layout, label, 0, 0);
layout_imageview(layout, view, 0, 1);
layout_vexpand(layout, 1);
ctrl_counter_cell(ctrl, layout_cell(layout, 0, 0));
ctrl_image_cell(ctrl, layout_cell(layout, 0, 1));
return layout;

}

/**/

static Layout *i_price(void)
{

Layout *layout = layout_create(2, 1);
Edit *edit = edit_create();
Font *font = font_system(18, ekFBOLD);
UpDown *updown = updown_create();
edit_phtext(edit, TWIN_TYPE_PRICE);
edit_font(edit, font);
edit_align(edit, ekRIGHT);
edit_color(edit, kTXTRED);
edit_bgcolor_focus(edit, kEDITBG);
edit_phcolor(edit, kHOLDER);
edit_phstyle(edit, ekFITALIC | ekFUNDERLINE);
layout_edit(layout, edit, 0, 0);
layout_updown(layout, updown, 1, 0);
layout_hsize(layout, 1, 24);
layout_hexpand(layout, 0);
font_destroy(&font);
return layout;

}

460 Chapter 25 - Products

/**/

static Layout *i_product(Ctrl *ctrl)
{

Layout *layout = layout_create(2, 3);
Layout *layout0 = i_code_desc(ctrl);
Layout *layout1 = i_type();
Layout *layout2 = i_n_img(ctrl);
Layout *layout3 = i_price();
Label *label0 = label_create();
Label *label1 = label_create();
label_text(label0, TWIN_TYPE);
label_text(label1, TWIN_PRICE);
layout_layout(layout, layout0, 0, 0);
layout_label(layout, label0, 0, 1);
layout_layout(layout, layout1, 0, 2);
layout_layout(layout, layout2, 1, 0);
layout_label(layout, label1, 1, 1);
layout_layout(layout, layout3, 1, 2);
layout_halign(layout, 1, 1, ekRIGHT);
layout_hsize(layout, 1, 200);
layout_vsize(layout, 0, 200);
layout_hmargin(layout, 0, 10);
layout_vmargin(layout, 0, 10);
layout_margin4(layout, 0, 10, 10, 10);
layout_vexpand(layout, 0);
ctrl_type_cell(ctrl, layout_cell(layout, 0, 2));
ctrl_price_cell(ctrl, layout_cell(layout, 1, 2));
return layout;

}

/**/

static Layout *i_form(Ctrl *ctrl)
{

Layout *layout = layout_create(1, 3);
Layout *layout0 = i_toolbar(ctrl);
Layout *layout1 = i_product(ctrl);
Slider *slider = slider_create();
Cell *cell = NULL;
layout_layout(layout, layout0, 0, 0);
layout_slider(layout, slider, 0, 1);
layout_layout(layout, layout1, 0, 2);
layout_vexpand(layout, 2);
cell = layout_cell(layout, 0, 1);
cell_padding4(cell, 0, 10, 0, 10);
ctrl_slider_cell(ctrl, cell);
return layout;

}

/**/

25.6 - The complete program 461

static Layout *i_login(Ctrl *ctrl)
{

Layout *layout = layout_create(1, 10);
Label *label0 = label_create();
Label *label1 = label_multiline();
Label *label2 = label_create();
Label *label3 = label_create();
PopUp *popup0 = popup_create();
ImageView *view0 = imageview_create();
Edit *edit0 = edit_create();
Edit *edit1 = edit_create();
Button *button = button_push();
label_text(label0, TWIN_SETLANG);
label_text(label1, TWIN_LOGIN_MSG);
label_text(label2, TWIN_USER);
label_text(label3, TWIN_PASS);
popup_add_elem(popup0, ENGLISH, (const Image*)USA_PNG);
popup_add_elem(popup0, SPANISH, (const Image*)SPAIN_PNG);
popup_add_elem(popup0, PORTUGUESE, (const Image*)PORTUGAL_PNG);
popup_add_elem(popup0, ITALIAN, (const Image*)ITALY_PNG);
popup_add_elem(popup0, VIETNAMESE, (const Image*)VIETNAM_PNG);
popup_add_elem(popup0, RUSSIAN, (const Image*)RUSSIA_PNG);
popup_add_elem(popup0, JAPANESE, (const Image*)JAPAN_PNG);
popup_tooltip(popup0, TWIN_SETLANG);
imageview_image(view0, (const Image*)USER_PNG);
edit_passmode(edit1, TRUE);
button_text(button, TWIN_LOGIN);
layout_label(layout, label0, 0, 0);
layout_popup(layout, popup0, 0, 1);
layout_label(layout, label1, 0, 2);
layout_imageview(layout, view0, 0, 3);
layout_label(layout, label2, 0, 4);
layout_edit(layout, edit0, 0, 5);
layout_label(layout, label3, 0, 6);
layout_edit(layout, edit1, 0, 7);
layout_button(layout, button, 0, 9);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 10);
layout_vmargin(layout, 2, 10);
layout_vmargin(layout, 5, 5);
layout_vmargin(layout, 8, 5);
layout_margin4(layout, 5, 10, 10, 10);
layout_hsize(layout, 0, 200);
layout_vexpand(layout, 8);
ctrl_lang_cell(ctrl, layout_cell(layout, 0, 1));
ctrl_user_cell(ctrl, layout_cell(layout, 0, 5));
ctrl_pass_cell(ctrl, layout_cell(layout, 0, 7));
ctrl_login_cell(ctrl, layout_cell(layout, 0, 9));
return layout;

}

462 Chapter 25 - Products

/**/

static Layout *i_logout(Ctrl *ctrl)
{

Layout *layout = layout_create(1, 6);
ImageView *view = imageview_create();
Label *label0 = label_create();
Label *label1 = label_create();
View *cview = view_create();
Button *button = button_push();
label_align(label0, ekCENTER);
label_align(label1, ekCENTER);
button_text(button, TWIN_LOGOUT);
view_size(cview, s2df(160, 160));
layout_imageview(layout, view, 0, 0);
layout_label(layout, label0, 0, 1);
layout_label(layout, label1, 0, 2);
layout_view(layout, cview, 0, 3);
layout_button(layout, button, 0, 5);
layout_halign(layout, 0, 1, ekJUSTIFY);
layout_halign(layout, 0, 2, ekJUSTIFY);
layout_halign(layout, 0, 3, ekCENTER);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 2, 5);
layout_vexpand(layout, 4);
layout_hsize(layout, 0, 200);
layout_margin(layout, 10);
ctrl_stats_cell(ctrl, layout_cell(layout, 0, 3));
ctrl_logout_cell(ctrl, layout_cell(layout, 0, 5));
return layout;

}

/**/

static Panel *i_login_panel(Ctrl *ctrl)
{

Panel *panel = panel_create();
Layout *layout0 = i_login(ctrl);
Layout *layout1 = i_logout(ctrl);
panel_layout(panel, layout0);
panel_layout(panel, layout1);
ctrl_login_panel(ctrl, panel);
return panel;

}

/**/

static Layout *i_status_bar(Ctrl *ctrl)
{

Layout *layout = layout_create(2, 1);

25.6 - The complete program 463

ImageView *view = imageview_create();
Label *label = label_create();
imageview_size(view, s2df(16, 16));
layout_imageview(layout, view, 0, 0);
layout_label(layout, label, 1, 0);
layout_halign(layout, 1, 0, ekJUSTIFY);
layout_hexpand(layout, 1);
layout_hmargin(layout, 0, 5);
layout_margin(layout, 5);
layout_bgcolor(layout, kSTATBG);
layout_skcolor(layout, kSTATSK);
ctrl_status_layout(ctrl, layout);
return layout;

}

/**/

static Layout *i_layout(Ctrl *ctrl)
{

Layout *layout = layout_create(1, 2);
Layout *layout0 = layout_create(2, 1);
Layout *layout1 = i_form(ctrl);
Layout *layout2 = i_status_bar(ctrl);
Panel *panel1 = i_login_panel(ctrl);
layout_layout(layout0, layout1, 0, 0);
layout_panel(layout0, panel1, 1, 0);
layout_layout(layout, layout0, 0, 0);
layout_layout(layout, layout2, 0, 1);
ctrl_main_layout(ctrl, layout0);
return layout;

}

/**/

Window *prview_create(Ctrl *ctrl)
{

Panel *panel = panel_create();
Layout *layout = i_layout(ctrl);
Window *window = NULL;
ctrl_theme_images(ctrl);
panel_layout(panel, layout);
window = window_create(ekWINDOW_STD);
window_panel(window, panel);
window_title(window, TWIN_TITLE);
ctrl_window(ctrl, window);
return window;

}

Listing 25.29: demo/products/prmenu.c
/* Products Menu */

464 Chapter 25 - Products

#include "prmenu.h"
#include "prctrl.h"
#include "res_products.h"
#include <gui/guiall.h>

/**/

#if defined (__APPLE__)
static Menu *i_app(Ctrl *ctrl)
{

Menu *menu = menu_create();
MenuItem *item0 = menuitem_create();
MenuItem *item1 = menuitem_separator();
MenuItem *item2 = menuitem_create();
MenuItem *item3 = menuitem_separator();
MenuItem *item4 = menuitem_create();
menuitem_text(item0, TMEN_ABOUT);
menuitem_text(item2, TMEN_PREFERS);
menuitem_text(item4, TMEN_QUIT);
menu_item(menu, item0);
menu_item(menu, item1);
menu_item(menu, item2);
menu_item(menu, item3);
menu_item(menu, item4);
ctrl_about_item(ctrl, item0);
ctrl_exit_item(ctrl, item4);
return menu;

}
#endif

/**/

static Menu *i_file(Ctrl *ctrl)
{

Menu *menu = menu_create();
MenuItem *item0 = menuitem_create();
MenuItem *item1 = menuitem_create();
menuitem_text(item0, TMEN_IMPORT);
menuitem_text(item1, TMEN_EXPORT);
menu_item(menu, item0);
menu_item(menu, item1);

#if !defined(__APPLE__)
{

MenuItem *item2 = menuitem_separator();
MenuItem *item3 = menuitem_create();
menuitem_text(item3, TMEN_EXIT);
menuitem_image(item3, (const Image*)EXIT_PNG);
menu_item(menu, item2);
menu_item(menu, item3);

25.6 - The complete program 465

ctrl_exit_item(ctrl, item3);
}

#endif

ctrl_import_item(ctrl, item0);
ctrl_export_item(ctrl, item1);
return menu;

}

/**/

static Menu *i_navigate(Ctrl *ctrl)
{

Menu *menu = menu_create();
MenuItem *item0 = menuitem_create();
MenuItem *item1 = menuitem_create();
MenuItem *item2 = menuitem_create();
MenuItem *item3 = menuitem_create();
menuitem_text(item0, TMEN_FIRST);
menuitem_text(item1, TMEN_BACK);
menuitem_text(item2, TMEN_NEXT);
menuitem_text(item3, TMEN_LAST);
menuitem_key(item0, ekKEY_F5, 0);
menuitem_key(item1, ekKEY_F6, 0);
menuitem_key(item2, ekKEY_F7, 0);
menuitem_key(item3, ekKEY_F8, 0);
menu_item(menu, item0);
menu_item(menu, item1);
menu_item(menu, item2);
menu_item(menu, item3);
ctrl_first_item(ctrl, item0);
ctrl_back_item(ctrl, item1);
ctrl_next_item(ctrl, item2);
ctrl_last_item(ctrl, item3);
return menu;

}

/**/

static Menu *i_view(Ctrl *ctrl)
{

Menu *menu = menu_create();
MenuItem *item0 = menuitem_create();
unref(ctrl);
menuitem_text(item0, TMEN_LOGIN_PANEL);
menuitem_image(item0, (const Image*)SETTINGS16_PNG);
menu_item(menu, item0);
ctrl_setting_item(ctrl, item0);
return menu;

}

466 Chapter 25 - Products

/**/

static Menu *i_server(Ctrl *ctrl)
{

Menu *menu = menu_create();
MenuItem *item0 = menuitem_create();
MenuItem *item1 = menuitem_create();
menuitem_text(item0, TMEN_LOGIN);
menuitem_text(item1, TMEN_LOGOUT);
menu_item(menu, item0);
menu_item(menu, item1);
ctrl_login_item(ctrl, item0);
ctrl_logout_item(ctrl, item1);
return menu;

}

/**/

static Menu *i_language(Ctrl *ctrl)
{

Menu *menu = menu_create();
MenuItem *item0 = menuitem_create();
MenuItem *item1 = menuitem_create();
MenuItem *item2 = menuitem_create();
MenuItem *item3 = menuitem_create();
MenuItem *item4 = menuitem_create();
MenuItem *item5 = menuitem_create();
MenuItem *item6 = menuitem_create();
menuitem_text(item0, ENGLISH);
menuitem_text(item1, SPANISH);
menuitem_text(item2, PORTUGUESE);
menuitem_text(item3, ITALIAN);
menuitem_text(item4, VIETNAMESE);
menuitem_text(item5, RUSSIAN);
menuitem_text(item6, JAPANESE);
menuitem_image(item0, (const Image*)USA_PNG);
menuitem_image(item1, (const Image*)SPAIN_PNG);
menuitem_image(item2, (const Image*)PORTUGAL_PNG);
menuitem_image(item3, (const Image*)ITALY_PNG);
menuitem_image(item4, (const Image*)VIETNAM_PNG);
menuitem_image(item5, (const Image*)RUSSIA_PNG);
menuitem_image(item6, (const Image*)JAPAN_PNG);
menu_item(menu, item0);
menu_item(menu, item1);
menu_item(menu, item2);
menu_item(menu, item3);
menu_item(menu, item4);
menu_item(menu, item5);
menu_item(menu, item6);
ctrl_lang_menu(ctrl, menu);
return menu;

25.6 - The complete program 467

}

/**/

#if !defined (__APPLE__)
static Menu *i_help(Ctrl *ctrl)
{

Menu *menu = menu_create();
MenuItem *item0 = menuitem_create();
menuitem_text(item0, TMEN_ABOUT);
menuitem_image(item0, (const Image*)ABOUT_PNG);
menu_item(menu, item0);
ctrl_about_item(ctrl, item0);
return menu;

}
#endif

/**/

Menu *prmenu_create(Ctrl *ctrl)
{

Menu *menu = menu_create();
MenuItem *item1 = menuitem_create();
MenuItem *item2 = menuitem_create();
MenuItem *item3 = menuitem_create();
MenuItem *item4 = menuitem_create();
MenuItem *item5 = menuitem_create();
Menu *submenu1 = i_file(ctrl);
Menu *submenu2 = i_navigate(ctrl);
Menu *submenu3 = i_view(ctrl);
Menu *submenu4 = i_server(ctrl);
Menu *submenu5 = i_language(ctrl);

#if defined (__APPLE__)
{

MenuItem *item0 = menuitem_create();
Menu *submenu0 = i_app(ctrl);
menuitem_text(item1, "");
menuitem_submenu(item0, &submenu0);
menu_item(menu, item0);

}
#endif

menuitem_text(item1, TMEN_FILE);
menuitem_text(item2, TMEN_NAVIGATE);
menuitem_text(item3, TMEN_VIEW);
menuitem_text(item4, TMEN_SERVER);
menuitem_text(item5, LANGUAGE);
menuitem_submenu(item1, &submenu1);
menuitem_submenu(item2, &submenu2);
menuitem_submenu(item3, &submenu3);

468 Chapter 25 - Products

menuitem_submenu(item4, &submenu4);
menuitem_submenu(item5, &submenu5);
menu_item(menu, item1);
menu_item(menu, item2);
menu_item(menu, item3);
menu_item(menu, item4);
menu_item(menu, item5);

#if !defined (__APPLE__)
{

MenuItem *item6 = menuitem_create();
Menu *submenu6 = i_help(ctrl);
menuitem_text(item6, TMEN_HELP);
menuitem_submenu(item6, &submenu6);
menu_item(menu, item6);

}
#endif

return menu;
}

Listing 25.30: demo/products/prctrl.c
/* Products Controller */

#include "prctrl.h"
#include "prmodel.h"
#include "res_products.h"
#include <nappgui.h>
#include <inet/httpreq.h>
#include <inet/json.h>

typedef enum _status_t
{

ekWAIT_LOGIN,
ekIN_LOGIN,
ekERR_LOGIN,
ekOK_LOGIN

} status_t;

typedef struct _user_t User;
typedef struct _ujson_t UJson;

struct _user_t
{

String *name;
String *mail;
Image *image64;

};

struct _ujson_t
{

25.6 - The complete program 469

int32_t code;
User data;

};

struct _ctrl_t
{

Model *model;
status_t status;
wserv_t err;
uint32_t selected;
real32_t stats[12];
UJson *ujson;
Window *window;
Layout *main_layout;
Layout *status_layout;
Cell *image_cell;
Cell *first_cell;
Cell *back_cell;
Cell *next_cell;
Cell *last_cell;
Cell *add_cell;
Cell *minus_cell;
Cell *filter_cell;
Cell *slider_cell;
Cell *counter_cell;
Cell *code_cell;
Cell *desc_cell;
Cell *price_cell;
Cell *lang_cell;
Cell *setting_cell;
Cell *user_cell;
Cell *pass_cell;
Cell *login_cell;
Cell *logout_cell;
Cell *stats_cell;
Panel *login_panel;
Menu *lang_menu;
MenuItem *import_item;
MenuItem *export_item;
MenuItem *first_item;
MenuItem *back_item;
MenuItem *next_item;
MenuItem *last_item;
MenuItem *setting_item;
MenuItem *login_item;
MenuItem *logout_item;

};

/**/

static real32_t i_MAX_STATS = 20.f;

470 Chapter 25 - Products

/**/

Ctrl *ctrl_create(Model *model)
{

Ctrl *ctrl = heap_new0(Ctrl);
ctrl>model = model;
ctrl>status = ekWAIT_LOGIN;
ctrl>selected = 0;
dbind(User, String*, name);
dbind(User, String*, mail);
dbind(User, Image*, image64);
dbind(UJson, int32_t, code);
dbind(UJson, User, data);
return ctrl;

}

/**/

void ctrl_destroy(Ctrl **ctrl)
{

heap_delete(ctrl, Ctrl);
}

/**/

void ctrl_main_layout(Ctrl *ctrl, Layout *layout)
{

model_layout(layout);
ctrl>main_layout = layout;

}

/**/

void ctrl_status_layout(Ctrl *ctrl, Layout *layout)
{

ctrl>status_layout = layout;
}

/**/

static void i_update_product(Ctrl *ctrl)
{

uint32_t total = model_count(ctrl>model);
bool_t enabled = FALSE;
bool_t is_first = (total == 0 || ctrl>selected == 0) ? TRUE : FALSE;
bool_t is_last = (total == 0 || ctrl>selected == (total 1)) ? TRUE :

↪→ FALSE;
Slider *slider = cell_slider(ctrl>slider_cell);
Label *counter = cell_label(ctrl>counter_cell);
Product *product = NULL;

25.6 - The complete program 471

if (total > 0)
{

char_t msg[64];
uint32_t i, n = sizeof(ctrl>stats) / sizeof(real32_t);
View *vstats = cell_view(ctrl>stats_cell);
product = model_product(ctrl>model, ctrl>selected);
bstd_sprintf(msg, 64, "[%d/%d]", ctrl>selected + 1, total);
label_text(counter, msg);
slider_value(slider, (real32_t)ctrl>selected / (real32_t)(total > 1 ?

↪→ total 1 : 1));
enabled = TRUE;
for (i = 0; i < n; ++i)

ctrl>stats[i] = bmath_randf(2.f, i_MAX_STATS 2.f);
view_update(vstats);

}
else
{

label_text(counter, "[0/0]");
slider_value(slider, 0.f);
enabled = FALSE;

}

layout_dbind_obj(ctrl>main_layout, product, Product);
cell_enabled(ctrl>add_cell, enabled);
cell_enabled(ctrl>minus_cell, enabled);
cell_enabled(ctrl>slider_cell, enabled);
cell_enabled(ctrl>filter_cell, enabled);
cell_enabled(ctrl>first_cell, !is_first);
cell_enabled(ctrl>back_cell, !is_first);
cell_enabled(ctrl>next_cell, !is_last);
cell_enabled(ctrl>last_cell, !is_last);
menuitem_enabled(ctrl>first_item, !is_first);
menuitem_enabled(ctrl>back_item, !is_first);
menuitem_enabled(ctrl>next_item, !is_last);
menuitem_enabled(ctrl>last_item, !is_last);

}

/**/

static void i_status(Ctrl *ctrl)
{

ImageView *view = layout_get_imageview(ctrl>status_layout, 0, 0);
Label *label = layout_get_label(ctrl>status_layout, 1, 0);

switch (ctrl>status) {
case ekWAIT_LOGIN:

imageview_image(view, (const Image*)LOGIN16_PNG);
label_text(label, WAIT_LOGIN);
break;

472 Chapter 25 - Products

case ekIN_LOGIN:
imageview_image(view, (const Image*)SPIN_GIF);
label_text(label, IN_LOGIN);
break;

case ekERR_LOGIN:
imageview_image(view, (const Image*)ERROR_PNG);
switch (ctrl>err) {
case ekWS_CONNECT:

label_text(label, ERR_CONNECT);
break;

case ekWS_JSON:
label_text(label, ERR_JSON);
break;

case ekWS_ACCESS:
label_text(label, ERR_ACCESS);
break;

case ekWS_OK:
cassert_default();
}
break;

case ekOK_LOGIN:
imageview_image(view, (const Image*)OK_PNG);
label_text(label, OK_LOGIN);
break;

cassert_default();
}

}

/**/

void ctrl_run(Ctrl *ctrl)
{

Button *setting_button;
PopUp *lang_popup;
MenuItem *lang_item;
uint32_t lang_index;
ctrl>status = ekWAIT_LOGIN;
setting_button = cell_button(ctrl>setting_cell);
layout_show_col(ctrl>main_layout, 1, TRUE);
button_state(setting_button, ekGUI_ON);
menuitem_state(ctrl>setting_item, ekGUI_ON);
lang_popup = cell_popup(ctrl>lang_cell);
lang_index = popup_get_selected(lang_popup);
lang_item = menu_get_item(ctrl>lang_menu, lang_index);
menuitem_state(lang_item, ekGUI_ON);
menuitem_enabled(ctrl>login_item, TRUE);
menuitem_enabled(ctrl>logout_item, FALSE);
menuitem_enabled(ctrl>import_item, FALSE);

25.6 - The complete program 473

menuitem_enabled(ctrl>export_item, FALSE);
i_status(ctrl);
cell_focus(ctrl>user_cell);
i_update_product(ctrl);
window_defbutton(ctrl>window, cell_button(ctrl>login_cell));

}

/**/

static void i_OnFirst(Ctrl *ctrl, Event *e)
{

ctrl>selected = 0;
i_update_product(ctrl);
unref(e);

}

/**/

static void i_OnImport(Ctrl *ctrl, Event *e)
{

const char_t *type[] = { "dbp" };
const char_t *file = comwin_open_file(ctrl>window, type, 1, NULL);
if (file != NULL)
{

ferror_t err;
if (model_import(ctrl>model, file, &err) == TRUE)

i_update_product(ctrl);
}
unref(e);

}

/**/

void ctrl_import_item(Ctrl *ctrl, MenuItem *item)
{

ctrl>import_item = item;
menuitem_OnClick(item, listener(ctrl, i_OnImport, Ctrl));

}

/**/

static void i_OnExport(Ctrl *ctrl, Event *e)
{

const char_t *type[] = { "dbp" };
const char_t *file = comwin_save_file(ctrl>window, type, 1, NULL);
if (file != NULL)
{

ferror_t err;
model_export(ctrl>model, file, &err);

}
unref(e);

474 Chapter 25 - Products

}

/**/

void ctrl_export_item(Ctrl *ctrl, MenuItem *item)
{

ctrl>export_item = item;
menuitem_OnClick(item, listener(ctrl, i_OnExport, Ctrl));

}

/**/

static void i_OnImgDraw(Ctrl *ctrl, Event *e)
{

const EvDraw *params = event_params(e, EvDraw);
const Image *image = gui_image(EDIT_PNG);
uint32_t w = image_width(image);
uint32_t h = image_height(image);
draw_image(params>ctx, image, params>width w 10, params>height h

↪→ 10);
unref(ctrl);

}

/**/

static void i_OnImgClick(Ctrl *ctrl, Event *e)
{

const char_t *type[] = { "png", "jpg" };
const char_t *file = comwin_open_file(ctrl>window, type, 2, NULL);
if (file != NULL)
{

Image *image = image_from_file(file, NULL);
if (image != NULL)
{

ImageView *view = cell_imageview(ctrl>image_cell);
imageview_image(view, image);
image_destroy(&image);

}
}
unref(e);

}

/**/

void ctrl_image_cell(Ctrl *ctrl, Cell *cell)
{

ImageView *view = cell_imageview(cell);
model_image(cell);
imageview_OnOverDraw(view, listener(ctrl, i_OnImgDraw, Ctrl));
imageview_OnClick(view, listener(ctrl, i_OnImgClick, Ctrl));
ctrl>image_cell = cell;

25.6 - The complete program 475

}

/**/

void ctrl_first_cell(Ctrl *ctrl, Cell *cell)
{

Button *button = cell_button(cell);
button_OnClick(button, listener(ctrl, i_OnFirst, Ctrl));
ctrl>first_cell = cell;

}

/**/

void ctrl_first_item(Ctrl *ctrl, MenuItem *item)
{

menuitem_OnClick(item, listener(ctrl, i_OnFirst, Ctrl));
ctrl>first_item = item;

}

/**/

static void i_OnBack(Ctrl *ctrl, Event *e)
{

if (ctrl>selected > 0)
{

ctrl>selected = 1;
i_update_product(ctrl);

}
unref(e);

}

/**/

void ctrl_back_cell(Ctrl *ctrl, Cell *cell)
{

Button *button = cell_button(cell);
button_OnClick(button, listener(ctrl, i_OnBack, Ctrl));
ctrl>back_cell = cell;

}

/**/

void ctrl_back_item(Ctrl *ctrl, MenuItem *item)
{

menuitem_OnClick(item, listener(ctrl, i_OnBack, Ctrl));
ctrl>back_item = item;

}

/**/

static void i_OnNext(Ctrl *ctrl, Event *e)

476 Chapter 25 - Products

{
uint32_t total = model_count(ctrl>model);
if (ctrl>selected < total 1)
{

ctrl>selected += 1;
i_update_product(ctrl);

}
unref(e);

}

/**/

void ctrl_next_cell(Ctrl *ctrl, Cell *cell)
{

Button *button = cell_button(cell);
button_OnClick(button, listener(ctrl, i_OnNext, Ctrl));
ctrl>next_cell = cell;

}

/**/

void ctrl_next_item(Ctrl *ctrl, MenuItem *item)
{

menuitem_OnClick(item, listener(ctrl, i_OnNext, Ctrl));
ctrl>next_item = item;

}

/**/

static void i_OnLast(Ctrl *ctrl, Event *e)
{

uint32_t total = model_count(ctrl>model);
if (ctrl>selected < total 1)
{

ctrl>selected = total 1;
i_update_product(ctrl);

}
unref(e);

}

/**/

void ctrl_last_cell(Ctrl *ctrl, Cell *cell)
{

Button *button = cell_button(cell);
button_OnClick(button, listener(ctrl, i_OnLast, Ctrl));
ctrl>last_cell = cell;

}

/**/

25.6 - The complete program 477

void ctrl_last_item(Ctrl *ctrl, MenuItem *item)
{

menuitem_OnClick(item, listener(ctrl, i_OnLast, Ctrl));
ctrl>last_item = item;

}

/**/

static void i_OnAdd(Ctrl *ctrl, Event *e)
{

model_add(ctrl>model);
ctrl>selected = model_count(ctrl>model) 1;
i_update_product(ctrl);
cell_focus(ctrl>code_cell);
unref(e);

}

/**/

void ctrl_add_cell(Ctrl *ctrl, Cell *cell)
{

Button *button = cell_button(cell);
button_OnClick(button, listener(ctrl, i_OnAdd, Ctrl));
ctrl>add_cell = cell;

}

/**/

static void i_OnDelete(Ctrl *ctrl, Event *e)
{

model_delete(ctrl>model, ctrl>selected);
if (ctrl>selected == model_count(ctrl>model) && ctrl>selected > 0)

ctrl>selected = 1;
i_update_product(ctrl);
unref(e);

}

/**/

void ctrl_minus_cell(Ctrl *ctrl, Cell *cell)
{

Button *button = cell_button(cell);
button_OnClick(button, listener(ctrl, i_OnDelete, Ctrl));
ctrl>minus_cell = cell;

}

/**/

static void i_OnFilter(Ctrl *ctrl, Event *e)
{

const EvText *params = event_params(e, EvText);

478 Chapter 25 - Products

EvTextFilter *result = event_result(e, EvTextFilter);
Combo *combo = event_sender(e, Combo);
uint32_t color = color_rgb(255, 0, 0);

if (unicode_nchars(params>text, ekUTF8) >= 3)
{

if (model_filter(ctrl>model, params>text) == TRUE)
{

color = UINT32_MAX;
ctrl>selected = 0;
i_update_product(ctrl);

}
}

combo_color(combo, color);
result>apply = FALSE;

}

/**/

static void i_OnFilterEnd(Ctrl *ctrl, Event *e)
{

const EvText *params = event_params(e, EvText);
Combo *combo = event_sender(e, Combo);

if (model_filter(ctrl>model, params>text) == TRUE)
combo_ins_elem(combo, 0, params>text, NULL);

else
combo_text(combo, "");

ctrl>selected = 0;
i_update_product(ctrl);

combo_color(combo, UINT32_MAX);
}

/**/

void ctrl_filter_cell(Ctrl *ctrl, Cell *cell)
{

Combo *combo = cell_combo(cell);
combo_OnFilter(combo, listener(ctrl, i_OnFilter, Ctrl));
combo_OnChange(combo, listener(ctrl, i_OnFilterEnd, Ctrl));
ctrl>filter_cell = cell;

}

/**/

static void i_OnSlider(Ctrl *ctrl, Event *e)
{

const EvSlider *params = event_params(e, EvSlider);

25.6 - The complete program 479

uint32_t total = model_count(ctrl>model);
uint32_t selected = 0;
if (total > 0)

selected = (uint32_t)((real32_t)(total 1) * params>pos);

if (selected != ctrl>selected)
{

ctrl>selected = selected;
i_update_product(ctrl);

}
}

/**/

void ctrl_slider_cell(Ctrl *ctrl, Cell *cell)
{

Slider *slider = cell_slider(cell);
slider_OnMoved(slider, listener(ctrl, i_OnSlider, Ctrl));
ctrl>slider_cell = cell;

}

/**/

void ctrl_counter_cell(Ctrl *ctrl, Cell *cell)
{

ctrl>counter_cell = cell;
}

/**/

void ctrl_type_cell(Ctrl *ctrl, Cell *cell)
{

model_type(cell);
unref(ctrl);

}

/**/

void ctrl_code_cell(Ctrl *ctrl, Cell *cell)
{

model_code(cell);
ctrl>code_cell = cell;

}

/**/

void ctrl_desc_cell(Ctrl *ctrl, Cell *cell)
{

model_desc(cell);
ctrl>desc_cell = cell;

}

480 Chapter 25 - Products

/**/

void ctrl_price_cell(Ctrl *ctrl, Cell *cell)
{

model_price(cell);
ctrl>price_cell = cell;

}

/**/

void ctrl_user_cell(Ctrl *ctrl, Cell *cell)
{

ctrl>user_cell = cell;
}

/**/

void ctrl_pass_cell(Ctrl *ctrl, Cell *cell)
{

ctrl>pass_cell = cell;
}

/**/

void ctrl_login_panel(Ctrl *ctrl, Panel *panel)
{

ctrl>login_panel = panel;
}

/**/

static UJson *i_user_webserv(const char_t *user, const char_t *pass, wserv_t *
↪→ ret)

{
Http *http = NULL;
String *path = NULL;
UJson *ujson = NULL;

*ret = ekWS_OK;
if (str_empty_c(user) || str_empty_c(pass))
{

*ret = ekWS_ACCESS;
return NULL;

}

http = http_create("serv.nappgui.com", 80);
path = str_printf("/duser.php?user=%s&pass=%s", user, pass);
if (http_get(http, tc(path), NULL, 0, NULL) == TRUE)
{

uint32_t status = http_response_status(http);

25.6 - The complete program 481

if (status >= 200 && status <= 299)
{

Stream *stm = stm_memory(4096);
http_response_body(http, stm, NULL);
ujson = json_read(stm, NULL, UJson);

if (!ujson)
{

*ret = ekWS_JSON;
}
else if (ujson>code != 0)
{

json_destroy(&ujson, UJson);
*ret = ekWS_ACCESS;

}

stm_close(&stm);
}
else
{

*ret = ekWS_ACCESS;
}

}

str_destroy(&path);
http_destroy(&http);
return ujson;

}

/**/

static uint32_t i_login_begin(Ctrl *ctrl)
{

Edit *user = cell_edit(ctrl>user_cell);
Edit *pass = cell_edit(ctrl>pass_cell);
wserv_t ret = ekWS_OK;
ctrl>ujson = i_user_webserv(edit_get_text(user), edit_get_text(pass), &ret

↪→);
if (ctrl>ujson != NULL)
{

ret = model_webserv(ctrl>model);
if (ret != ekWS_OK)

json_destroy(&ctrl>ujson, UJson);
}

return (uint32_t)ret;
}

/**/

static void i_login_end(Ctrl *ctrl, const uint32_t rvalue)

482 Chapter 25 - Products

{
wserv_t ret = (wserv_t)rvalue;
if (ret == ekWS_OK)
{

Layout *layout = panel_get_layout(ctrl>login_panel, 1);
ImageView *view = layout_get_imageview(layout, 0, 0);
Label *label0 = layout_get_label(layout, 0, 1);
Label *label1 = layout_get_label(layout, 0, 2);
window_defbutton(ctrl>window, NULL);
imageview_image(view, ctrl>ujson>data.image64);
label_text(label0, tc(ctrl>ujson>data.name));
label_text(label1, tc(ctrl>ujson>data.mail));
menuitem_enabled(ctrl>login_item, FALSE);
menuitem_enabled(ctrl>logout_item, TRUE);
menuitem_enabled(ctrl>import_item, TRUE);
menuitem_enabled(ctrl>export_item, TRUE);
panel_visible_layout(ctrl>login_panel, 1);
ctrl>status = ekOK_LOGIN;
ctrl>selected = 0;
i_update_product(ctrl);
json_destroy(&ctrl>ujson, UJson);
cell_focus(ctrl>code_cell);
panel_update(ctrl>login_panel);

}
else
{

cassert(ctrl>ujson == NULL);
ctrl>status = ekERR_LOGIN;
ctrl>err = ret;

}

i_status(ctrl);
}

/**/

static void i_OnLogin(Ctrl *ctrl, Event *e)
{

if (ctrl>status != ekIN_LOGIN)
{

ctrl>status = ekIN_LOGIN;
i_status(ctrl);
osapp_task(ctrl, 0, i_login_begin, NULL, i_login_end, Ctrl);

}

unref(e);
}

/**/

void ctrl_login_cell(Ctrl *ctrl, Cell *cell)

25.6 - The complete program 483

{
Button *button = cell_button(cell);
button_OnClick(button, listener(ctrl, i_OnLogin, Ctrl));
ctrl>login_cell = cell;

}

/**/

void ctrl_login_item(Ctrl *ctrl, MenuItem *item)
{

menuitem_OnClick(item, listener(ctrl, i_OnLogin, Ctrl));
ctrl>login_item = item;

}

/**/

static void i_OnLogout(Ctrl *ctrl, Event *e)
{

Edit *edit0 = cell_edit(ctrl>user_cell);
Edit *edit1 = cell_edit(ctrl>pass_cell);
model_clear(ctrl>model);
edit_text(edit0, "");
edit_text(edit1, "");
menuitem_enabled(ctrl>login_item, TRUE);
menuitem_enabled(ctrl>logout_item, FALSE);
menuitem_enabled(ctrl>import_item, FALSE);
menuitem_enabled(ctrl>export_item, FALSE);
ctrl>status = ekWAIT_LOGIN;
panel_visible_layout(ctrl>login_panel, 0);
i_update_product(ctrl);
i_status(ctrl);
cell_focus(ctrl>user_cell);
panel_update(ctrl>login_panel);
window_defbutton(ctrl>window, cell_button(ctrl>login_cell));
unref(e);

}

/**/

void ctrl_logout_cell(Ctrl *ctrl, Cell *cell)
{

Button *button = cell_button(cell);
button_OnClick(button, listener(ctrl, i_OnLogout, Ctrl));
ctrl>logout_cell = cell;

}

/**/

void ctrl_logout_item(Ctrl *ctrl, MenuItem *item)
{

menuitem_OnClick(item, listener(ctrl, i_OnLogout, Ctrl));

484 Chapter 25 - Products

ctrl>logout_item = item;
}

/**/

static void i_OnSetting(Ctrl *ctrl, Event *e)
{

gui_state_t state = ekGUI_ON;
if (event_type(e) == ekGUI_EVENT_BUTTON)
{

const EvButton *params = event_params(e, EvButton);
state = params>state;

}
else
{

Button *button = cell_button(ctrl>setting_cell);
cassert(event_type(e) == ekGUI_EVENT_MENU);
state = button_get_state(button);
state = state == ekGUI_ON ? ekGUI_OFF : ekGUI_ON;
button_state(button, state);

}

menuitem_state(ctrl>setting_item, state);
layout_show_col(ctrl>main_layout, 1, state == ekGUI_ON ? TRUE : FALSE);
layout_update(ctrl>main_layout);

}

/**/

void ctrl_setting_cell(Ctrl *ctrl, Cell *cell)
{

Button *button = cell_button(cell);
button_OnClick(button, listener(ctrl, i_OnSetting, Ctrl));
ctrl>setting_cell = cell;

}

/**/

void ctrl_setting_item(Ctrl *ctrl, MenuItem *item)
{

menuitem_OnClick(item, listener(ctrl, i_OnSetting, Ctrl));
ctrl>setting_item = item;

}

/**/

static void i_OnStats(Ctrl *ctrl, Event *e)
{

const EvDraw *params = event_params(e, EvDraw);
uint32_t i, n = sizeof(ctrl>stats) / sizeof(real32_t);
real32_t p = 10.f, x = p, y0 = params>height p;

25.6 - The complete program 485

real32_t w = (params>width p * 2) / n;
real32_t h = params>height p * 2;
real32_t avg = 0, pavg;
char_t tavg[16];
color_t c[2];
real32_t stop[2] = {0, 1};
c[0] = kHOLDER;
c[1] = gui_view_color();

draw_fill_linear(params>ctx, c,stop, 2, 0, p, 0, params>height p + 1);

for (i = 0; i < n; ++i)
{

real32_t hr = h * (ctrl>stats[i] / i_MAX_STATS);
real32_t y = p + h hr;
draw_rect(params>ctx, ekFILL, x, y, w 2, hr);
avg += ctrl>stats[i];
x += w;

}

avg /= n;
pavg = h * (avg / i_MAX_STATS);
pavg = p + h pavg;
bstd_sprintf(tavg, sizeof(tavg), "%.2f", avg);
draw_text_color(params>ctx, kTXTRED);
draw_line_color(params>ctx, kTXTRED);
draw_line(params>ctx, p 2, pavg, params>width p, pavg);
draw_line_color(params>ctx, gui_label_color());
draw_line(params>ctx, p 2, y0 + 2, params>width p, y0 + 2);
draw_line(params>ctx, p 2, y0 + 2, p 2, p);
draw_text(params>ctx, tavg, p, pavg);

}

/**/

void ctrl_stats_cell(Ctrl *ctrl, Cell *cell)
{

View *view = cell_view(cell);
view_OnDraw(view, listener(ctrl, i_OnStats, Ctrl));
ctrl>stats_cell = cell;

}

/**/

static void i_OnLang(Ctrl *ctrl, Event *e)
{

MenuItem *item = NULL;
uint32_t lang_id = 0;
static const char_t *LANGS[] = { "en_US", "es_ES", "pt_PT", "it_IT", "vi_VN

↪→ ", "ru_RU", "ja_JP" };
if (event_type(e) == ekGUI_EVENT_POPUP)

486 Chapter 25 - Products

{
const EvButton *params = event_params(e, EvButton);
item = menu_get_item(ctrl>lang_menu, params>index);
lang_id = params>index;

}
else
{

const EvMenu *params = event_params(e, EvMenu);
PopUp *popup = cell_popup(ctrl>lang_cell);
cassert(event_type(e) == ekGUI_EVENT_MENU);
popup_selected(popup, params>index);
item = event_sender(e, MenuItem);
lang_id = params>index;

}

menu_off_items(ctrl>lang_menu);
menuitem_state(item, ekGUI_ON);
gui_language(LANGS[lang_id]);

}

/**/

void ctrl_lang_cell(Ctrl *ctrl, Cell *cell)
{

PopUp *popup = cell_popup(cell);
popup_OnSelect(popup, listener(ctrl, i_OnLang, Ctrl));
ctrl>lang_cell = cell;

}

/**/

void ctrl_lang_menu(Ctrl *ctrl, Menu *menu)
{

uint32_t i, n = menu_size(menu);
for (i = 0; i < n; ++i)
{

MenuItem *item = menu_get_item(menu, i);
menuitem_OnClick(item, listener(ctrl, i_OnLang, Ctrl));

}
ctrl>lang_menu = menu;

}

/**/

static void i_OnExit(Ctrl *ctrl, Event *e)
{

osapp_finish();
unref(ctrl);
unref(e);

}

25.6 - The complete program 487

/**/

void ctrl_exit_item(Ctrl *ctrl, MenuItem *item)
{

menuitem_OnClick(item, listener(ctrl, i_OnExit, Ctrl));
}

/**/

static void i_OnAbout(Ctrl *ctrl, Event *e)
{

unref(ctrl);
unref(e);
osapp_open_url("https://nappgui.com/en/demo/products.html");

}

/**/

void ctrl_about_item(Ctrl *ctrl, MenuItem *item)
{

menuitem_OnClick(item, listener(ctrl, i_OnAbout, Ctrl));
}

/**/

void ctrl_window(Ctrl *ctrl, Window *window)
{

window_OnClose(window, listener(ctrl, i_OnExit, Ctrl));
ctrl>window = window;

}

/**/

void ctrl_theme_images(Ctrl *ctrl)
{

bool_t dark = gui_dark_mode();
button_image(cell_button(ctrl>first_cell), (const Image*)(dark ?

↪→ FIRSTD_PNG : FIRST_PNG));
button_image(cell_button(ctrl>back_cell), (const Image*)(dark ? BACKD_PNG

↪→ : BACK_PNG));
button_image(cell_button(ctrl>next_cell), (const Image*)(dark ? NEXTD_PNG

↪→ : NEXT_PNG));
button_image(cell_button(ctrl>last_cell), (const Image*)(dark ? LASTD_PNG

↪→ : LAST_PNG));
button_image(cell_button(ctrl>add_cell), (const Image*)ADD_PNG);
button_image(cell_button(ctrl>minus_cell), (const Image*)MINUS_PNG);
button_image(cell_button(ctrl>setting_cell), (const Image*)SETTINGS_PNG);
button_image(cell_button(ctrl>login_cell), (const Image*)LOGIN16_PNG);
button_image(cell_button(ctrl>logout_cell), (const Image*)(dark ?

↪→ LOGOUT16D_PNG : LOGOUT16_PNG));
menuitem_image(ctrl>import_item, (const Image*)OPEN_PNG);

488 Chapter 25 - Products

menuitem_image(ctrl>export_item, (const Image*)(dark ? SAVED_PNG :
↪→ SAVE_PNG));

menuitem_image(ctrl>first_item, (const Image*)(dark ? FIRST16D_PNG :
↪→ FIRST16_PNG));

menuitem_image(ctrl>back_item, (const Image*)(dark ? BACK16D_PNG :
↪→ BACK16_PNG));

menuitem_image(ctrl>next_item, (const Image*)(dark ? NEXT16D_PNG :
↪→ NEXT16_PNG));

menuitem_image(ctrl>last_item, (const Image*)(dark ? LAST16D_PNG :
↪→ LAST16_PNG));

menuitem_image(ctrl>login_item, (const Image*)LOGIN16_PNG);
menuitem_image(ctrl>logout_item, (const Image*)(dark ? LOGOUT16D_PNG :

↪→ LOGOUT16_PNG));
}

26C
ha

pt
er

Hello GUI!

26.1 Hello Label! 489
26.2 Hello Button! 494
26.3 Hello PopUp and Combo! 497
26.4 Hello Edit and UpDown! 499
26.5 Hello ListBox! 503
26.6 Hello Slider and Progress! 505
26.7 Hello TextView! 507
26.8 Hello TableView! 510
26.9 Hello SplitView! 517
26.10 Hello Modal Window! 519
26.11 Hello Gui Binding! 524
26.12 Hello Struct Binding! 528
26.13 Hello Sublayout! 535
26.14 Hello Subpanel! 539
26.15 Hello Multi-layout! 540
26.16 Hello Scroll-Panel! 542
26.17 Hello IP-Input! 544

GuiHello is an application, which by examples, shows “Gui” (page 297) library features
for the creation of user interfaces. The source code is in folder /src/howto/guihello
of the SDK distribution.

26.1. Hello Label!

490 Chapter 26 - Hello GUI!

Figure 26.1: Label controls.

Listing 26.1: demo/guihello/labels.c
/* Labels basics */

#include "labels.h"
#include <gui/guiall.h>

/**/

static const char_t *i_LABEL_01 = "Hello.";
static const char_t *i_LABEL_02 = "Hello, I'm a Label.";
static const char_t *i_LABEL_03 = "Hello, I'm a Label, longer than first.";
static const char_t *i_LABEL_04 = "Hello, I'm a Label, longer than first and

↪→ longer than second.";
static const char_t *i_LABEL_05 = "Hello, I'm a Label, longer than first,

↪→ longer than second and longer than third.";
static const char_t *i_LABEL_06 = "Hello, I'm a Label, longer than first,

↪→ longer than second, longer than third and longer than fourth.";
static const char_t *i_LABEL_07 = "Mouse sensitive label";

/**/

static void i_OnLayoutWidth(Layout *layout, Event *event)
{

const EvButton *p = event_params(event, EvButton);
real32_t width = 0;
switch (p>index) {
case 0:

width = 0;
break;

case 1:
width = 100;
break;

case 2:
width = 200;
break;

26.1 - Hello Label! 491

case 3:
width = 300;
break;

case 4:
width = 400;
break;

cassert_default();
}

layout_hsize(layout, 0, width);
layout_update(layout);

}

/**/

static PopUp *i_width_popup(Layout *layout)
{

PopUp *popup = popup_create();
popup_add_elem(popup, "Natural", NULL);
popup_add_elem(popup, "100px", NULL);
popup_add_elem(popup, "200px", NULL);
popup_add_elem(popup, "300px", NULL);
popup_add_elem(popup, "400px", NULL);
popup_OnSelect(popup, listener(layout, i_OnLayoutWidth, Layout));
return popup;

}

/**/

Panel *labels_single_line(void)
{

Panel *panel = panel_create();
Layout *layout = layout_create(1, 7);
PopUp *popup = i_width_popup(layout);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Label *label5 = label_create();
Label *label6 = label_create();
color_t c1 = gui_alt_color(color_rgb(192, 255, 255), color_rgb(48, 112,

↪→ 112));
color_t c2 = gui_alt_color(color_rgb(255, 192, 255), color_rgb(128, 48,

↪→ 112));
color_t c3 = gui_alt_color(color_rgb(255, 255, 192), color_rgb(112, 112,

↪→ 48));
label_text(label1, i_LABEL_01);
label_text(label2, i_LABEL_02);
label_text(label3, i_LABEL_03);
label_text(label4, i_LABEL_04);
label_text(label5, i_LABEL_05);

492 Chapter 26 - Hello GUI!

label_text(label6, i_LABEL_06);
label_bgcolor(label1, c1);
label_bgcolor(label2, c2);
label_bgcolor(label3, c3);
label_bgcolor(label4, c1);
label_bgcolor(label5, c2);
label_bgcolor(label6, c3);
layout_popup(layout, popup, 0, 0);
layout_label(layout, label1, 0, 1);
layout_label(layout, label2, 0, 2);
layout_label(layout, label3, 0, 3);
layout_label(layout, label4, 0, 4);
layout_label(layout, label5, 0, 5);
layout_label(layout, label6, 0, 6);
layout_vmargin(layout, 0, 5);
panel_layout(panel, layout);
return panel;

}

/**/

Panel *labels_multi_line(void)
{

Panel *panel = panel_create();
Layout *layout = layout_create(1, 7);
PopUp *popup = i_width_popup(layout);
Label *label1 = label_multiline();
Label *label2 = label_multiline();
Label *label3 = label_multiline();
Label *label4 = label_multiline();
Label *label5 = label_multiline();
Label *label6 = label_multiline();
color_t c1 = gui_alt_color(color_rgb(192, 255, 255), color_rgb(48, 112,

↪→ 112));
color_t c2 = gui_alt_color(color_rgb(255, 192, 255), color_rgb(128, 48,

↪→ 112));
color_t c3 = gui_alt_color(color_rgb(255, 255, 192), color_rgb(112, 112,

↪→ 48));
label_text(label1, i_LABEL_01);
label_text(label2, i_LABEL_02);
label_text(label3, i_LABEL_03);
label_text(label4, i_LABEL_04);
label_text(label5, i_LABEL_05);
label_text(label6, i_LABEL_06);
label_bgcolor(label1, c1);
label_bgcolor(label2, c2);
label_bgcolor(label3, c3);
label_bgcolor(label4, c1);
label_bgcolor(label5, c2);
label_bgcolor(label6, c3);
label_align(label4, ekLEFT);

26.1 - Hello Label! 493

label_align(label5, ekCENTER);
label_align(label6, ekRIGHT);
layout_popup(layout, popup, 0, 0);
layout_label(layout, label1, 0, 1);
layout_label(layout, label2, 0, 2);
layout_label(layout, label3, 0, 3);
layout_label(layout, label4, 0, 4);
layout_label(layout, label5, 0, 5);
layout_label(layout, label6, 0, 6);
layout_vmargin(layout, 0, 5);
panel_layout(panel, layout);
return panel;

}

/**/

Panel *labels_mouse_over(void)
{

Panel *panel = panel_create();
Layout *layout = layout_create(1, 5);
Font *font = font_system(20, ekFNORMAL | ekFPIXELS);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Label *label5 = label_create();
label_text(label1, i_LABEL_07);
label_text(label2, i_LABEL_07);
label_text(label3, i_LABEL_07);
label_text(label4, i_LABEL_07);
label_text(label5, i_LABEL_07);
label_font(label1, font);
label_font(label2, font);
label_font(label3, font);
label_font(label4, font);
label_font(label5, font);
label_color_over(label1, kCOLOR_RED);
label_color_over(label2, kCOLOR_RED);
label_color_over(label3, kCOLOR_RED);
label_color_over(label4, kCOLOR_RED);
label_color_over(label5, kCOLOR_RED);
label_style_over(label1, ekFBOLD);
label_style_over(label2, ekFITALIC);
label_style_over(label3, ekFSTRIKEOUT);
label_style_over(label4, ekFUNDERLINE);
label_bgcolor_over(label5, kCOLOR_CYAN);
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 1);
layout_label(layout, label3, 0, 2);
layout_label(layout, label4, 0, 3);
layout_label(layout, label5, 0, 4);

494 Chapter 26 - Hello GUI!

panel_layout(panel, layout);
font_destroy(&font);
return panel;

}

26.2. Hello Button!

Figure 26.2: Button controls.

Listing 26.2: demo/guihello/buttons.c
/* Buttons demo */

#include "buttons.h"
#include "res_guihello.h"
#include <gui/guiall.h>

/**/

static Layout *i_flatbuttons(void)
{

Layout *layout = layout_create(6, 1);
Button *button1 = button_flat();
Button *button2 = button_flat();
Button *button3 = button_flat();
Button *button4 = button_flat();
Button *button5 = button_flat();
Button *button6 = button_flat();
button_text(button1, "Open File");
button_text(button2, "Save File");
button_text(button3, "Search File");
button_text(button4, "Edit File");
button_text(button5, "Add File");
button_text(button6, "Delete File");
button_image(button1, resid_image(FOLDER24_PNG));
button_image(button2, resid_image(DISK24_PNG));
button_image(button3, resid_image(SEARCH24_PNG));
button_image(button4, resid_image(EDIT24_PNG));
button_image(button5, resid_image(PLUS24_PNG));
button_image(button6, resid_image(ERROR24_PNG));
layout_button(layout, button1, 0, 0);

26.2 - Hello Button! 495

layout_button(layout, button2, 1, 0);
layout_button(layout, button3, 2, 0);
layout_button(layout, button4, 3, 0);
layout_button(layout, button5, 4, 0);
layout_button(layout, button6, 5, 0);
return layout;

}

/**/

static Layout *i_radios(void)
{

Layout *layout = layout_create(1, 4);
Button *radio1 = button_radio();
Button *radio2 = button_radio();
Button *radio3 = button_radio();
Button *radio4 = button_radio();
button_text(radio1, "&Wireframe");
button_text(radio2, "&Shaded");
button_text(radio3, "&Realistic");
button_text(radio4, "&VRay");
button_state(radio1, ekGUI_ON);
layout_button(layout, radio1, 0, 0);
layout_button(layout, radio2, 0, 1);
layout_button(layout, radio3, 0, 2);
layout_button(layout, radio4, 0, 3);
layout_margin(layout, 5);
layout_vmargin(layout, 0, 3);
layout_vmargin(layout, 1, 3);
layout_vmargin(layout, 2, 3);
return layout;

}

/**/

static Layout *i_checks(void)
{

Layout *layout = layout_create(1, 4);
Button *check1 = button_check();
Button *check2 = button_check();
Button *check3 = button_check();
Button *check4 = button_check();
button_text(check1, "&Lines");
button_text(check2, "M&eshes");
button_text(check3, "M&aterials");
button_text(check4, "L&ights");
button_state(check1, ekGUI_ON);
button_state(check2, ekGUI_OFF);
button_state(check3, ekGUI_OFF);
button_state(check4, ekGUI_ON);
layout_button(layout, check1, 0, 0);

496 Chapter 26 - Hello GUI!

layout_button(layout, check2, 0, 1);
layout_button(layout, check3, 0, 2);
layout_button(layout, check4, 0, 3);
layout_margin(layout, 5);
layout_vmargin(layout, 0, 3);
layout_vmargin(layout, 1, 3);
layout_vmargin(layout, 2, 3);
return layout;

}

/**/

static Layout *i_pushes(Button **defbutton)
{

Layout *layout = layout_create(4, 1);
Button *button1 = button_push();
Button *button2 = button_push();
Button *button3 = button_push();
button_text(button1, "Re&try");
button_text(button2, "&Cancel");
button_text(button3, "&Ok");
button_image(button1, resid_image(RETRY_PNG));
layout_button(layout, button1, 0, 0);
layout_button(layout, button2, 2, 0);
layout_button(layout, button3, 3, 0);
layout_hmargin(layout, 2, 5);
layout_hexpand(layout, 1);
*defbutton = button1;
return layout;

}

/**/

static Layout *i_buttons(Button **defbutton)
{

Layout *layout = layout_create(1, 3);
Layout *layout1 = i_flatbuttons();
Layout *layout2 = layout_create(2, 2);
Layout *layout3 = i_radios();
Layout *layout4 = i_checks();
Layout *layout5 = i_pushes(defbutton);
Button *check1 = button_check();
Button *check2 = button_check3();
button_text(check1, "Enable 3&D Render");
button_text(check2, "Enable &Preview Settings");
button_state(check1, ekGUI_ON);
button_state(check2, ekGUI_MIXED);
layout_layout(layout, layout1, 0, 0);
layout_button(layout2, check1, 0, 0);
layout_layout(layout2, layout3, 0, 1);
layout_button(layout2, check2, 1, 0);

26.3 - Hello PopUp and Combo! 497

layout_layout(layout2, layout4, 1, 1);
layout_layout(layout, layout2, 0, 1);
layout_layout(layout, layout5, 0, 2);
layout_halign(layout, 0, 0, ekLEFT);
layout_margin(layout2, 5);
layout_hmargin(layout2, 0, 10);
layout_margin(layout5, 5);
return layout;

}

/**/

Panel *buttons_basics(Button **defbutton)
{

Layout *layout = i_buttons(defbutton);
Panel *panel = panel_create();
panel_layout(panel, layout);
return panel;

}

26.3. Hello PopUp and Combo!

Figure 26.3: PopUp controls.

Figure 26.4: Combo controls.

Listing 26.3: demo/guihello/popcom.c

498 Chapter 26 - Hello GUI!

/* PopUp and Combo */

#include "popcom.h"
#include "res_guihello.h"
#include <gui/guiall.h>

/**/

static void i_popups(Layout *layout)
{

Label *label1 = label_create();
Label *label2 = label_create();
PopUp *popup1 = popup_create();
PopUp *popup2 = popup_create();
label_text(label1, "Language:");
label_text(label2, "Color:");
popup_add_elem(popup1, "English", (const Image*)UKING_PNG);
popup_add_elem(popup1, "Español", (const Image*)SPAIN_PNG);
popup_add_elem(popup1, "Portugues", (const Image*)PORTUGAL_PNG);
popup_add_elem(popup1, "Italiana", (const Image*)ITALY_PNG);
popup_add_elem(popup1, "ếTing ệVit", (const Image*)VIETNAM_PNG);
popup_add_elem(popup1, "России", (const Image*)RUSSIA_PNG);
popup_add_elem(popup1, "���", (const Image*)JAPAN_PNG);
popup_add_elem(popup2, "Red", (const Image*)RED_PNG);
popup_add_elem(popup2, "Blue", (const Image*)BLUE_PNG);
popup_add_elem(popup2, "Green", (const Image*)GREEN_PNG);
popup_add_elem(popup2, "Yellow", (const Image*)YELLOW_PNG);
popup_add_elem(popup2, "Black", (const Image*)BLACK_PNG);
popup_add_elem(popup2, "White", (const Image*)WHITE_PNG);
popup_list_height(popup1, 10);
popup_list_height(popup2, 10);
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 1);
layout_popup(layout, popup1, 1, 0);
layout_popup(layout, popup2, 1, 1);

}

/**/

static void i_combos(Layout *layout)
{

Label *label1 = label_create();
Label *label2 = label_create();
Combo *combo1 = combo_create();
Combo *combo2 = combo_create();
label_text(label1, "Search:");
label_text(label2, "Folder:");
combo_add_elem(combo1, "Search", NULL);
combo_add_elem(combo1, "Disk", NULL);
combo_add_elem(combo1, "Edit", NULL);
combo_add_elem(combo2, "/home/fran/Desktop", NULL);

26.4 - Hello Edit and UpDown! 499

combo_add_elem(combo2, "/usr/include", NULL);
combo_add_elem(combo2, "/mnt/volume1", NULL);
combo_add_elem(combo2, "/etc/html/log.txt", NULL);
layout_label(layout, label1, 2, 0);
layout_label(layout, label2, 2, 1);
layout_combo(layout, combo1, 3, 0);
layout_combo(layout, combo2, 3, 1);

}

/**/

Panel *popup_combo(void)
{

Panel *panel = panel_create();
Layout *layout = layout_create(4, 2);
i_popups(layout);
i_combos(layout);
layout_margin(layout, 10.f);
layout_vmargin(layout, 0, 10.f);
layout_hmargin(layout, 0, 5.f);
layout_hmargin(layout, 1, 10.f);
layout_hmargin(layout, 2, 5.f);
layout_hsize(layout, 1, 150.f);
layout_hsize(layout, 3, 150.f);
panel_layout(panel, layout);
return panel;

}

26.4. Hello Edit and UpDown!

Figure 26.5: Edit and UpDown controls.

Listing 26.4: demo/guihello/form.c
/* Form demo */

#include "form.h"
#include <gui/guiall.h>

500 Chapter 26 - Hello GUI!

/**/

static void i_OnFilter(void *noused, Event *e)
{

const EvText *params = event_params(e, EvText);
EvTextFilter *result = event_result(e, EvTextFilter);
uint32_t i = 0, j = 0;
while (params>text[i] != '\0')
{

if (params>text[i] >= '0' && params>text[i] <= '9')
{

result>text[j] = params>text[i];
j += 1;

}

i += 1;
}

result>text[j] = '\0';
result>apply = TRUE;
unref(noused);

}

/**/

static void i_OnUpDown(Edit *edit, Event *e)
{

const EvButton *params = event_params(e, EvButton);
int32_t n = str_to_i32(edit_get_text(edit), 10, NULL);
char_t text[64];
n += (params>index == 0) ? 1 : 1;
bstd_sprintf(text, sizeof(text), "%d", n);
edit_text(edit, text);

}

/**/

static Layout *i_numbers(color_t colorbg)
{

Layout *layout = layout_create(5, 1);
Label *label = label_create();
Edit *edit1 = edit_create();
Edit *edit2 = edit_create();
UpDown *updown1 = updown_create();
UpDown *updown2 = updown_create();
label_text(label, "Height (cm):");
edit_text(edit1, "25");
edit_text(edit2, "175");
edit_align(edit1, ekRIGHT);
edit_align(edit2, ekRIGHT);

26.4 - Hello Edit and UpDown! 501

edit_OnFilter(edit1, listener(NULL, i_OnFilter, void));
edit_OnFilter(edit2, listener(NULL, i_OnFilter, void));
edit_bgcolor_focus(edit1, colorbg);
edit_bgcolor_focus(edit2, colorbg);
updown_OnClick(updown1, listener(edit1, i_OnUpDown, Edit));
updown_OnClick(updown2, listener(edit2, i_OnUpDown, Edit));
updown_tooltip(updown1, "Increase/Decrease age");
updown_tooltip(updown2, "Increase/Decrease height");
layout_label(layout, label, 2, 0);
layout_edit(layout, edit1, 0, 0);
layout_edit(layout, edit2, 3, 0);
layout_updown(layout, updown1, 1, 0);
layout_updown(layout, updown2, 4, 0);
layout_hmargin(layout, 1, 10.f);
layout_hmargin(layout, 2, 10.f);
layout_hexpand2(layout, 0, 3, .5f);
return layout;

}

/**/

static Layout *i_edits(void)
{

color_t colorbg = gui_alt_color(color_bgr(0xFFFFe4), color_bgr(0x101010));
Layout *layout1 = layout_create(2, 6);
Layout *layout2 = i_numbers(colorbg);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Label *label5 = label_create();
Label *label6 = label_create();
Edit *edit1 = edit_create();
Edit *edit2 = edit_create();
Edit *edit3 = edit_create();
Edit *edit4 = edit_create();
Edit *edit5 = edit_create();
label_text(label1, "User Name:");
label_text(label2, "Password:");
label_text(label3, "Address:");
label_text(label4, "City:");
label_text(label5, "Phone:");
label_text(label6, "Age:");
label_color_over(label1, color_rgb(255, 128, 52));
label_color_over(label2, color_rgb(70, 129, 207));
label_color_over(label3, color_rgb(119, 188, 31));
label_style_over(label4, ekFITALIC | ekFUNDERLINE);
edit_text(edit1, "Amanda Callister");
edit_text(edit2, "aQwe56nhjJk");
edit_text(edit3, "35, Tuam Road");
edit_text(edit4, "Galway Ireland");

502 Chapter 26 - Hello GUI!

edit_text(edit5, "+35 654 333 000");
edit_passmode(edit2, TRUE);
edit_bgcolor_focus(edit1, colorbg);
edit_bgcolor_focus(edit2, colorbg);
edit_bgcolor_focus(edit3, colorbg);
edit_bgcolor_focus(edit4, colorbg);
edit_bgcolor_focus(edit5, colorbg);
layout_label(layout1, label1, 0, 0);
layout_label(layout1, label2, 0, 1);
layout_label(layout1, label3, 0, 2);
layout_label(layout1, label4, 0, 3);
layout_label(layout1, label5, 0, 4);
layout_label(layout1, label6, 0, 5);
layout_edit(layout1, edit1, 1, 0);
layout_edit(layout1, edit2, 1, 1);
layout_edit(layout1, edit3, 1, 2);
layout_edit(layout1, edit4, 1, 3);
layout_edit(layout1, edit5, 1, 4);
layout_layout(layout1, layout2, 1, 5);
layout_hmargin(layout1, 0, 5);
layout_hexpand(layout1, 1);
layout_vmargin(layout1, 0, 5);
layout_vmargin(layout1, 1, 5);
layout_vmargin(layout1, 2, 5);
layout_vmargin(layout1, 3, 5);
layout_vmargin(layout1, 4, 5);
return layout1;

}

/**/

static Layout *i_form(void)
{

Layout *layout1 = layout_create(1, 2);
Layout *layout2 = i_edits();
Label *label = label_multiline();
label_text(label, "Please fill in all the information on the form. We will

↪→ use this data to send commercial mail at all hours, not caring much
↪→ if it bothers you or not.");

label_color(label, gui_alt_color(color_rgb(255, 0, 0), color_rgb(180, 180,
↪→ 180)));

label_bgcolor(label, gui_alt_color(color_rgb(216, 191, 216), color_rgb(80,
↪→ 40, 40)));

label_bgcolor_over(label, gui_alt_color(color_rgb(255, 250, 205), color_rgb
↪→ (105, 100, 55)));

label_style_over(label, ekFUNDERLINE);
layout_layout(layout1, layout2, 0, 0);
layout_label(layout1, label, 0, 1);
layout_hsize(layout1, 0, 300);
layout_vmargin(layout1, 0, 10);
layout_margin(layout1, 10);

26.5 - Hello ListBox! 503

return layout1;
}

/**/

Panel *form_basic(void)
{

Layout *layout = i_form();
Panel *panel = panel_create();
panel_layout(panel, layout);
return panel;

}

26.5. Hello ListBox!

Figure 26.6: ListBox controls.

Listing 26.5: demo/guihello/listboxes.c
/* Listboxes */

#include "listboxes.h"
#include "res_guihello.h"
#include <gui/guiall.h>

/**/

static ListBox *i_full_listbox(void)
{

ListBox *listbox = listbox_create();
listbox_size(listbox, s2df(150, 200));

504 Chapter 26 - Hello GUI!

listbox_multisel(listbox, TRUE);
listbox_checkbox(listbox, TRUE);
listbox_add_elem(listbox, "Sales presentation", resid_image(POWERPOINT_PNG)

↪→);
listbox_add_elem(listbox, "Balance 2017", resid_image(POWERPOINT_PNG));
listbox_add_elem(listbox, "The Last of Us Analysis", resid_image(

↪→ POWERPOINT_PNG));
listbox_add_elem(listbox, "Phone list", resid_image(ACCESS_PNG));
listbox_add_elem(listbox, "Customer database", resid_image(ACCESS_PNG));
listbox_add_elem(listbox, "My first book", resid_image(WORD_PNG));
listbox_add_elem(listbox, "Letter to April", resid_image(WORD_PNG));
listbox_add_elem(listbox, "Cookbook Recipes", resid_image(WORD_PNG));
listbox_add_elem(listbox, "Dog playing piano", resid_image(JPG_PNG));
listbox_add_elem(listbox, "Hollidays 2019", resid_image(JPG_PNG));
listbox_add_elem(listbox, "Amanda's party", resid_image(JPG_PNG));
listbox_add_elem(listbox, "Flying", resid_image(JPG_PNG));
listbox_add_elem(listbox, "The C Programing Language", resid_image(PDF_PNG)

↪→);
listbox_add_elem(listbox, "Graphics Programing with GDI+", resid_image(

↪→ PDF_PNG));
listbox_add_elem(listbox, "Personal finances", resid_image(EXCEL_PNG));
listbox_add_elem(listbox, "Stocks 2017", resid_image(EXCEL_PNG));
listbox_add_elem(listbox, "Website Dashboard", resid_image(EXCEL_PNG));
listbox_add_elem(listbox, "Open Issues", resid_image(DOCUMENT_PNG));
listbox_add_elem(listbox, "TODO List", resid_image(DOCUMENT_PNG));
listbox_select(listbox, 0, TRUE);
return listbox;

}

/**/

static ListBox *i_image_listbox(void)
{

ListBox *listbox = listbox_create();
listbox_size(listbox, s2df(150, 200));
listbox_add_elem(listbox, "Spain", resid_image(SPAIN_PNG));
listbox_add_elem(listbox, "Italy", resid_image(ITALY_PNG));
listbox_add_elem(listbox, "United Kingdom", resid_image(UKING_PNG));
listbox_add_elem(listbox, "Vietnam", resid_image(VIETNAM_PNG));
listbox_add_elem(listbox, "Russia", resid_image(RUSSIA_PNG));
listbox_add_elem(listbox, "Portugal", resid_image(PORTUGAL_PNG));
listbox_add_elem(listbox, "Japan", resid_image(JAPAN_PNG));
listbox_add_elem(listbox, "Disk", resid_image(DISK16_PNG));
listbox_add_elem(listbox, "Edit", resid_image(EDIT16_PNG));
listbox_add_elem(listbox, "Folder", resid_image(FOLDER16_PNG));
listbox_add_elem(listbox, "Restore", resid_image(RESTORE16_PNG));
listbox_add_elem(listbox, "Search", resid_image(SEARCH16_PNG));
listbox_add_elem(listbox, "Error", resid_image(ERROR16_PNG));
listbox_select(listbox, 0, TRUE);
return listbox;

}

26.6 - Hello Slider and Progress! 505

/**/

static ListBox *i_simple_listbox(void)
{

ListBox *listbox = listbox_create();
listbox_size(listbox, s2df(150, 200));
listbox_add_elem(listbox, "Item 1", NULL);
listbox_add_elem(listbox, "Item 2", NULL);
listbox_add_elem(listbox, "Item 3", NULL);
listbox_add_elem(listbox, "Item 4", NULL);
listbox_select(listbox, 0, TRUE);
return listbox;

}

/**/

Panel *listboxes(void)
{

Panel *panel = panel_create();
Layout *layout = layout_create(3, 2);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
ListBox *listbox1 = i_simple_listbox();
ListBox *listbox2 = i_image_listbox();
ListBox *listbox3 = i_full_listbox();
label_text(label1, "Simple ListBox");
label_text(label2, "With Images");
label_text(label3, "Checks and Multiselect");
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 1, 0);
layout_label(layout, label3, 2, 0);
layout_listbox(layout, listbox1, 0, 1);
layout_listbox(layout, listbox2, 1, 1);
layout_listbox(layout, listbox3, 2, 1);
layout_hmargin(layout, 0, 10);
layout_hmargin(layout, 1, 10);
layout_vmargin(layout, 0, 5);
panel_layout(panel, layout);
return panel;

}

26.6. Hello Slider and Progress!

Listing 26.6: demo/guihello/sliders.c
/* Sliders */

#include "sliders.h"

506 Chapter 26 - Hello GUI!

Figure 26.7: Slider and Progress controls.

#include <gui/guiall.h>

/**/

static void i_OnSlider(Progress *prog, Event *event)
{

const EvSlider *params = event_params(event, EvSlider);
progress_value(prog, params>pos);

}

/**/

Panel *sliders(void)
{

Layout *layout1 = layout_create(2, 1);
Layout *layout2 = layout_create(1, 8);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Slider *slider1 = slider_create();
Slider *slider2 = slider_create();
Slider *slider3 = slider_vertical();
Progress *prog1 = progress_create();
Progress *prog2 = progress_create();
Panel *panel = panel_create();
label_text(label1, "Slider");
label_text(label2, "Slider (discrete 6 steps)");
label_text(label3, "Progress Bar");
label_text(label4, "Progress Undefined");
slider_steps(slider2, 6);

26.7 - Hello TextView! 507

slider_tooltip(slider1, "Horizontal Slider");
slider_tooltip(slider2, "Horizontal Discrete Slider");
slider_tooltip(slider3, "Vertical Slider");
slider_OnMoved(slider1, listener(prog1, i_OnSlider, Progress));
progress_undefined(prog2, TRUE);
layout_label(layout2, label1, 0, 0);
layout_label(layout2, label2, 0, 2);
layout_label(layout2, label3, 0, 4);
layout_label(layout2, label4, 0, 6);
layout_slider(layout2, slider1, 0, 1);
layout_slider(layout2, slider2, 0, 3);
layout_slider(layout1, slider3, 1, 0);
layout_progress(layout2, prog1, 0, 5);
layout_progress(layout2, prog2, 0, 7);
layout_hsize(layout2, 0, 300);
layout_layout(layout1, layout2, 0, 0);
layout_vmargin(layout2, 0, 5);
layout_vmargin(layout2, 1, 5);
layout_vmargin(layout2, 2, 5);
layout_vmargin(layout2, 3, 5);
layout_vmargin(layout2, 4, 5);
layout_vmargin(layout2, 5, 5);
layout_vmargin(layout2, 6, 5);
layout_hmargin(layout1, 0, 10);
panel_layout(panel, layout1);
return panel;

}

26.7. Hello TextView!

Listing 26.7: demo/guihello/textviews.c
/* Use of textviews */

#include "textviews.h"
#include "res_guihello.h"
#include <gui/guiall.h>

/**/

static void i_set_rtf(TextView *text)
{

ResPack *pack = res_guihello_respack("");
uint32_t size = 0;
const byte_t *data = respack_file(pack, TEXTVIEW_RTF, &size);
Stream *stm = stm_from_block(data, size);
textview_rtf(text, stm);
stm_close(&stm);
respack_destroy(&pack);

}

508 Chapter 26 - Hello GUI!

Figure 26.8: Rich text control.

/**/

static void i_set_hard_coding(TextView *text)
{

textview_units(text, ekFPOINTS);
textview_lspacing(text, 1.15f);
textview_afspace(text, 10);
textview_family(text, "Arial");
textview_fsize(text, 16);
textview_writef(text, "What is Lorem Ipsum?\n");
textview_fsize(text, 11);
textview_writef(text, "Lorem Ipsum ");
textview_fstyle(text, ekFBOLD);
textview_writef(text, "is simply");

26.7 - Hello TextView! 509

textview_fstyle(text, ekFNORMAL);
textview_writef(text, " dummy text of the ");
textview_fstyle(text, ekFITALIC);
textview_writef(text, "printing and typesetting ");
textview_fstyle(text, ekFNORMAL);
textview_writef(text, "industry. ");
textview_fsize(text, 16);
textview_color(text, color_rgb(255, 0, 0));
textview_writef(text, "Lorem Ipsum ");
textview_color(text, kCOLOR_DEFAULT);
textview_fsize(text, 11);
textview_writef(text, "has been the ");
textview_family(text, "Courier New");
textview_fsize(text, 14);
textview_writef(text, "[industry's standard] ");
textview_family(text, "Arial");
textview_fsize(text, 11);
textview_fstyle(text, ekFUNDERLINE);
textview_writef(text, "dummy text");
textview_fstyle(text, ekFNORMAL);
textview_writef(text, " ever ");
textview_fstyle(text, ekFSTRIKEOUT);
textview_writef(text, "since the 1500s");
textview_fstyle(text, ekFNORMAL);
textview_writef(text, ", when an ");
textview_color(text, color_rgb(0, 176, 80));
textview_writef(text, "unknown printer ");
textview_color(text, kCOLOR_DEFAULT);
textview_writef(text, "took a galley of type and scrambled it to make a

↪→ type specimen book");
textview_fstyle(text, ekFITALIC);
textview_color(text, color_rgb(0, 77, 187));
textview_bgcolor(text, color_rgb(192, 192, 192));
textview_writef(text, ". It has survived not only five centuries");
textview_fstyle(text, ekFNORMAL);
textview_color(text, kCOLOR_DEFAULT);
textview_bgcolor(text, kCOLOR_DEFAULT);
textview_writef(text, ", but also the leap into electronic typesetting,

↪→ remaining essentially unchanged.");
}

/**/

Panel *textviews(void)
{

Layout *layout = layout_create(1, 4);
Label *label1 = label_create();
Label *label2 = label_create();
TextView *text1 = textview_create();
TextView *text2 = textview_create();
Panel *panel = panel_create();

510 Chapter 26 - Hello GUI!

label_text(label1, "From RTF data");
label_text(label2, "Hard coding");
textview_size(text1, s2df(450, 250));
textview_size(text2, s2df(450, 250));
i_set_rtf(text1);
i_set_hard_coding(text2);
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 2);
layout_textview(layout, text1, 0, 1);
layout_textview(layout, text2, 0, 3);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 10);
layout_vmargin(layout, 2, 5);
panel_layout(panel, layout);
return panel;

}

26.8. Hello TableView!

Figure 26.9: Table control.

Listing 26.8: demo/guihello/table.c
/* Use of tables */

26.8 - Hello TableView! 511

#include "table.h"
#include <gui/guiall.h>

typedef struct _appdata_t AppData;

struct _appdata_t
{

TableView *table;
TextView *text;
char_t temp_string[256];

};

/**/

static void i_destroy_appdata(AppData** data)
{

heap_delete(data, AppData);
}

/**/

/* AppData must contain the real data access(array, stream, etc) */
static void i_OnTableData(AppData *data, Event *e)
{

uint32_t etype = event_type(e);

switch(etype) {
case ekGUI_EVENT_TBL_NROWS:
{

uint32_t *n = event_result(e, uint32_t);
*n = 100;
break;

}

case ekGUI_EVENT_TBL_CELL:
{

const EvTbPos *pos = event_params(e, EvTbPos);
EvTbCell *cell = event_result(e, EvTbCell);

switch(pos>col) {
case 0:

cell>align = ekLEFT;
bstd_sprintf(data>temp_string, sizeof(data>temp_string), "Name %d

↪→ ", pos>row);
break;

case 1:
cell>align = ekLEFT;
bstd_sprintf(data>temp_string, sizeof(data>temp_string), "Adress

↪→ %d", pos>row);

512 Chapter 26 - Hello GUI!

break;

case 2:
cell>align = ekLEFT;
bstd_sprintf(data>temp_string, sizeof(data>temp_string), "City %d

↪→ ", pos>row);
break;

case 3:
cell>align = ekRIGHT;
bstd_sprintf(data>temp_string, sizeof(data>temp_string), "%d",

↪→ pos>row);
break;

case 4:
cell>align = ekRIGHT;
bstd_sprintf(data>temp_string, sizeof(data>temp_string), "%.2f",

↪→ 10.5f + pos>row);
break;

case 5:
cell>align = ekCENTER;
bstd_sprintf(data>temp_string, sizeof(data>temp_string), "Extra

↪→ Data 1 %d", pos>row);
break;

case 6:
cell>align = ekCENTER;
bstd_sprintf(data>temp_string, sizeof(data>temp_string), "Extra

↪→ Data 2 %d", pos>row);
break;

case 7:
cell>align = ekCENTER;
bstd_sprintf(data>temp_string, sizeof(data>temp_string), "Extra

↪→ Data 3 %d", pos>row);
break;

case 8:
cell>align = ekCENTER;
bstd_sprintf(data>temp_string, sizeof(data>temp_string), "Extra

↪→ Data 4 %d", pos>row);
break;

cassert_default();
}

cell>text = data>temp_string;
break;

}
}

26.8 - Hello TableView! 513

}

/**/

static void i_OnHeaderClick(AppData *data, Event *e)
{

const EvButton *p = event_params(e, EvButton);
textview_printf(data>text, "Click on Header: %d\n", p>index);

}

/**/

static void i_OnMultisel(AppData *data, Event *e)
{

const EvButton *p = event_params(e, EvButton);
if (p>index == 0)

tableview_multisel(data>table, FALSE, FALSE);
else if (p>index == 1)

tableview_multisel(data>table, TRUE, FALSE);
else if (p>index == 2)

tableview_multisel(data>table, TRUE, TRUE);
}

/**/

static void i_OnResizeCheck(AppData *data, Event *e)
{

const EvButton *p = event_params(e, EvButton);
bool_t resizable = p>state == ekGUI_ON ? TRUE : FALSE;
tableview_header_resizable(data>table, resizable);

}

/**/

static void i_OnHeaderCheck(AppData *data, Event *e)
{

const EvButton *p = event_params(e, EvButton);
bool_t clickable = p>state == ekGUI_ON ? TRUE : FALSE;
tableview_header_clickable(data>table, clickable);

}

/**/

static void i_OnFreezeCheck(AppData *data, Event *e)
{

const EvButton *p = event_params(e, EvButton);
uint32_t col_freeze = p>state == ekGUI_ON ? 1 : UINT32_MAX;
tableview_column_freeze(data>table, col_freeze);

}

/**/

514 Chapter 26 - Hello GUI!

static void i_OnGridCheck(AppData *data, Event *e)
{

const EvButton *p = event_params(e, EvButton);
bool_t grid = p>state == ekGUI_ON ? TRUE : FALSE;
tableview_grid(data>table, grid, grid);

}

/**/

static void i_OnPrintsel(AppData *data, Event *e)
{

const ArrSt(uint32_t) *sel = tableview_selected(data>table);
uint32_t n = arrst_size(sel, uint32_t);
textview_writef(data>text, "Selected rows: ");
arrst_foreach_const(row, sel, uint32_t)

textview_printf(data>text, "%d", *row);
if (row_i < n 1)

textview_writef(data>text, ", ");
arrst_end();
textview_writef(data>text, "\n");
unref(e);

}

/**/

static Layout* i_table_control_layout(AppData *data)
{

Layout *layout1 = layout_create(3, 1);
Layout *layout2 = layout_create(1, 6);
Button *button1 = button_radio();
Button *button2 = button_radio();
Button *button3 = button_radio();
Button *button4 = button_check();
Button *button5 = button_check();
Button *button6 = button_check();
Button *button7 = button_check();
Button *button8 = button_push();
button_text(button1, "Single select");
button_text(button2, "Multi select");
button_text(button3, "Preserve select");
button_text(button4, "Resizable headers");
button_text(button5, "Clickable headers");
button_text(button6, "Freeze 0 and 1 columns");
button_text(button7, "Draw grid lines");
button_text(button8, "Print selected rows");
button_state(button1, ekGUI_ON);
button_state(button4, ekGUI_ON);
button_state(button5, ekGUI_ON);
button_state(button6, ekGUI_ON);
button_state(button7, ekGUI_ON);

26.8 - Hello TableView! 515

layout_button(layout1, button1, 0, 0);
layout_button(layout1, button2, 1, 0);
layout_button(layout1, button3, 2, 0);
layout_layout(layout2, layout1, 0, 0);
layout_button(layout2, button4, 0, 1);
layout_button(layout2, button5, 0, 2);
layout_button(layout2, button6, 0, 3);
layout_button(layout2, button7, 0, 4);
layout_button(layout2, button8, 0, 5);
layout_hmargin(layout1, 0, 5.f);
layout_hmargin(layout1, 1, 5.f);
layout_vmargin(layout2, 0, 5.f);
layout_vmargin(layout2, 1, 5.f);
layout_vmargin(layout2, 2, 5.f);
layout_vmargin(layout2, 3, 5.f);
layout_vmargin(layout2, 4, 5.f);
layout_halign(layout2, 0, 0, ekLEFT);
layout_halign(layout2, 0, 5, ekLEFT);
button_OnClick(button1, listener(data, i_OnMultisel, AppData));
button_OnClick(button2, listener(data, i_OnMultisel, AppData));
button_OnClick(button3, listener(data, i_OnMultisel, AppData));
button_OnClick(button4, listener(data, i_OnResizeCheck, AppData));
button_OnClick(button5, listener(data, i_OnHeaderCheck, AppData));
button_OnClick(button6, listener(data, i_OnFreezeCheck, AppData));
button_OnClick(button7, listener(data, i_OnGridCheck, AppData));
button_OnClick(button8, listener(data, i_OnPrintsel, AppData));
return layout2;

}

/**/

Panel *table_view(void)
{

Panel *panel = panel_create();
AppData *data = heap_new0(AppData);
TableView *table = tableview_create();
TextView *text = textview_create();
Layout *layout1 = layout_create(1, 3);
Layout *layout2 = i_table_control_layout(data);
data>table = table;
data>text = text;
tableview_size(table, s2df(500, 300));
tableview_OnData(table, listener(data, i_OnTableData, AppData));
tableview_OnHeaderClick(table, listener(data, i_OnHeaderClick, AppData));
tableview_new_column_text(table);
tableview_new_column_text(table);
tableview_new_column_text(table);
tableview_new_column_text(table);
tableview_new_column_text(table);
tableview_new_column_text(table);
tableview_new_column_text(table);

516 Chapter 26 - Hello GUI!

tableview_new_column_text(table);
tableview_new_column_text(table);
tableview_header_clickable(table, TRUE);
tableview_header_resizable(table, TRUE);
tableview_header_indicator(table, 1, ekINDDOWN_ARROW);
tableview_header_indicator(table, 2, ekINDUP_ARROW);
tableview_header_title(table, 0, "Name");
tableview_header_title(table, 1, "Address");
tableview_header_title(table, 2, "City");
tableview_header_title(table, 3, "Age");
tableview_header_title(table, 4, "Value");
tableview_header_title(table, 5, "Extra\nData 1");
tableview_header_title(table, 6, "Extra\nData 2");
tableview_header_title(table, 7, "Extra\nData 3");
tableview_header_title(table, 8, "Extra\nData 4");
tableview_column_width(table, 0, 100);
tableview_column_width(table, 1, 105);
tableview_column_width(table, 2, 50);
tableview_column_width(table, 3, 50);
tableview_column_width(table, 4, 170);
tableview_column_width(table, 5, 200);
tableview_column_width(table, 6, 200);
tableview_column_width(table, 7, 200);
tableview_column_width(table, 8, 200);
tableview_column_limits(table, 2, 50, 100);
tableview_column_freeze(table, 1);
tableview_header_align(table, 0, ekLEFT);
tableview_header_align(table, 1, ekLEFT);
tableview_header_align(table, 2, ekLEFT);
tableview_header_align(table, 3, ekRIGHT);
tableview_header_align(table, 4, ekRIGHT);
tableview_header_align(table, 5, ekCENTER);
tableview_header_align(table, 6, ekCENTER);
tableview_header_align(table, 7, ekCENTER);
tableview_header_align(table, 8, ekCENTER);
tableview_multisel(table, FALSE, FALSE);
tableview_header_visible(table, TRUE);
tableview_grid(table, TRUE, TRUE);
tableview_update(table);

{
uint32_t row = 20;
tableview_select(table, &row, 1);
tableview_focus_row(table, row, ekBOTTOM);

}

layout_layout(layout1, layout2, 0, 0);
layout_tableview(layout1, table, 0, 1);
layout_textview(layout1, text, 0, 2);
layout_vmargin(layout1, 0, 5.f);
layout_vmargin(layout1, 1, 5.f);

26.9 - Hello SplitView! 517

panel_data(panel, &data, i_destroy_appdata, AppData);
panel_layout(panel, layout1);
return panel;

}

26.9. Hello SplitView!

Figure 26.10: SplitView.

Listing 26.9: demo/guihello/splits.c
/* Use of splitviews */

#include "splits.h"
#include <gui/guiall.h>

static const char_t *i_LOREM = "Lorem Ipsum is simply dummy text of the
↪→ printing and typesetting industry. Lorem Ipsum has been the industry's
↪→ standard dummy text ever since the 1500s, when an unknown printer took a
↪→ galley of type and scrambled it to make a type specimen book. It has
↪→ survived not only five centuries, but also the leap into electronic
↪→ typesetting, remaining essentially unchanged. It was popularised in the
↪→ 1960s with the release of Letraset sheets containing Lorem Ipsum
↪→ passages, and more recently with desktop publishing software like Aldus
↪→ PageMaker including versions of Lorem Ipsum.";

/**/

static void i_OnDraw(View *view, Event *e)

518 Chapter 26 - Hello GUI!

{
const EvDraw *p = event_params(e, EvDraw);
real32_t p0 = p>width / 6;
real32_t p1 = p>height / 6;
real32_t p2 = p>width / 3;
real32_t p3 = p>height / 3;
unref(view);
draw_fill_color(p>ctx, kCOLOR_RED);
draw_rect(p>ctx, ekFILL, 0, 0, p>width, p>height);
draw_fill_color(p>ctx, kCOLOR_GREEN);
draw_rect(p>ctx, ekFILL, p0, p1, p>width 2 * p0, p>height 2 * p1);
draw_fill_color(p>ctx, kCOLOR_BLUE);
draw_rect(p>ctx, ekFILL, p2, p3, p>width 2 * p2, p>height 2 * p3);

}

/**/

static Panel *i_left_panel(void)
{

uint32_t i, n = 32;
Panel *panel = panel_scroll(FALSE, TRUE);
Layout *layout = layout_create(2, n);
real32_t rmargin = panel_scroll_width(panel);

for (i = 0; i < n; ++i)
{

char_t text[64];
Label *label = label_create();
Edit *edit = edit_create();
bstd_sprintf(text, sizeof(text), "Value %02d", i);
label_text(label, text);
bstd_sprintf(text, sizeof(text), "Edit here value %02d", i);
edit_text(edit, text);
layout_label(layout, label, 0, i);
layout_edit(layout, edit, 1, i);

}

for (i = 0; i < n 1; ++i)
layout_vmargin(layout, i, 3);

layout_hmargin(layout, 0, 5);
layout_margin4(layout, 0, rmargin + 5, 0, 0);
layout_hexpand(layout, 1);
panel_layout(panel, layout);
return panel;

}

/**/

Panel *split_panel(void)
{

26.10 - Hello Modal Window! 519

Panel *panel1 = panel_create();
Panel *panel2 = i_left_panel();
Layout *layout = layout_create(1, 1);
SplitView *split1 = splitview_vertical();
SplitView *split2 = splitview_horizontal();
TextView *text = textview_create();
View *view = view_create();
textview_writef(text, i_LOREM);
view_OnDraw(view, listener(view, i_OnDraw, View));
splitview_pos(split1, .25f);
splitview_size(split1, s2df(800, 480));
splitview_size(split2, s2df(640, 480));
splitview_view(split2, view, FALSE);
splitview_text(split2, text, FALSE);
splitview_panel(split1, panel2);
splitview_split(split1, split2);
layout_splitview(layout, split1, 0, 0);
panel_layout(panel1, layout);
return panel1;

}

26.10. Hello Modal Window!

Figure 26.11: Modal windows.

Listing 26.10: demo/guihello/modalwin.c
/* Listboxes */

520 Chapter 26 - Hello GUI!

#include "modalwin.h"
#include <gui/guiall.h>

typedef struct _modal_data_t ModalData;

struct _modal_data_t
{

uint32_t type;
Label *label;
Window *parent;

};

/**/

static const char_t *i_MODAL0 = "Modal Window without [Return] nor [Esc]";
static const char_t *i_MODAL1 = "Modal Window with [Return]";
static const char_t *i_MODAL2 = "Modal Window with [Esc]";
static const char_t *i_MODAL3 = "Modal Window with [Return] and [Esc]";

/**/

static Layout *i_modal_layout(ModalData *data);

/**/

static ModalData* i_modal_data(Window* parent)
{

ModalData *data = heap_new0(ModalData);
data>parent = parent;
data>type = UINT32_MAX;
return data;

}

/**/

static void i_destroy_modal_data(ModalData** data)
{

heap_delete(data, ModalData);
}

/**/

static void i_OnCloseModal(Window* window, Event* e)
{

Button *button = event_sender(e, Button);
window_stop_modal(window, button_get_tag(button));

}

/**/

26.10 - Hello Modal Window! 521

static Layout* i_close_layout(Window *window)
{

Layout *layout = layout_create(1, 4);
Button *button1 = button_push();
Button *button2 = button_push();
Button *button3 = button_push();
Button *button4 = button_push();
button_text(button1, "Close modal with 10 value");
button_text(button2, "Close modal with 20 value");
button_text(button3, "Close modal with 30 value");
button_text(button4, "Close modal with 40 value");
button_tag(button1, 10);
button_tag(button2, 20);
button_tag(button3, 30);
button_tag(button4, 40);
button_OnClick(button1, listener(window, i_OnCloseModal, Window));
button_OnClick(button2, listener(window, i_OnCloseModal, Window));
button_OnClick(button3, listener(window, i_OnCloseModal, Window));
button_OnClick(button4, listener(window, i_OnCloseModal, Window));
layout_button(layout, button1, 0, 0);
layout_button(layout, button2, 0, 1);
layout_button(layout, button3, 0, 2);
layout_button(layout, button4, 0, 3);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);
layout_vmargin(layout, 2, 5);
return layout;

}

/**/

static uint32_t i_window_flags(const uint32_t type)
{

uint32_t flags = ekWINDOW_TITLE | ekWINDOW_CLOSE;
switch(type) {
case 0:

return flags;
case 1:

return flags | ekWINDOW_RETURN;
case 2:

return flags | ekWINDOW_ESC;
case 3:

return flags | ekWINDOW_RETURN | ekWINDOW_ESC;
cassert_default();
}

return 0;
}

/**/

522 Chapter 26 - Hello GUI!

static const char_t *i_window_title(const uint32_t type)
{

switch(type) {
case 0:

return i_MODAL0;
case 1:

return i_MODAL1;
case 2:

return i_MODAL2;
case 3:

return i_MODAL3;
cassert_default();
}

return 0;
}

/**/

static void i_modal_window(ModalData *data)
{

uint32_t flags = i_window_flags(data>type);
Window *window = window_create(flags);
ModalData *ndata = i_modal_data(window);
Panel *panel = panel_create();
Layout *layout1 = layout_create(2, 1);
Layout *layout2 = i_modal_layout(ndata);
Layout *layout3 = i_close_layout(window);
uint32_t retval = UINT32_MAX;
V2Df pos = window_get_origin(data>parent);
char_t text[128];
layout_layout(layout1, layout2, 0, 0);
layout_layout(layout1, layout3, 1, 0);
layout_hmargin(layout1, 0, 10);
layout_valign(layout1, 1, 0, ekTOP);
layout_margin(layout1, 10);
panel_data(panel, &ndata, i_destroy_modal_data, ModalData);
panel_layout(panel, layout1);
window_panel(window, panel);
window_title(window, i_window_title(data>type));
window_origin(window, v2df(pos.x + 20, pos.y + 20));
retval = window_modal(window, data>parent);

if (retval == (uint32_t)ekGUI_CLOSE_ESC)
bstd_sprintf(text, sizeof(text), "Modal stop: [Esc] (%d)", retval);

else if (retval == (uint32_t)ekGUI_CLOSE_INTRO)
bstd_sprintf(text, sizeof(text), "Modal stop: [Return] (%d)", retval);

else if (retval == (uint32_t)ekGUI_CLOSE_BUTTON)
bstd_sprintf(text, sizeof(text), "Modal stop: [X] (%d)", retval);

else
bstd_sprintf(text, sizeof(text), "Modal stop: %d", retval);

26.10 - Hello Modal Window! 523

label_text(data>label, text);
window_destroy(&window);

}

/**/

static void i_OnClickModal(ModalData* data, Event* e)
{

Button *button = event_sender(e, Button);
data>type = button_get_tag(button);
i_modal_window(data);

}

/**/

static Layout *i_modal_layout(ModalData *data)
{

Layout *layout = layout_create(1, 5);
Button *button1 = button_push();
Button *button2 = button_push();
Button *button3 = button_push();
Button *button4 = button_push();
Label *label = label_create();
cassert(data>label == NULL);
data>label = label;
button_text(button1, i_MODAL0);
button_text(button2, i_MODAL1);
button_text(button3, i_MODAL2);
button_text(button4, i_MODAL3);
label_text(label, "Modal stop: ");
button_tag(button1, 0);
button_tag(button2, 1);
button_tag(button3, 2);
button_tag(button4, 3);
button_OnClick(button1, listener(data, i_OnClickModal, ModalData));
button_OnClick(button2, listener(data, i_OnClickModal, ModalData));
button_OnClick(button3, listener(data, i_OnClickModal, ModalData));
button_OnClick(button4, listener(data, i_OnClickModal, ModalData));
layout_button(layout, button1, 0, 0);
layout_button(layout, button2, 0, 1);
layout_button(layout, button3, 0, 2);
layout_button(layout, button4, 0, 3);
layout_label(layout, label, 0, 4);
layout_halign(layout, 0, 4, ekJUSTIFY);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);
layout_vmargin(layout, 2, 5);
layout_vmargin(layout, 3, 20);
return layout;

}

524 Chapter 26 - Hello GUI!

/**/

Panel *modal_windows(Window *parent)
{

Panel *panel = panel_create();
ModalData *data = i_modal_data(parent);
Layout *layout = i_modal_layout(data);
panel_layout(panel, layout);
panel_data(panel, &data, i_destroy_modal_data, ModalData);
return panel;

}

26.11. Hello Gui Binding!

Figure 26.12: Gui Data binding.

Listing 26.11: demo/guihello/guibind.c
/* GUI data binding */

#include "guibind.h"

26.11 - Hello Gui Binding! 525

#include <gui/guiall.h>

typedef struct _basictypes_t BasicTypes;

typedef enum _myenum_t
{

ekRED,
ekBLUE,
ekGREEN,
ekBLACK,
ekMAGENTA,
ekCYAN,
ekYELLOW,
ekWHITE

} myenum_t;

struct _basictypes_t
{

bool_t bool_val;
uint16_t uint16_val;
real32_t real32_val;
myenum_t enum_val;
gui_state_t enum3_val;
String* str_val;

};

#define i_NUM_CONTROLS 9

/**/

static void i_destroy_data(BasicTypes **data)
{

str_destroy(&(*data)>str_val);
heap_delete(data, BasicTypes);

}

/**/

static Layout *i_radio_layout(void)
{

uint32_t i = 0, n = 6;
Layout *layout = layout_create(1, n);
for (i = 0; i < n; ++i)
{

Button *radio = button_radio();
char_t str[64];
bstd_sprintf(str, sizeof(str), "Radio %d", i + 1);
button_text(radio, str);
layout_button(layout, radio, 0, i);

}

526 Chapter 26 - Hello GUI!

return layout;
}

/**/

static void i_title_labels(Layout* layout)
{

Font* font = font_system(font_regular_size(), ekFBOLD);
const char_t* strs[] = { "Label", "EditBox", "Check", "Check3", "Radio", "

↪→ PopUp", "ListBox", "Slider", "UpDown" };
uint32_t i = 0;
for (i = 0; i < i_NUM_CONTROLS; ++i)
{

Label* label = label_create();
label_text(label, strs[i]);
label_font(label, font);
layout_label(layout, label, 0, i);

}

layout_hmargin(layout, 0, 10);
font_destroy(&font);

}

/**/

static void i_value_labels(Layout* layout)
{

uint32_t i = 0;
for (i = 0; i < i_NUM_CONTROLS; ++i)
{

Label* label = label_create();
label_align(label, ekCENTER);
layout_label(layout, label, 2, i);
layout_halign(layout, 2, i, ekJUSTIFY);

}

layout_hsize(layout, 2, 80);
layout_hmargin(layout, 0, 10);
for (i = 0; i < i_NUM_CONTROLS 1; ++i)

layout_vmargin(layout, i, 5);

cell_dbind(layout_cell(layout, 2, 0), BasicTypes, String*, str_val);
cell_dbind(layout_cell(layout, 2, 1), BasicTypes, String*, str_val);
cell_dbind(layout_cell(layout, 2, 2), BasicTypes, bool_t, bool_val);
cell_dbind(layout_cell(layout, 2, 3), BasicTypes, gui_state_t, enum3_val);
cell_dbind(layout_cell(layout, 2, 4), BasicTypes, uint16_t, uint16_val);
cell_dbind(layout_cell(layout, 2, 5), BasicTypes, myenum_t, enum_val);
cell_dbind(layout_cell(layout, 2, 6), BasicTypes, myenum_t, enum_val);
cell_dbind(layout_cell(layout, 2, 7), BasicTypes, real32_t, real32_val);
cell_dbind(layout_cell(layout, 2, 8), BasicTypes, real32_t, real32_val);

}

26.11 - Hello Gui Binding! 527

/**/

static Layout *i_layout(void)
{

Layout *layout = layout_create(3, 9);
Label *label = label_create();
Edit *edit = edit_create();
Button *check = button_check();
Button *check3 = button_check3();
Layout *radios = i_radio_layout();
PopUp *popup = popup_create();
ListBox *listbox = listbox_create();
Slider *slider = slider_create();
UpDown *updown = updown_create();
layout_label(layout, label, 1, 0);
layout_edit(layout, edit, 1, 1);
layout_button(layout, check, 1, 2);
layout_button(layout, check3, 1, 3);
layout_layout(layout, radios, 1, 4);
layout_popup(layout, popup, 1, 5);
layout_listbox(layout, listbox, 1, 6);
layout_slider(layout, slider, 1, 7);
layout_updown(layout, updown, 1, 8);
layout_halign(layout, 1, 0, ekJUSTIFY);
layout_halign(layout, 1, 8, ekLEFT);
cell_dbind(layout_cell(layout, 1, 0), BasicTypes, String*, str_val);
cell_dbind(layout_cell(layout, 1, 1), BasicTypes, String*, str_val);
cell_dbind(layout_cell(layout, 1, 2), BasicTypes, bool_t, bool_val);
cell_dbind(layout_cell(layout, 1, 3), BasicTypes, gui_state_t, enum3_val);
cell_dbind(layout_cell(layout, 1, 4), BasicTypes, uint16_t, uint16_val);
cell_dbind(layout_cell(layout, 1, 5), BasicTypes, myenum_t, enum_val);
cell_dbind(layout_cell(layout, 1, 6), BasicTypes, myenum_t, enum_val);
cell_dbind(layout_cell(layout, 1, 7), BasicTypes, real32_t, real32_val);
cell_dbind(layout_cell(layout, 1, 8), BasicTypes, real32_t, real32_val);
i_title_labels(layout);
i_value_labels(layout);
return layout;

}

/**/

Panel* guibind(void)
{

Layout *layout = NULL;
Panel *panel = NULL;
BasicTypes *data = heap_new(BasicTypes);
data>bool_val = TRUE;
data>uint16_val = 4;
data>real32_val = 15.5f;
data>enum3_val = ekGUI_MIXED;

528 Chapter 26 - Hello GUI!

data>enum_val = ekCYAN;
data>str_val = str_c("Text String");

dbind_enum(gui_state_t, ekGUI_OFF, "");
dbind_enum(gui_state_t, ekGUI_ON, "");
dbind_enum(gui_state_t, ekGUI_MIXED, "");
dbind_enum(myenum_t, ekRED, "Red");
dbind_enum(myenum_t, ekBLUE, "Blue");
dbind_enum(myenum_t, ekGREEN, "Green");
dbind_enum(myenum_t, ekBLACK, "Black");
dbind_enum(myenum_t, ekMAGENTA, "Magenta");
dbind_enum(myenum_t, ekCYAN, "Cyan");
dbind_enum(myenum_t, ekYELLOW, "Yellow");
dbind_enum(myenum_t, ekWHITE, "While");
dbind(BasicTypes, bool_t, bool_val);
dbind(BasicTypes, uint16_t, uint16_val);
dbind(BasicTypes, real32_t, real32_val);
dbind(BasicTypes, gui_state_t, enum3_val);
dbind(BasicTypes, myenum_t, enum_val);
dbind(BasicTypes, String*, str_val);
dbind_range(BasicTypes, real32_t, real32_val, 50, 50);
dbind_increment(BasicTypes, real32_t, real32_val, 5);

layout = i_layout();
panel = panel_create();
layout_dbind(layout, NULL, BasicTypes);
layout_dbind_obj(layout, data, BasicTypes);
panel_data(panel, &data, i_destroy_data, BasicTypes);
panel_layout(panel, layout);
return panel;

}

26.12. Hello Struct Binding!

Listing 26.12: demo/guihello/layoutbind.c
/* GUI data binding */

#include "layoutbind.h"
#include <gui/guiall.h>

typedef struct _vector_t Vector;
typedef struct _structtypes_t StructTypes;

struct _vector_t
{

real32_t x;
real32_t y;
real32_t z;

};

26.12 - Hello Struct Binding! 529

Figure 26.13: Gui Struct binding.

struct _structtypes_t
{

String *name;
Vector vec1;
Vector vec2;
Vector vec3;
Vector *pvec1;
Vector *pvec2;
Vector *pvec3;
real32_t length1;
real32_t length2;
real32_t length3;
real32_t length4;
real32_t length5;
real32_t length6;

};

/**/

static void i_destroy_data(StructTypes **data)
{

str_destroy(&(*data)>name);
heap_delete(&(*data)>pvec1, Vector);
heap_delete(&(*data)>pvec2, Vector);
heap_delete(&(*data)>pvec3, Vector);
heap_delete(data, StructTypes);

}

/**/

530 Chapter 26 - Hello GUI!

static Vector i_vec_init(const real32_t x, const real32_t y, const real32_t z)
{

Vector v;
v.x = x;
v.y = y;
v.z = z;
return v;

}

/**/

static real32_t i_vec_length(const Vector *vec)
{

real32_t n = vec>x * vec>x + vec>y * vec>y + vec>z * vec>z;
return bmath_sqrtf(n);

}

/**/

static void i_OnDataChange(void *non_used, Event *e)
{

StructTypes *data = evbind_object(e, StructTypes);
Layout *layout = event_sender(e, Layout);
unref(non_used);

if (evbind_modify(e, StructTypes, Vector, vec1) == TRUE)
{

data>length1 = i_vec_length(&data>vec1);
layout_dbind_update(layout, StructTypes, real32_t, length1);

}
else if (evbind_modify(e, StructTypes, Vector, vec2) == TRUE)
{

data>length2 = i_vec_length(&data>vec2);
layout_dbind_update(layout, StructTypes, real32_t, length2);

}
else if (evbind_modify(e, StructTypes, Vector, vec3) == TRUE)
{

data>length3 = i_vec_length(&data>vec3);
layout_dbind_update(layout, StructTypes, real32_t, length3);

}
else if (evbind_modify(e, StructTypes, Vector*, pvec1) == TRUE)
{

data>length4 = i_vec_length(data>pvec1);
layout_dbind_update(layout, StructTypes, real32_t, length4);

}
else if (evbind_modify(e, StructTypes, Vector*, pvec2) == TRUE)
{

data>length5 = i_vec_length(data>pvec2);
layout_dbind_update(layout, StructTypes, real32_t, length5);

}
else if (evbind_modify(e, StructTypes, Vector*, pvec3) == TRUE)

26.12 - Hello Struct Binding! 531

{
data>length6 = i_vec_length(data>pvec3);
layout_dbind_update(layout, StructTypes, real32_t, length6);

}
}

/**/

static Layout *i_vector_layout(void)
{

Layout *layout = layout_create(3, 3);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Edit *edit1 = edit_create();
Edit *edit2 = edit_create();
Edit *edit3 = edit_create();
UpDown *updown1 = updown_create();
UpDown *updown2 = updown_create();
UpDown *updown3 = updown_create();
label_text(label1, "X:");
label_text(label2, "Y:");
label_text(label3, "Z:");
edit_align(edit1, ekRIGHT);
edit_align(edit2, ekRIGHT);
edit_align(edit3, ekRIGHT);
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 1);
layout_label(layout, label3, 0, 2);
layout_edit(layout, edit1, 1, 0);
layout_edit(layout, edit2, 1, 1);
layout_edit(layout, edit3, 1, 2);
layout_updown(layout, updown1, 2, 0);
layout_updown(layout, updown2, 2, 1);
layout_updown(layout, updown3, 2, 2);
layout_hmargin(layout, 0, 5);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);
layout_hsize(layout, 1, 60);
cell_dbind(layout_cell(layout, 1, 0), Vector, real32_t, x);
cell_dbind(layout_cell(layout, 1, 1), Vector, real32_t, y);
cell_dbind(layout_cell(layout, 1, 2), Vector, real32_t, z);
cell_dbind(layout_cell(layout, 2, 0), Vector, real32_t, x);
cell_dbind(layout_cell(layout, 2, 1), Vector, real32_t, y);
cell_dbind(layout_cell(layout, 2, 2), Vector, real32_t, z);
layout_dbind(layout, NULL, Vector);
return layout;

}

/**/

532 Chapter 26 - Hello GUI!

static Layout *i_name_layout(void)
{

Layout *layout = layout_create(2, 1);
Label *label = label_create();
Edit *edit = edit_create();
label_text(label, "Object Name:");
layout_hexpand(layout, 1);
layout_label(layout, label, 0, 0);
layout_edit(layout, edit, 1, 0);
layout_hmargin(layout, 0, 10);
cell_dbind(layout_cell(layout, 1, 0), StructTypes, String*, name);
return layout;

}

/**/

static Layout *i_vectors_layout(void)
{

Layout *layout1 = layout_create(3, 4);
Layout *layout2 = i_vector_layout();
Layout *layout3 = i_vector_layout();
Layout *layout4 = i_vector_layout();
Layout *layout5 = i_vector_layout();
Layout *layout6 = i_vector_layout();
Layout *layout7 = i_vector_layout();
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Label *label5 = label_create();
Label *label6 = label_create();
label_text(label1, "vec1");
label_text(label2, "vec2");
label_text(label3, "vec3");
label_text(label4, "*pvec1");
label_text(label5, "*pvec2");
label_text(label6, "*pvec3");
layout_label(layout1, label1, 0, 0);
layout_label(layout1, label2, 1, 0);
layout_label(layout1, label3, 2, 0);
layout_label(layout1, label4, 0, 2);
layout_label(layout1, label5, 1, 2);
layout_label(layout1, label6, 2, 2);
layout_layout(layout1, layout2, 0, 1);
layout_layout(layout1, layout3, 1, 1);
layout_layout(layout1, layout4, 2, 1);
layout_layout(layout1, layout5, 0, 3);
layout_layout(layout1, layout6, 1, 3);
layout_layout(layout1, layout7, 2, 3);
layout_halign(layout1, 0, 0, ekCENTER);
layout_halign(layout1, 1, 0, ekCENTER);

26.12 - Hello Struct Binding! 533

layout_halign(layout1, 2, 0, ekCENTER);
layout_halign(layout1, 0, 2, ekCENTER);
layout_halign(layout1, 1, 2, ekCENTER);
layout_halign(layout1, 2, 2, ekCENTER);
layout_hmargin(layout1, 0, 10);
layout_hmargin(layout1, 1, 10);
layout_vmargin(layout1, 0, 5);
layout_vmargin(layout1, 1, 10);
layout_vmargin(layout1, 2, 5);
cell_dbind(layout_cell(layout1, 0, 1), StructTypes, Vector, vec1);
cell_dbind(layout_cell(layout1, 1, 1), StructTypes, Vector, vec2);
cell_dbind(layout_cell(layout1, 2, 1), StructTypes, Vector, vec3);
cell_dbind(layout_cell(layout1, 0, 3), StructTypes, Vector*, pvec1);
cell_dbind(layout_cell(layout1, 1, 3), StructTypes, Vector*, pvec2);
cell_dbind(layout_cell(layout1, 2, 3), StructTypes, Vector*, pvec3);
return layout1;

}

/**/

static Layout *i_lengths_layout(void)
{

Layout *layout = layout_create(2, 6);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Label *label5 = label_create();
Label *label6 = label_create();
Label *label7 = label_create();
Label *label8 = label_create();
Label *label9 = label_create();
Label *label10 = label_create();
Label *label11 = label_create();
Label *label12 = label_create();
label_text(label1, "length1:");
label_text(label2, "length2:");
label_text(label3, "length3:");
label_text(label4, "length4:");
label_text(label5, "length5:");
label_text(label6, "length6:");
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 1);
layout_label(layout, label3, 0, 2);
layout_label(layout, label4, 0, 3);
layout_label(layout, label5, 0, 4);
layout_label(layout, label6, 0, 5);
layout_label(layout, label7, 1, 0);
layout_label(layout, label8, 1, 1);
layout_label(layout, label9, 1, 2);
layout_label(layout, label10, 1, 3);

534 Chapter 26 - Hello GUI!

layout_label(layout, label11, 1, 4);
layout_label(layout, label12, 1, 5);
label_align(label7, ekRIGHT);
label_align(label8, ekRIGHT);
label_align(label9, ekRIGHT);
label_align(label10, ekRIGHT);
label_align(label11, ekRIGHT);
label_align(label12, ekRIGHT);
layout_hsize(layout, 1, 40);
layout_hmargin(layout, 0, 5);
layout_halign(layout, 1, 0, ekJUSTIFY);
layout_halign(layout, 1, 1, ekJUSTIFY);
layout_halign(layout, 1, 2, ekJUSTIFY);
layout_halign(layout, 1, 3, ekJUSTIFY);
layout_halign(layout, 1, 4, ekJUSTIFY);
layout_halign(layout, 1, 5, ekJUSTIFY);
cell_dbind(layout_cell(layout, 1, 0), StructTypes, real32_t, length1);
cell_dbind(layout_cell(layout, 1, 1), StructTypes, real32_t, length2);
cell_dbind(layout_cell(layout, 1, 2), StructTypes, real32_t, length3);
cell_dbind(layout_cell(layout, 1, 3), StructTypes, real32_t, length4);
cell_dbind(layout_cell(layout, 1, 4), StructTypes, real32_t, length5);
cell_dbind(layout_cell(layout, 1, 5), StructTypes, real32_t, length6);
return layout;

}

/**/

static Layout *i_layout(void)
{

Layout *layout1 = layout_create(2, 2);
Layout *layout2 = i_name_layout();
Layout *layout3 = i_vectors_layout();
Layout *layout4 = i_lengths_layout();
layout_layout(layout1, layout2, 0, 0);
layout_layout(layout1, layout3, 0, 1);
layout_layout(layout1, layout4, 1, 1);
layout_hmargin(layout1, 0, 10);
layout_vmargin(layout1, 0, 10);
return layout1;

}

/**/

Panel* layoutbind(void)
{

Layout *layout = NULL;
Panel *panel = NULL;
StructTypes *data = heap_new(StructTypes);
data>name = str_c("Generic Object");
data>pvec1 = heap_new(Vector);
data>pvec2 = heap_new(Vector);

26.13 - Hello Sublayout! 535

data>pvec3 = heap_new(Vector);
data>vec1 = i_vec_init(1.2f, 2.1f, 3.4f);
data>vec2 = i_vec_init(0.2f, 1.8f, 2.3f);
data>vec3 = i_vec_init(3.2f, 4.9f, 4.7f);
*data>pvec1 = i_vec_init(0.9f, 7.9f, 2.0f);
*data>pvec2 = i_vec_init(6.9f, 2.2f, 8.6f);
*data>pvec3 = i_vec_init(3.9f, 5.5f, 0.3f);
data>length1 = i_vec_length(&data>vec1);
data>length2 = i_vec_length(&data>vec2);
data>length3 = i_vec_length(&data>vec3);
data>length4 = i_vec_length(data>pvec1);
data>length5 = i_vec_length(data>pvec2);
data>length6 = i_vec_length(data>pvec3);

dbind(Vector, real32_t, x);
dbind(Vector, real32_t, y);
dbind(Vector, real32_t, z);
dbind(StructTypes, String*, name);
dbind(StructTypes, Vector, vec1);
dbind(StructTypes, Vector, vec2);
dbind(StructTypes, Vector, vec3);
dbind(StructTypes, Vector*, pvec1);
dbind(StructTypes, Vector*, pvec2);
dbind(StructTypes, Vector*, pvec3);
dbind(StructTypes, real32_t, length1);
dbind(StructTypes, real32_t, length2);
dbind(StructTypes, real32_t, length3);
dbind(StructTypes, real32_t, length4);
dbind(StructTypes, real32_t, length5);
dbind(StructTypes, real32_t, length6);
dbind_range(Vector, real32_t, x, 5, 5);
dbind_range(Vector, real32_t, y, 5, 5);
dbind_range(Vector, real32_t, z, 5, 5);
dbind_increment(Vector, real32_t, x, .1f);
dbind_increment(Vector, real32_t, y, .1f);
dbind_increment(Vector, real32_t, z, .1f);

layout = i_layout();
panel = panel_create();
layout_dbind(layout, listener(NULL, i_OnDataChange, void), StructTypes);
layout_dbind_obj(layout, data, StructTypes);
panel_data(panel, &data, i_destroy_data, StructTypes);
panel_layout(panel, layout);
return panel;

}

26.13. Hello Sublayout!

Listing 26.13: demo/guihello/sublayout.c

536 Chapter 26 - Hello GUI!

Figure 26.14: Sublayout composition.

/* Sublayouts */

#include "sublayout.h"
#include <gui/guiall.h>

/**/

static Layout *i_updown_layout(void)
{

Layout *layout = layout_create(2, 1);
Label *label = label_create();
UpDown *updown = updown_create();
label_text(label, "UpDown");
layout_label(layout, label, 0, 0);
layout_updown(layout, updown, 1, 0);
layout_hexpand(layout, 0);
return layout;

}

/**/

static Layout *i_left_grid_layout(void)
{

Layout *layout1 = layout_create(2, 4);
Layout *layout2 = i_updown_layout();
Label *label = label_create();
Button *button1 = button_push();
Button *button2 = button_check();
Slider *slider = slider_create();
PopUp *popup = popup_create();
Edit *edit = edit_create();
Progress *progress = progress_create();
label_text(label, "Hello!, I'm a label.");
button_text(button1, "Push Button");
button_text(button2, "Check Button");
popup_add_elem(popup, "Option 1", NULL);

26.13 - Hello Sublayout! 537

popup_add_elem(popup, "Option 2", NULL);
popup_add_elem(popup, "Option 3", NULL);
popup_add_elem(popup, "Option 4", NULL);
progress_undefined(progress, TRUE);
layout_label(layout1, label, 0, 0);
layout_button(layout1, button1, 0, 1);
layout_button(layout1, button2, 0, 2);
layout_slider(layout1, slider, 0, 3);
layout_popup(layout1, popup, 1, 0);
layout_edit(layout1, edit, 1, 1);
layout_layout(layout1, layout2, 1, 2);
layout_progress(layout1, progress, 1, 3);
layout_hsize(layout1, 0, 150);
layout_hsize(layout1, 1, 150);
layout_hmargin(layout1, 0, 5);
layout_vmargin(layout1, 0, 5);
layout_vmargin(layout1, 1, 5);
layout_vmargin(layout1, 2, 5);
return layout1;

}

/**/

static Layout *i_left_layout(void)
{

Layout *layout1 = layout_create(1, 2);
Layout *layout2 = i_left_grid_layout();
Button *button = button_push();
button_text(button, "Clear");
layout_layout(layout1, layout2, 0, 0);
layout_button(layout1, button, 0, 1);
layout_vmargin(layout1, 0, 5);
return layout1;

}

/**/

static Layout *i_top_layout(void)
{

Layout *layout1 = layout_create(2, 1);
Layout *layout2 = i_left_layout();
TextView *view = textview_create();
layout_layout(layout1, layout2, 0, 0);
layout_textview(layout1, view, 1, 0);
layout_hsize(layout1, 1, 230);
layout_hmargin(layout1, 0, 5);
return layout1;

}

/**/

538 Chapter 26 - Hello GUI!

static Layout *i_bottom_layout(void)
{

Layout *layout = layout_create(6, 1);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Label *label5 = label_create();
Label *label6 = label_create();
label_text(label1, "Select 1");
label_text(label2, "Select 2");
label_text(label3, "Select 3");
label_text(label4, "Select 4");
label_text(label5, "Select 5");
label_text(label6, "Select 6");
label_style_over(label1, ekFUNDERLINE);
label_style_over(label2, ekFUNDERLINE);
label_style_over(label3, ekFUNDERLINE);
label_style_over(label4, ekFUNDERLINE);
label_style_over(label5, ekFUNDERLINE);
label_style_over(label6, ekFUNDERLINE);
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 1, 0);
layout_label(layout, label3, 2, 0);
layout_label(layout, label4, 3, 0);
layout_label(layout, label5, 4, 0);
layout_label(layout, label6, 5, 0);
return layout;

}

/**/

static Layout *i_main_layout(void)
{

Layout *layout1 = layout_create(1, 2);
Layout *layout2 = i_top_layout();
Layout *layout3 = i_bottom_layout();
layout_layout(layout1, layout2, 0, 0);
layout_layout(layout1, layout3, 0, 1);
layout_margin(layout1, 5);
layout_vmargin(layout1, 0, 5);
return layout1;

}

/**/

Panel *sublayouts(void)
{

Panel *panel = panel_create();
Layout *layout = i_main_layout();
panel_layout(panel, layout);

26.14 - Hello Subpanel! 539

return panel;
}

26.14. Hello Subpanel!

Figure 26.15: Subpanels.

Listing 26.14: demo/guihello/subpanel.c
/* Use of subpanels */

#include "subpanel.h"
#include <gui/guiall.h>

/**/

Panel *subpanels(void)
{

Panel *panel1 = panel_create();
Panel *panel2 = panel_create();
Layout *layout1 = layout_create(2, 2);
Layout *layout2 = layout_create(2, 2);
Label *label1 = label_create();
Label *label2 = label_create();
Button *button = button_push();
Slider *slider = slider_create();
Edit *edit = edit_create();
label_text(label1, "Main Panel");
label_text(label2, "Subpanel");
button_text(button, "Push Button");
edit_text(edit, "EditBox");

layout_label(layout2, label2, 0, 0);
layout_button(layout2, button, 0, 1);
layout_slider(layout2, slider, 1, 1);
layout_hsize(layout2, 1, 150);
layout_hmargin(layout2, 0, 10);
layout_vmargin(layout2, 0, 10);
layout_margin4(layout2, 5, 10, 10, 10);

540 Chapter 26 - Hello GUI!

layout_skcolor(layout2, gui_line_color());
panel_layout(panel2, layout2);

layout_label(layout1, label1, 0, 0);
layout_edit(layout1, edit, 1, 1);
layout_panel(layout1, panel2, 0, 1);
layout_hsize(layout1, 1, 100);
layout_hmargin(layout1, 0, 10);
layout_vmargin(layout1, 0, 10);
layout_margin4(layout1, 5, 10, 10, 10);
panel_layout(panel1, layout1);
return panel1;

}

26.15. Hello Multi-layout!

Figure 26.16: Panel with two layouts.

Listing 26.15: demo/guihello/multilayout.c
/* Panels with multiple layouts */

#include "multilayout.h"
#include <gui/guiall.h>

/**/

static Panel *i_multilayout_panel(void)
{

Panel *panel = panel_create();
Layout *layout1 = layout_create(2, 5);
Layout *layout2 = layout_create(1, 10);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();

26.15 - Hello Multi-layout! 541

Label *label4 = label_create();
Label *label5 = label_create();
Edit *edit1 = edit_create();
Edit *edit2 = edit_create();
Edit *edit3 = edit_create();
Edit *edit4 = edit_create();
Edit *edit5 = edit_create();
label_text(label1, "User Name:");
label_text(label2, "Password:");
label_text(label3, "Address:");
label_text(label4, "City:");
label_text(label5, "Phone:");
edit_text(edit1, "Amanda Callister");
edit_text(edit2, "aQwe56nhjJk");
edit_text(edit3, "35, Tuam Road");
edit_text(edit4, "Galway Ireland");
edit_text(edit5, "+35 654 333 000");
edit_passmode(edit2, TRUE);

layout_label(layout1, label1, 0, 0);
layout_label(layout1, label2, 0, 1);
layout_label(layout1, label3, 0, 2);
layout_label(layout1, label4, 0, 3);
layout_label(layout1, label5, 0, 4);
layout_edit(layout1, edit1, 1, 0);
layout_edit(layout1, edit2, 1, 1);
layout_edit(layout1, edit3, 1, 2);
layout_edit(layout1, edit4, 1, 3);
layout_edit(layout1, edit5, 1, 4);
layout_hsize(layout1, 1, 300);
layout_hmargin(layout1, 0, 5);
layout_vmargin(layout1, 0, 5);
layout_vmargin(layout1, 1, 5);
layout_vmargin(layout1, 2, 5);
layout_vmargin(layout1, 3, 5);

layout_label(layout2, label1, 0, 0);
layout_label(layout2, label2, 0, 2);
layout_label(layout2, label3, 0, 4);
layout_label(layout2, label4, 0, 6);
layout_label(layout2, label5, 0, 8);
layout_edit(layout2, edit1, 0, 1);
layout_edit(layout2, edit2, 0, 3);
layout_edit(layout2, edit3, 0, 5);
layout_edit(layout2, edit4, 0, 7);
layout_edit(layout2, edit5, 0, 9);
layout_hsize(layout2, 0, 200);
layout_vmargin(layout2, 1, 5);
layout_vmargin(layout2, 3, 5);
layout_vmargin(layout2, 5, 5);
layout_vmargin(layout2, 7, 5);

542 Chapter 26 - Hello GUI!

panel_layout(panel, layout1);
panel_layout(panel, layout2);
return panel;

}

/**/

static void i_OnLayout(Panel *panel, Event *e)
{

const EvButton *params = event_params(e, EvButton);
panel_visible_layout(panel, params>index);
panel_update(panel);

}

/**/

Panel *multilayouts(void)
{

Panel *panel1 = panel_create();
Panel *panel2 = i_multilayout_panel();
Button *button1 = button_radio();
Button *button2 = button_radio();
Layout *layout1 = layout_create(1, 2);
Layout *layout2 = layout_create(2, 1);
button_text(button1, "Layout1");
button_text(button2, "Layout2");
button_state(button1, ekGUI_ON);
button_OnClick(button1, listener(panel2, i_OnLayout, Panel));
layout_button(layout2, button1, 0, 0);
layout_button(layout2, button2, 1, 0);
layout_layout(layout1, layout2, 0, 0);
layout_panel(layout1, panel2, 0, 1);
layout_vmargin(layout1, 0, 10);
layout_hmargin(layout2, 0, 10);
layout_halign(layout1, 0, 0, ekLEFT);
panel_layout(panel1, layout1);
return panel1;

}

26.16. Hello Scroll-Panel!

Listing 26.16: demo/guihello/scrollpanel.c
/* Panel with scroll */

#include "scrollpanel.h"
#include <gui/guiall.h>

static const uint32_t i_ROWS = 100;

26.16 - Hello Scroll-Panel! 543

Figure 26.17: Panel with scroll
bars.

/**/

Panel *scrollpanel(void)
{

Panel *panel = panel_scroll(FALSE, TRUE);
Layout *layout = layout_create(3, i_ROWS);
real32_t margin = panel_scroll_width(panel);
uint32_t i = 0;
panel_size(panel, s2df(1, 400));
for (i = 0; i < i_ROWS; ++i)
{

char_t text[128];
Label *label = label_create();
Edit *edit = edit_create();
Button *button = button_push();
bstd_sprintf(text, sizeof(text), "User %d", i + 1);
label_text(label, text);
bstd_sprintf(text, sizeof(text), "Name of User %d", i + 1);
edit_text(edit, text);
bstd_sprintf(text, sizeof(text), "Edit %d", i + 1);
button_text(button, text);
layout_label(layout, label, 0, i);
layout_edit(layout, edit, 1, i);

544 Chapter 26 - Hello GUI!

layout_button(layout, button, 2, i);
}

for (i = 0; i < i_ROWS 1; ++i)
layout_vmargin(layout, i, 5);

layout_hmargin(layout, 0, 10);
layout_hmargin(layout, 1, 10);
layout_hsize(layout, 1, 150);
layout_margin4(layout, 0, margin, 0, 0);
panel_layout(panel, layout);
return panel;

}

26.17. Hello IP-Input!

Figure 26.18: The Edit com-
mands automatically change the key-
board focus after inserting the third
character.

Listing 26.17: demo/guihello/ipinput.c
/* IP input */

#include "ipinput.h"
#include <gui/guiall.h>

/**/

static void i_OnEditFilter(Layout* layout, Event* e)
{

const EvText *p = event_params(e, EvText);
EvTextFilter *filter = event_result(e, EvTextFilter);
uint32_t i, j = 0, n = str_len_c(p>text);

/* We only accept numbers in IP controls */
for(i = 0; i < n; ++i)
{

if (p>text[i] >= '0' && p>text[i] <= '9')
filter>text[j++] = p>text[i];

}

26.17 - Hello IP-Input! 545

if (j > 3)
j = 3;

filter>text[j] = '\0';
filter>apply = TRUE;

/* We wrote the third character > Jump to next control */
if (j == 3)

layout_next_tabstop(layout);
}

/**/

Panel *ip_input(void)
{

Panel *panel = panel_create();
Layout *layout1 = layout_create(7, 1);
Layout *layout2 = layout_create(1, 3);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Edit *edit1 = edit_create();
Edit *edit2 = edit_create();
Edit *edit3 = edit_create();
Edit *edit4 = edit_create();
Button *button1 = button_push();
Button *button2 = button_push();
label_text(label1, ".");
label_text(label2, ".");
label_text(label3, ".");
button_text(button1, "Connect");
button_text(button2, "Exit");
edit_OnFilter(edit1, listener(layout2, i_OnEditFilter, Layout));
edit_OnFilter(edit2, listener(layout2, i_OnEditFilter, Layout));
edit_OnFilter(edit3, listener(layout2, i_OnEditFilter, Layout));
edit_OnFilter(edit4, listener(layout2, i_OnEditFilter, Layout));
layout_label(layout1, label1, 1, 0);
layout_label(layout1, label2, 3, 0);
layout_label(layout1, label3, 5, 0);
layout_edit(layout1, edit1, 0, 0);
layout_edit(layout1, edit2, 2, 0);
layout_edit(layout1, edit3, 4, 0);
layout_edit(layout1, edit4, 6, 0);
layout_layout(layout2, layout1, 0, 0);
layout_button(layout2, button1, 0, 1);
layout_button(layout2, button2, 0, 2);
layout_vmargin(layout2, 0, 5.f);
layout_vmargin(layout2, 1, 5.f);
layout_hsize(layout2, 0, 200.f);
panel_layout(panel, layout2);
return panel;

546 Chapter 26 - Hello GUI!

}

27C
ha

pt
er

Hello Draw2d!

DrawHello is an application, which by example, shows the “Draw2D” (page 256)
library features for 2D vector drawing. Implements line drawing, region fill, texts and
images. The source code is in folder /src/howto/drawhello of the SDK distribution.

Figure 27.1: Windows version.

Listing 27.1: demo/drawhello/drawhello.c
/* Drawing primitives */

#include "res_drawhello.h"
#include <nappgui.h>

548 Chapter 27 - Hello Draw2d!

Figure 27.2: macOS version.

Figure 27.3: Linux version.

549

typedef struct _app_t App;

struct _app_t
{

Window *window;
View *view;
Label *label;
Cell *slider;
uint32_t option;
real32_t gradient;

};

/**/

static void i_draw_lines(DCtx *ctx)
{

const V2Df poly1[] = { { 10, 190}, { 90, 110}, {110, 190}, {190, 110},
↪→ {210, 190}, {290, 110} };

const V2Df poly2[] = { {310, 190}, {390, 110}, {410, 190}, {490, 110},
↪→ {510, 190}, {590, 110} };

const V2Df poly3[] = { { 10, 290}, { 90, 210}, {110, 290}, {190, 210},
↪→ {210, 290}, {290, 210} };

const real32_t pattern1[] = { 5, 5, 10, 5 };
const real32_t pattern2[] = { 1, 1 };
const real32_t pattern3[] = { 2, 1 };
const real32_t pattern4[] = { 1, 2 };

/* Line widths */
draw_line_color(ctx, kCOLOR_BLACK);
draw_line_width(ctx, 5);
draw_line(ctx, 10, 90, 90, 10);
draw_line_width(ctx, 10);
draw_line(ctx, 110, 90, 190, 10);
draw_line_width(ctx, 15);
draw_line(ctx, 210, 90, 290, 10);

/* Line caps */
draw_line_cap(ctx, ekLCFLAT);
draw_line(ctx, 310, 90, 390, 10);
draw_line_cap(ctx, ekLCSQUARE);
draw_line(ctx, 410, 90, 490, 10);
draw_line_cap(ctx, ekLCROUND);
draw_line(ctx, 510, 90, 590, 10);

/* Line joins */
draw_line_width(ctx, 15);
draw_line_cap(ctx, ekLCFLAT);
draw_line_join(ctx, ekLJMITER);
draw_polyline(ctx, FALSE, poly1, 6);
draw_line_cap(ctx, ekLCSQUARE);

550 Chapter 27 - Hello Draw2d!

draw_line_join(ctx, ekLJROUND);
draw_polyline(ctx, FALSE, poly2, 6);
draw_line_cap(ctx, ekLCROUND);
draw_line_join(ctx, ekLJBEVEL);
draw_polyline(ctx, FALSE, poly3, 6);

/* Line colors */
draw_line_width(ctx, 10);
draw_line_cap(ctx, ekLCFLAT);
draw_line_color(ctx, kCOLOR_RED);
draw_line(ctx, 310, 215, 590, 215);
draw_line_color(ctx, kCOLOR_GREEN);
draw_line(ctx, 310, 235, 590, 235);
draw_line_color(ctx, kCOLOR_BLUE);
draw_line(ctx, 310, 255, 590, 255);
draw_line_width(ctx, 5);
draw_line_color(ctx, kCOLOR_YELLOW);
draw_line(ctx, 310, 270, 590, 270);
draw_line_color(ctx, kCOLOR_CYAN);
draw_line(ctx, 310, 280, 590, 280);
draw_line_color(ctx, kCOLOR_MAGENTA);
draw_line(ctx, 310, 290, 590, 290);

/* Line patterns */
draw_line_color(ctx, kCOLOR_BLACK);
draw_line_width(ctx, 5);
draw_line_cap(ctx, ekLCFLAT);
draw_line_dash(ctx, pattern1, 4);
draw_line(ctx, 10, 310, 590, 310);
draw_line_dash(ctx, pattern2, 2);
draw_line(ctx, 10, 330, 590, 330);
draw_line_dash(ctx, pattern3, 2);
draw_line(ctx, 10, 350, 590, 350);
draw_line_dash(ctx, pattern4, 2);
draw_line_width(ctx, 2);
draw_line(ctx, 10, 365, 590, 365);
draw_line_dash(ctx, pattern1, 4);
draw_line_width(ctx, 1);
draw_line(ctx, 10, 375, 590, 375);
draw_line_dash(ctx, NULL, 0);
draw_line(ctx, 10, 385, 590, 385);

/* Thin lines in centers */
draw_line_dash(ctx, NULL, 0);
draw_line_color(ctx, color_rgb(255, 255, 255));
draw_line_width(ctx, 1);
draw_line(ctx, 10, 90, 90, 10);
draw_line(ctx, 110, 90, 190, 10);
draw_line(ctx, 210, 90, 290, 10);
draw_line(ctx, 310, 90, 390, 10);
draw_line(ctx, 410, 90, 490, 10);

551

draw_line(ctx, 510, 90, 590, 10);
draw_polyline(ctx, FALSE, poly1, 6);
draw_polyline(ctx, FALSE, poly2, 6);
draw_polyline(ctx, FALSE, poly3, 6);

}

/**/

static void i_draw_shapes_row(DCtx *ctx, const drawop_t op, const T2Df *origin)
{

const V2Df poly[] = { {40, 0}, {12.36f, 38.04f}, {32.36f, 23.52f},
{32.36f, 23.52f}, {12.36f, 38.04f} };

T2Df matrix;
draw_rect(ctx, op, 10, 10, 110, 75);
draw_rndrect(ctx, op, 140, 10, 110, 75, 20);
draw_circle(ctx, op, 312, 50, 40);
draw_ellipse(ctx, op, 430, 50, 55, 37);
t2d_movef(&matrix, origin, 547, 50);
t2d_rotatef(&matrix, &matrix, kBMATH_PIf / 10);
draw_matrixf(ctx, &matrix);
draw_polygon(ctx, op, poly, 5);

}

/**/

static void i_draw_shapes(DCtx *ctx, const bool_t grad)
{

T2Df origin = *kT2D_IDENTf;
draw_line_color(ctx, kCOLOR_BLACK);
draw_line_width(ctx, 10);
draw_matrixf(ctx, &origin);
i_draw_shapes_row(ctx, grad ? ekSKFILL : ekSTROKE, &origin);
t2d_movef(&origin, &origin, 0, 100);
draw_matrixf(ctx, &origin);
i_draw_shapes_row(ctx, grad ? ekSKFILL : ekFILL, &origin);
t2d_movef(&origin, &origin, 0, 100);
draw_matrixf(ctx, &origin);
i_draw_shapes_row(ctx, grad ? ekSKFILL : ekSKFILL, &origin);
t2d_movef(&origin, &origin, 0, 100);
draw_matrixf(ctx, &origin);
i_draw_shapes_row(ctx, grad ? ekSKFILL : ekFILLSK, &origin);

}

/**/

static void i_draw_gradient(DCtx *ctx, const real32_t gradient, const bool_t
↪→ back, const bool_t shapes)

{
color_t c[2];
real32_t stop[2] = {0, 1};
real32_t gpos;

552 Chapter 27 - Hello Draw2d!

real32_t gx, gy;
c[0] = kCOLOR_RED;
c[1] = kCOLOR_BLUE;

gpos = gradient * (600 + 400);

if (gpos < 400)
{

gx = 600;
gy = gpos;

}
else
{

gx = 600 (gpos 400);
gy = 400;

}

draw_fill_linear(ctx, c, stop, 2, 0, 0, gx, gy);

if (back == TRUE)
draw_rect(ctx, ekFILL, 0, 0, 600, 400);

if (shapes == TRUE)
i_draw_shapes(ctx, TRUE);

draw_matrixf(ctx, kT2D_IDENTf);
draw_line_width(ctx, 3);
draw_line_color(ctx, color_rgb(200, 200, 200));
draw_line(ctx, 3, 3, gx + 3, gy + 3);

}

/**/

static void i_draw_lines_gradient(DCtx *ctx, const real32_t gradient)
{

color_t c[2];
real32_t stop[2] = {0, 1};
real32_t gpos;
real32_t gx, gy;
const real32_t pattern1[] = { 5, 5, 10, 5 };
const real32_t pattern2[] = { 1, 1 };
const real32_t pattern3[] = { 2, 1 };
const real32_t pattern4[] = { 1, 2 };

c[0] = kCOLOR_RED;
c[1] = kCOLOR_BLUE;

gpos = gradient * (600 + 400);

if (gpos < 400)
{

553

gx = 600;
gy = gpos;

}
else
{

gx = 600 (gpos 400);
gy = 400;

}

draw_line_width(ctx, 10);
draw_line_fill(ctx);
draw_fill_linear(ctx, c, stop, 2, 0, 0, gx, gy);
i_draw_shapes_row(ctx, ekSTROKE, kT2D_IDENTf);

draw_matrixf(ctx, kT2D_IDENTf);
draw_line_width(ctx, 1);
draw_bezier(ctx, 30, 190, 140, 50, 440, 110, 570, 190);
draw_line_width(ctx, 4);
draw_bezier(ctx, 30, 210, 140, 70, 440, 130, 570, 210);
draw_line_width(ctx, 7);
draw_bezier(ctx, 30, 230, 140, 90, 440, 150, 570, 230);
draw_line_width(ctx, 10);
draw_bezier(ctx, 30, 250, 140, 110, 440, 170, 570, 250);

draw_line_width(ctx, 8);
draw_arc(ctx, 100, 280, 60, 0, kBMATH_PIf / 2);
draw_arc(ctx, 250, 280, 60, kBMATH_PIf, kBMATH_PIf / 2);
draw_arc(ctx, 300, 220, 60, kBMATH_PIf / 2, kBMATH_PIf / 2);
draw_arc(ctx, 450, 220, 60, kBMATH_PIf / 2, kBMATH_PIf / 2);

draw_line_width(ctx, 5);
draw_line_cap(ctx, ekLCFLAT);
draw_line_dash(ctx, pattern1, 4);
draw_line(ctx, 10, 310, 590, 310);
draw_line_dash(ctx, pattern2, 2);
draw_line(ctx, 10, 330, 590, 330);
draw_line_dash(ctx, pattern3, 2);
draw_line(ctx, 10, 350, 590, 350);
draw_line_dash(ctx, pattern4, 2);
draw_line_width(ctx, 2);
draw_line(ctx, 10, 365, 590, 365);
draw_line_dash(ctx, pattern1, 4);
draw_line_width(ctx, 1);
draw_line(ctx, 10, 375, 590, 375);
draw_line_dash(ctx, NULL, 0);
draw_line(ctx, 10, 385, 590, 385);

draw_line_width(ctx, 1);
draw_line_color(ctx, color_rgb(50, 50, 50));
draw_line(ctx, 3, 3, gx + 3, gy + 3);

}

554 Chapter 27 - Hello Draw2d!

/**/

static void i_draw_local_gradient(DCtx *ctx, const real32_t gradient)
{

color_t c[2];
real32_t stop[2] = {0, 1};
real32_t gpos;
real32_t gx, gy;
T2Df matrix;

c[0] = kCOLOR_RED;
c[1] = kCOLOR_BLUE;

gpos = gradient * (200 + 100);

if (gpos < 100)
{

gx = 200;
gy = gpos;

}
else
{

gx = 200 (gpos 100);
gy = 100;

}

draw_line_join(ctx, ekLJROUND);
draw_fill_linear(ctx, c, stop, 2, 0, 0, gx, gy);

t2d_movef(&matrix, kT2D_IDENTf, 50, 40);
draw_matrixf(ctx, &matrix);
draw_fill_matrix(ctx, &matrix);
draw_line_width(ctx, 10);
draw_line_color(ctx, kCOLOR_BLACK);
draw_rect(ctx, ekSKFILL, 0, 0, 200, 100);
draw_line_width(ctx, 3);
draw_line_color(ctx, color_rgb(200, 200, 200));
draw_line(ctx, 0, 0, gx, gy);

t2d_movef(&matrix, kT2D_IDENTf, 400, 40);
t2d_rotatef(&matrix, &matrix, kBMATH_PIf / 6);
draw_matrixf(ctx, &matrix);
draw_fill_matrix(ctx, &matrix);
draw_line_width(ctx, 10);
draw_line_color(ctx, kCOLOR_BLACK);
draw_rect(ctx, ekSKFILL, 0, 0, 200, 100);
draw_line_width(ctx, 3);
draw_line_color(ctx, color_rgb(200, 200, 200));
draw_line(ctx, 0, 0, gx, gy);

555

t2d_movef(&matrix, kT2D_IDENTf, 250, 280);
t2d_rotatef(&matrix, &matrix, kBMATH_PIf / 10);
draw_matrixf(ctx, &matrix);
t2d_movef(&matrix, &matrix, 100, 50);
draw_fill_matrix(ctx, &matrix);
draw_line_width(ctx, 10);
draw_line_color(ctx, kCOLOR_BLACK);
draw_ellipse(ctx, ekSKFILL, 0, 0, 100, 50);
draw_matrixf(ctx, &matrix);
draw_line_width(ctx, 3);
draw_line_color(ctx, color_rgb(200, 200, 200));
draw_line(ctx, 0, 0, gx, gy);

}

/**/

static void i_draw_wrap_gradient(DCtx *ctx)
{

color_t c[2];
real32_t stop[2] = {0, 1};
c[0] = kCOLOR_RED;
c[1] = kCOLOR_BLUE;
draw_line_width(ctx, 2);
draw_fill_linear(ctx, c, stop, 2, 200, 0, 400, 0);
draw_fill_wrap(ctx, ekFCLAMP);
draw_rect(ctx, ekFILLSK, 50, 25, 500, 100);
draw_fill_wrap(ctx, ekFTILE);
draw_rect(ctx, ekFILLSK, 50, 150, 500, 100);
draw_fill_wrap(ctx, ekFFLIP);
draw_rect(ctx, ekFILLSK, 50, 275, 500, 100);

}

/**/

static void i_text_single(DCtx *ctx)
{

Font *font = font_system(20, 0);
const char_t *text = "Text ��Κείμενο ";
real32_t width, height;
T2Df matrix;

draw_font(ctx, font);
draw_text_extents(ctx, text, 1, &width, &height);
draw_text_color(ctx, kCOLOR_BLUE);
draw_text_align(ctx, ekLEFT, ekTOP);
draw_text(ctx, text, 25, 25);
draw_text_align(ctx, ekCENTER, ekTOP);
draw_text(ctx, text, 300, 25);
draw_text_align(ctx, ekRIGHT, ekTOP);
draw_text(ctx, text, 575, 25);
draw_text_align(ctx, ekLEFT, ekCENTER);

556 Chapter 27 - Hello Draw2d!

draw_text(ctx, text, 25, 100);
draw_text_align(ctx, ekCENTER, ekCENTER);
draw_text(ctx, text, 300, 100);
draw_text_align(ctx, ekRIGHT, ekCENTER);
draw_text(ctx, text, 575, 100);
draw_text_align(ctx, ekLEFT, ekBOTTOM);
draw_text(ctx, text, 25, 175);
draw_text_align(ctx, ekCENTER, ekBOTTOM);
draw_text(ctx, text, 300, 175);
draw_text_align(ctx, ekRIGHT, ekBOTTOM);
draw_text(ctx, text, 575, 175);

draw_line_color(ctx, kCOLOR_RED);
draw_fill_color(ctx, kCOLOR_RED);
draw_circle(ctx, ekFILL, 25, 25, 3);
draw_circle(ctx, ekFILL, 300, 25, 3);
draw_circle(ctx, ekFILL, 575, 25, 3);
draw_circle(ctx, ekFILL, 25, 100, 3);
draw_circle(ctx, ekFILL, 300, 100, 3);
draw_circle(ctx, ekFILL, 575, 100, 3);
draw_circle(ctx, ekFILL, 25, 175, 3);
draw_circle(ctx, ekFILL, 300, 175, 3);
draw_circle(ctx, ekFILL, 575, 175, 3);
draw_circle(ctx, ekFILL, 25, 200, 3);
draw_circle(ctx, ekFILL, 300, 250, 3);
draw_circle(ctx, ekFILL, 25, 325, 3);
draw_circle(ctx, ekFILL, 575, 200, 3);
draw_circle(ctx, ekFILL, 575, 230, 3);
draw_circle(ctx, ekFILL, 575, 260, 3);
draw_rect(ctx, ekSTROKE, 25, 25, width, height);
draw_rect(ctx, ekSTROKE, 300 (width / 2), 25, width, height);
draw_rect(ctx, ekSTROKE, 575 width, 25, width, height);
draw_rect(ctx, ekSTROKE, 25, 100 (height / 2), width, height);
draw_rect(ctx, ekSTROKE, 300 (width / 2), 100 (height / 2), width,

↪→ height);
draw_rect(ctx, ekSTROKE, 575 width, 100 (height / 2), width, height);
draw_rect(ctx, ekSTROKE, 25, 175 height, width, height);
draw_rect(ctx, ekSTROKE, 300 (width / 2), 175 height, width, height);
draw_rect(ctx, ekSTROKE, 575 width, 175 height, width, height);

draw_fill_color(ctx, kCOLOR_BLUE);
t2d_movef(&matrix, kT2D_IDENTf, 25, 200);
t2d_rotatef(&matrix, &matrix, kBMATH_PIf / 8);
draw_matrixf(ctx, &matrix);
draw_text_align(ctx, ekLEFT, ekTOP);
draw_text(ctx, text, 0, 0);

t2d_movef(&matrix, kT2D_IDENTf, 300, 250);
t2d_rotatef(&matrix, &matrix, kBMATH_PIf / 8);
draw_matrixf(ctx, &matrix);
draw_text_align(ctx, ekCENTER, ekCENTER);

557

draw_text(ctx, text, 0, 0);

t2d_movef(&matrix, kT2D_IDENTf, 25, 325);
t2d_scalef(&matrix, &matrix, 3, 1);
draw_matrixf(ctx, &matrix);
draw_text_align(ctx, ekLEFT, ekTOP);
draw_text(ctx, text, 0, 0);

t2d_movef(&matrix, kT2D_IDENTf, 575, 200);
t2d_scalef(&matrix, &matrix, .5f, 1);
draw_matrixf(ctx, &matrix);
draw_text_align(ctx, ekRIGHT, ekTOP);
draw_text(ctx, text, 0, 0);

t2d_movef(&matrix, kT2D_IDENTf, 575, 230);
t2d_scalef(&matrix, &matrix, .75f, 1);
draw_matrixf(ctx, &matrix);
draw_text_align(ctx, ekRIGHT, ekTOP);
draw_text(ctx, text, 0, 0);

t2d_movef(&matrix, kT2D_IDENTf, 575, 260);
t2d_scalef(&matrix, &matrix, 1.25f, 1);
draw_matrixf(ctx, &matrix);
draw_text_align(ctx, ekRIGHT, ekTOP);
draw_text(ctx, text, 0, 0);

font_destroy(&font);
}

/**/

static void i_text_newline(DCtx *ctx)
{

Font *font = font_system(20, 0);
const char_t *text = "Text new line\����n\Γραμμήn κειμένου";
real32_t width, height;
draw_font(ctx, font);
draw_text_extents(ctx, text, 1, &width, &height);

draw_text_color(ctx, kCOLOR_BLUE);
draw_text_align(ctx, ekLEFT, ekTOP);
draw_text_halign(ctx, ekLEFT);
draw_text(ctx, text, 25, 25);
draw_text_align(ctx, ekCENTER, ekTOP);
draw_text_halign(ctx, ekCENTER);
draw_text(ctx, text, 300, 25);

draw_text_align(ctx, ekRIGHT, ekTOP);
draw_text_halign(ctx, ekRIGHT);
draw_text(ctx, text, 575, 25);
draw_text_align(ctx, ekLEFT, ekCENTER);

558 Chapter 27 - Hello Draw2d!

draw_text_halign(ctx, ekLEFT);
draw_text(ctx, text, 25, 175);
draw_text_align(ctx, ekCENTER, ekCENTER);
draw_text_halign(ctx, ekCENTER);
draw_text(ctx, text, 300, 175);
draw_text_align(ctx, ekRIGHT, ekCENTER);
draw_text_halign(ctx, ekRIGHT);
draw_text(ctx, text, 575, 175);
draw_text_align(ctx, ekLEFT, ekBOTTOM);
draw_text_halign(ctx, ekLEFT);
draw_text(ctx, text, 25, 325);
draw_text_align(ctx, ekCENTER, ekBOTTOM);
draw_text_halign(ctx, ekCENTER);
draw_text(ctx, text, 300, 325);
draw_text_align(ctx, ekRIGHT, ekBOTTOM);
draw_text_halign(ctx, ekRIGHT);
draw_text(ctx, text, 575, 325);

draw_line_color(ctx, kCOLOR_RED);
draw_fill_color(ctx, kCOLOR_RED);
draw_circle(ctx, ekFILL, 25, 25, 3);
draw_circle(ctx, ekFILL, 300, 25, 3);
draw_circle(ctx, ekFILL, 575, 25, 3);
draw_circle(ctx, ekFILL, 25, 175, 3);
draw_circle(ctx, ekFILL, 300, 175, 3);
draw_circle(ctx, ekFILL, 575, 175, 3);
draw_circle(ctx, ekFILL, 25, 325, 3);
draw_circle(ctx, ekFILL, 300, 325, 3);
draw_circle(ctx, ekFILL, 575, 325, 3);
draw_rect(ctx, ekSTROKE, 25, 25, width, height);
draw_rect(ctx, ekSTROKE, 300 (width / 2), 25, width, height);
draw_rect(ctx, ekSTROKE, 575 width, 25, width, height);
draw_rect(ctx, ekSTROKE, 25, 175 (height / 2), width, height);
draw_rect(ctx, ekSTROKE, 300 (width / 2), 175 (height / 2), width,

↪→ height);
draw_rect(ctx, ekSTROKE, 575 width, 175 (height / 2), width, height);
draw_rect(ctx, ekSTROKE, 25, 325 height, width, height);
draw_rect(ctx, ekSTROKE, 300 (width / 2), 325 height, width, height);
draw_rect(ctx, ekSTROKE, 575 width, 325 height, width, height);
font_destroy(&font);

}

/**/

static void i_text_block(DCtx *ctx)
{

const char_t *text = "Lorem ipsum dolor sit amet, consectetur adipiscing
↪→ elit, sed do eiusmod tempor incididunt ut labore et dolore magna
↪→ aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
↪→ laboris nisi ut aliquip ex ea commodo consequat.";

real32_t dash[2] = {1, 1};

559

real32_t width1, height1;
real32_t width2, height2;
real32_t width3, height3;
real32_t width4, height4;

draw_text_color(ctx, kCOLOR_BLUE);
draw_text_align(ctx, ekLEFT, ekTOP);
draw_text_halign(ctx, ekLEFT);
draw_text_width(ctx, 200);
draw_text_extents(ctx, text, 200, &width1, &height1);
draw_text(ctx, text, 25, 25);
draw_text_width(ctx, 300);
draw_text_extents(ctx, text, 300, &width2, &height2);
draw_text(ctx, text, 250, 25);
draw_text_width(ctx, 400);
draw_text_extents(ctx, text, 400, &width3, &height3);
draw_text(ctx, text, 25, 200);
draw_text_width(ctx, 500);
draw_text_extents(ctx, text, 500, &width4, &height4);
draw_text(ctx, text, 25, 315);

draw_line_color(ctx, kCOLOR_RED);
draw_fill_color(ctx, kCOLOR_RED);
draw_circle(ctx, ekFILL, 25, 25, 3);
draw_circle(ctx, ekFILL, 250, 25, 3);
draw_circle(ctx, ekFILL, 25, 200, 3);
draw_circle(ctx, ekFILL, 25, 315, 3);
draw_rect(ctx, ekSTROKE, 25, 25, 200, height1);
draw_rect(ctx, ekSTROKE, 250, 25, 300, height2);
draw_rect(ctx, ekSTROKE, 25, 200, 400, height3);
draw_rect(ctx, ekSTROKE, 25, 315, 500, height4);
draw_line_dash(ctx, dash, 2);
draw_rect(ctx, ekSTROKE, 25, 25, width1, height1);
draw_rect(ctx, ekSTROKE, 250, 25, width2, height2);
draw_rect(ctx, ekSTROKE, 25, 200, width3, height3);
draw_rect(ctx, ekSTROKE, 25, 315, width4, height4);

}

/**/

static void i_text_art(DCtx *ctx)
{

Font *font = font_system(50, 0);
color_t c[2];
real32_t stop[2] = {0, 1};
real32_t dash[2] = {1, 1};
real32_t width, height;
c[0] = kCOLOR_BLUE;
c[1] = kCOLOR_RED;
draw_font(ctx, font);
draw_line_width(ctx, 2);

560 Chapter 27 - Hello Draw2d!

draw_line_color(ctx, kCOLOR_WHITE);
draw_fill_color(ctx, kCOLOR_BLUE);
draw_text_path(ctx, ekFILLSK, "Fill and Stoke text", 25, 25);
draw_text_extents(ctx, "Gradient fill text", 1, &width, &height);
draw_fill_linear(ctx, c, stop, 2, 25, 0, 25 + width, 0);
draw_fill_matrix(ctx, kT2D_IDENTf);
draw_text_path(ctx, ekFILL, "Gradient fill text", 25, 100);
draw_line_color(ctx, kCOLOR_BLACK);
draw_line_dash(ctx, dash, 2);
draw_text_path(ctx, ekSTROKE, "Dashed stroke text", 25, 175);
draw_line_color(ctx, kCOLOR_GREEN);
draw_text_extents(ctx, "Gradient dashed text", 1, &width, &height);
draw_fill_linear(ctx, c, stop, 2, 25, 0, 25 + width, 0);
draw_text_path(ctx, ekFILLSK, "Gradient dashed text", 25, 250);
draw_line_color(ctx, kCOLOR_BLACK);
draw_line_width(ctx, .5f);
draw_line_dash(ctx, NULL, 0);
draw_text_path(ctx, ekSTROKE, "Thin stroke text", 25, 325);
font_destroy(&font);

}

/**/

static void i_image(DCtx *ctx)
{

ResPack *pack = res_drawhello_respack("");
const Image *image = image_from_resource(pack, IMAGE_PNG);
T2Df matrix;

draw_image_align(ctx, ekLEFT, ekTOP);
draw_image(ctx, image, 25, 25);
t2d_movef(&matrix, kT2D_IDENTf, 300, 200);
t2d_rotatef(&matrix, &matrix, kBMATH_PIf / 8);
draw_image_align(ctx, ekCENTER, ekCENTER);
draw_matrixf(ctx, &matrix);
draw_image(ctx, image, 0, 0);
draw_matrixf(ctx, kT2D_IDENTf);
draw_image_align(ctx, ekRIGHT, ekTOP);
draw_image(ctx, image, 575, 25);
draw_image_align(ctx, ekLEFT, ekBOTTOM);
draw_image(ctx, image, 25, 375);
draw_image_align(ctx, ekRIGHT, ekBOTTOM);
draw_image(ctx, image, 575, 375);

draw_fill_color(ctx, kCOLOR_BLUE);
draw_circle(ctx, ekFILL, 25, 25, 3);
draw_circle(ctx, ekFILL, 300, 200, 3);
draw_circle(ctx, ekFILL, 575, 25, 3);
draw_circle(ctx, ekFILL, 25, 375, 3);
draw_circle(ctx, ekFILL, 575, 375, 3);
respack_destroy(&pack);

561

}

/**/

static void i_OnDraw(App *app, Event *e)
{

const EvDraw *p = event_params(e, EvDraw);
draw_clear(p>ctx, color_rgb(200, 200, 200));
switch (app>option) {
case 0:

cell_enabled(app>slider, FALSE);
label_text(app>label, "Different line styles: width, join, cap, dash

↪→ ...");
i_draw_lines(p>ctx);
break;

case 1:
cell_enabled(app>slider, FALSE);
label_text(app>label, "Basic shapes filled and stroke.");
draw_fill_color(p>ctx, kCOLOR_BLUE);
i_draw_shapes(p>ctx, FALSE);
break;

case 2:
cell_enabled(app>slider, TRUE);
label_text(app>label, "Global linear gradient.");
i_draw_gradient(p>ctx, app>gradient, TRUE, FALSE);
break;

case 3:
cell_enabled(app>slider, TRUE);
label_text(app>label, "Shapes filled with global (identity) linear

↪→ gradient.");
i_draw_gradient(p>ctx, app>gradient, TRUE, TRUE);
break;

case 4:
cell_enabled(app>slider, TRUE);
label_text(app>label, "Shapes filled with global (identity) linear

↪→ gradient.");
i_draw_gradient(p>ctx, app>gradient, FALSE, TRUE);
break;

case 5:
cell_enabled(app>slider, TRUE);
label_text(app>label, "Lines with global (identity) linear gradient.")

↪→ ;
i_draw_lines_gradient(p>ctx, app>gradient);
break;

case 6:
cell_enabled(app>slider, TRUE);
label_text(app>label, "Shapes filled with local (transformed) gradient

↪→ .");
i_draw_local_gradient(p>ctx, app>gradient);
break;

case 7:

562 Chapter 27 - Hello Draw2d!

cell_enabled(app>slider, FALSE);
label_text(app>label, "Gradient wrap modes.");
i_draw_wrap_gradient(p>ctx);
break;

case 8:
cell_enabled(app>slider, FALSE);
label_text(app>label, "Single line text with alignment and transforms"

↪→);
i_text_single(p>ctx);
break;

case 9:
cell_enabled(app>slider, FALSE);
label_text(app>label, "Text with newline '\\n' character and internal

↪→ alignment");
i_text_newline(p>ctx);
break;

case 10:
cell_enabled(app>slider, FALSE);
label_text(app>label, "Text block in a constrained width area");
i_text_block(p>ctx);
break;

case 11:
cell_enabled(app>slider, FALSE);
label_text(app>label, "Artistic text filled and stroke");
i_text_art(p>ctx);
break;

case 12:
cell_enabled(app>slider, FALSE);
label_text(app>label, "Drawing images with alignment");
i_image(p>ctx);
break;

}
}

/**/

static void i_OnSelect(App *app, Event *e)
{

const EvButton *p = event_params(e, EvButton);
app>option = p>index;
view_update(app>view);

}

/**/

static void i_OnSlider(App *app, Event *e)
{

const EvSlider *p = event_params(e, EvSlider);
app>gradient = p>pos;
view_update(app>view);

}

563

/**/

static Panel *i_panel(App *app)
{

Panel *panel = panel_create();
Layout *layout1 = layout_create(1, 3);
Layout *layout2 = layout_create(4, 1);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_multiline();
PopUp *popup = popup_create();
Slider *slider = slider_create();
View *view = view_create();
label_text(label1, "Select primitives:");
label_text(label2, "Gradient angle");
popup_add_elem(popup, "Lines", NULL);
popup_add_elem(popup, "Shapes", NULL);
popup_add_elem(popup, "Gradient1", NULL);
popup_add_elem(popup, "Gradient2", NULL);
popup_add_elem(popup, "Gradient3", NULL);
popup_add_elem(popup, "Gradient4", NULL);
popup_add_elem(popup, "Gradient5", NULL);
popup_add_elem(popup, "Gradient6", NULL);
popup_add_elem(popup, "Text1", NULL);
popup_add_elem(popup, "Text2", NULL);
popup_add_elem(popup, "Text3", NULL);
popup_add_elem(popup, "Text4", NULL);
popup_add_elem(popup, "Image", NULL);
popup_list_height(popup, 6);
popup_OnSelect(popup, listener(app, i_OnSelect, App));
slider_OnMoved(slider, listener(app, i_OnSlider, App));
view_size(view, s2df(600, 400));
view_OnDraw(view, listener(app, i_OnDraw, App));
layout_label(layout2, label1, 0, 0);
layout_popup(layout2, popup, 1, 0);
layout_label(layout2, label2, 2, 0);
layout_slider(layout2, slider, 3, 0);
layout_layout(layout1, layout2, 0, 0);
layout_label(layout1, label3, 0, 1);
layout_view(layout1, view, 0, 2);
layout_margin(layout1, 5);
layout_hmargin(layout2, 0, 10);
layout_hmargin(layout2, 1, 10);
layout_hmargin(layout2, 2, 10);
layout_vmargin(layout1, 0, 5);
layout_vmargin(layout1, 1, 5);
layout_halign(layout1, 0, 1, ekJUSTIFY);
layout_hexpand(layout2, 3);
panel_layout(panel, layout1);
app>slider = layout_cell(layout2, 3, 0);

564 Chapter 27 - Hello Draw2d!

app>view = view;
app>label = label3;
return panel;

}

/**/

static void i_OnClose(App *app, Event *e)
{

osapp_finish();
unref(app);
unref(e);

}

/**/

static App *i_create(void)
{

App *app = heap_new0(App);
Panel *panel = i_panel(app);
app>window = window_create(ekWINDOW_STD);
app>gradient = 0;
app>option = 0;
window_panel(app>window, panel);
window_title(app>window, "Drawing primitives");
window_origin(app>window, v2df(500, 200));
window_OnClose(app>window, listener(app, i_OnClose, App));
window_show(app>window);
return app;

}

/**/

static void i_destroy(App **app)
{

window_destroy(&(*app)>window);
heap_delete(app, App);

}

/**/

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

28C
ha

pt
er

Hello 2D Collisions!

Col2dHello is a small environment for experimentation with 2D collision detection
algorithms. It allows you to create different types of volumes, move them with the mouse
and edit them through the side panel. The details of the functions can be found in “2D
Collisions” (page 253).

Figure 28.1: Windows version.

Listing 28.1: demo/col2dhello/col2dhello.c
/* 2D collision detection demo */

#include "col2dgui.h"
#include <nappgui.h>

/**/

566 Chapter 28 - Hello 2D Collisions!

Figure 28.2: MacOS version.

Figure 28.3: Linux version.

static void i_OnClose(App *app, Event *e)
{

osapp_finish();
unref(app);
unref(e);

}

567

/**/

static Tri2Df i_triangle(void)
{

Tri2Df tri = tri2df(3, 4, 1, 2, 7, 2);
cassert(tri2d_ccwf(&tri) == TRUE);
return tri;

}

/**/

static Pol2Df *i_convex_pol(void)
{

V2Df pt[] = { {4,1}, {2,5}, {3,5}, {4,2}, {0,3} };
Pol2Df *pol = NULL;
bmem_rev_elems(pt, sizeof(pt) / sizeof(V2Df), V2Df);
pol = pol2d_createf(pt, sizeof(pt) / sizeof(V2Df));
cassert(pol2d_convexf(pol) == TRUE);
cassert(pol2d_ccwf(pol) == FALSE);
return pol;

}

/**/

static Pol2Df *i_simple_pol(void)
{

V2Df pt[] = { {9.78f, 12.17f}, {10.00f, 11.01f}, {9.68f, 3.20f}, {9.30f,
↪→ 5.98f}, {4.27f, 5.84f}, {4.03f, 12.17f}, {2.72f, 12.12f},
↪→ {2.47f, 6.36f}, {2.04f, 3.26f}, {1.45f, 3.05f}, {1.08f, 2.08f},
↪→ {3.98f, 2.38f}, {4.23f, 2.88f}, {1.45f, 3.05f}, {2.04f, 3.26f},
↪→ {10.00f, 3.75f} };

Pol2Df *pol = NULL;
bmem_rev_elems(pt, sizeof(pt) / sizeof(V2Df), V2Df);
pol = pol2d_createf(pt, sizeof(pt) / sizeof(V2Df));
cassert(pol2d_convexf(pol) == FALSE);
cassert(pol2d_ccwf(pol) == FALSE);
return pol;

}

/**/

static Shape *i_new_shape(ArrSt(Shape) *shapes, const shtype_t type)
{

Shape *shape = arrst_new(shapes, Shape);
shape>type = type;
shape>mouse = FALSE;
shape>collisions = 0;
return shape;

}

/**/

568 Chapter 28 - Hello 2D Collisions!

static void i_new_pnt(ArrSt(Shape) *shapes, const real32_t x, const real32_t y)
{

Shape *shape = i_new_shape(shapes, ekPOINT);
shape>body.pnt.x = x;
shape>body.pnt.y = y;

}

/**/

static void i_new_cloud(ArrSt(Shape) *shapes, const real32_t x, const real32_t
↪→ y, const real32_t w, const real32_t h, const real32_t a)

{
Shape *shape = i_new_shape(shapes, ekPOINT_CLOUD);
shape>body.cloud.pnts = arrst_create(V2Df);
shape>body.cloud.center.x = x;
shape>body.cloud.center.y = y;
shape>body.cloud.width = w;
shape>body.cloud.height = h;
shape>body.cloud.angle = a;
shape>body.cloud.ctype = 0;
shape>body.cloud.type = 0;
(void)arrst_new_n(shape>body.cloud.pnts, POINT_CLOUD_N, V2Df);
col2dhello_update_cloud(&shape>body.cloud);

}

/**/

static void i_new_seg(ArrSt(Shape) *shapes, const real32_t x, const real32_t y,
↪→ const real32_t l, const real32_t a)

{
Shape *shape = i_new_shape(shapes, ekSEGMENT);
shape>body.seg.center.x = x;
shape>body.seg.center.y = y;
shape>body.seg.length = l;
shape>body.seg.angle = a;
col2dhello_update_seg(&shape>body.seg);

}

/**/

static void i_new_cir(ArrSt(Shape) *shapes, const real32_t x, const real32_t y,
↪→ const real32_t r)

{
Shape *shape = i_new_shape(shapes, ekCIRCLE);
shape>body.cir.r = r;
shape>body.cir.c.x = x;
shape>body.cir.c.y = y;

}

/**/

569

static void i_new_box(ArrSt(Shape) *shapes, const real32_t x, const real32_t y,
↪→ const real32_t w, const real32_t h)

{
Shape *shape = i_new_shape(shapes, ekBOX);
shape>body.box.center.x = x;
shape>body.box.center.y = y;
shape>body.box.width = w;
shape>body.box.height = h;
col2dhello_update_box(&shape>body.box);

}

/**/

static void i_new_obb(ArrSt(Shape) *shapes, const real32_t x, const real32_t y,
↪→ const real32_t w, const real32_t h, const real32_t a)

{
Shape *shape = i_new_shape(shapes, ekOBB);
shape>body.obb.center.x = x;
shape>body.obb.center.y = y;
shape>body.obb.angle = a;
shape>body.obb.width = w;
shape>body.obb.height = h;
shape>body.obb.obb = NULL;
col2dhello_update_obb(&shape>body.obb);

}

/**/

static void i_new_tri(ArrSt(Shape) *shapes, const real32_t x, const real32_t y,
↪→ const real32_t a, const real32_t s)

{
Shape *shape = i_new_shape(shapes, ekTRIANGLE);
shape>body.tri.center.x = x;
shape>body.tri.center.y = y;
shape>body.tri.angle = a;
shape>body.tri.scale = s;
shape>body.tri.t2d = *kT2D_IDENTf;
shape>body.tri.tri = i_triangle();
col2dhello_update_tri(&shape>body.tri);

}

/**/

static void i_new_pol(ArrSt(Shape) *shapes, const shtype_t type, const real32_t
↪→ x, const real32_t y, const real32_t a, const real32_t s)

{
Shape *shape = i_new_shape(shapes, type);
shape>body.pol.center.x = x;
shape>body.pol.center.y = y;
shape>body.pol.angle = a;

570 Chapter 28 - Hello 2D Collisions!

shape>body.pol.scale = s;
shape>body.pol.t2d = *kT2D_IDENTf;
shape>body.pol.pol = type == ekCONVEX_POLY ? i_convex_pol() : i_simple_pol

↪→ ();
col2dhello_update_pol(&shape>body.pol);

}

/**/

static ArrSt(Shape) *i_shapes(void)
{

ArrSt(Shape) *shapes = arrst_create(Shape);
i_new_pnt(shapes, 520, 230);
i_new_pnt(shapes, 220, 205);
i_new_seg(shapes, 420, 280, 190, 125 * kBMATH_DEG2RADf);
i_new_cir(shapes, 100, 100, 50);
i_new_cir(shapes, 300, 200, 20);
i_new_box(shapes, 100, 225, 100, 50);
i_new_obb(shapes, 150, 350, 200, 20, 200 * kBMATH_DEG2RADf);
i_new_obb(shapes, 460, 90, 200, 60, 15 * kBMATH_DEG2RADf);
i_new_tri(shapes, 550, 475, 75 * kBMATH_DEG2RADf, 15);
i_new_tri(shapes, 90, 480, 355 * kBMATH_DEG2RADf, 18);
i_new_pol(shapes, ekCONVEX_POLY, 535, 325, 30 * kBMATH_DEG2RADf, 15);
i_new_pol(shapes, ekSIMPLE_POLY, 370, 450, 45 * kBMATH_DEG2RADf, 7);
return shapes;

}

/**/

static App *i_create(void)
{

App *app = heap_new0(App);
col2dhello_dbind();
app>shapes = i_shapes();
app>dists = arrst_create(Dist);
app>seltype = ekOBB;
app>selshape = UINT32_MAX;
app>show_seg_pt = TRUE;
app>show_triangles = FALSE;
app>show_convex_parts = FALSE;
app>sel_area = 0;
app>window = col2dhello_window(app);
window_title(app>window, "2D Collision Detection");
window_origin(app>window, v2df(500, 200));
window_OnClose(app>window, listener(app, i_OnClose, App));
window_show(app>window);
col2dhello_dbind_shape(app);
col2dhello_collisions(app);
return app;

}

571

/**/

static void i_remove_bounds(Cloud *cloud)
{

cassert_no_null(cloud);
switch(cloud>ctype) {
case 0:
case 1:
case 2:

break;
case 3:

obb2d_destroyf(&cloud>bound.obb);
break;

case 4:
pol2d_destroyf(&cloud>bound.poly);
break;

cassert_default();
}

}

/**/

static void i_remove_shape(Shape *shape)
{

cassert_no_null(shape);
switch(shape>type){
case ekPOINT_CLOUD:

arrst_destroy(&shape>body.cloud.pnts, NULL, V2Df);
i_remove_bounds(&shape>body.cloud);
break;

case ekOBB:
obb2d_destroyf(&shape>body.obb.obb);
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

pol2d_destroyf(&shape>body.pol.pol);
break;

case ekPOINT:
case ekSEGMENT:
case ekCIRCLE:
case ekBOX:
case ekTRIANGLE:

break;

cassert_default();
}

}

572 Chapter 28 - Hello 2D Collisions!

/**/

static void i_destroy(App **app)
{

arrst_destroy(&(*app)>shapes, i_remove_shape, Shape);
arrst_destroy(&(*app)>dists, NULL, Dist);
window_destroy(&(*app)>window);
heap_delete(app, App);

}

/**/

void col2dhello_new_shape(App *app, const V2Df pos)
{

switch(app>seltype) {
case ekPOINT:

i_new_pnt(app>shapes, pos.x, pos.y);
break;

case ekPOINT_CLOUD:
i_new_cloud(app>shapes, pos.x, pos.y, 100, 50, 15 * kBMATH_DEG2RADf);
break;

case ekSEGMENT:
i_new_seg(app>shapes, pos.x, pos.y, 100, 15 * kBMATH_DEG2RADf);
break;

case ekCIRCLE:
i_new_cir(app>shapes, pos.x, pos.y, 30);
break;

case ekBOX:
i_new_box(app>shapes, pos.x, pos.y, 100, 50);
break;

case ekOBB:
i_new_obb(app>shapes, pos.x, pos.y, 100, 50, 15 * kBMATH_DEG2RADf);
break;

case ekTRIANGLE:
i_new_tri(app>shapes, pos.x, pos.y, 15 * kBMATH_DEG2RADf, 15);
break;

case ekCONVEX_POLY:
i_new_pol(app>shapes, ekCONVEX_POLY, pos.x, pos.y, 0, 10);
break;

case ekSIMPLE_POLY:
i_new_pol(app>shapes, ekSIMPLE_POLY, pos.x, pos.y, 0, 10);
break;

573

cassert_default();
}

app>selshape = arrst_size(app>shapes, Shape) 1;
}

/**/

void col2dhello_update_gui(App *app)
{

cassert_no_null(app);
if (app>selshape != UINT32_MAX)
{

Shape *shape = arrst_get(app>shapes, app>selshape, Shape);
switch(shape>type) {
case ekPOINT:
case ekPOINT_CLOUD:
case ekSEGMENT:

app>sel_area = 0;
break;

case ekCIRCLE:
app>sel_area = cir2d_areaf(&shape>body.cir);
break;

case ekBOX:
app>sel_area = box2d_areaf(&shape>body.box.box);
break;

case ekOBB:
app>sel_area = obb2d_areaf(shape>body.obb.obb);
break;

case ekTRIANGLE:
app>sel_area = tri2d_areaf(&shape>body.tri.tri);
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

app>sel_area = pol2d_areaf(shape>body.pol.pol);
break;

cassert_default();
}

}
else
{

app>sel_area = 0;
}

layout_dbind_obj(app>main_layout, app, App);

574 Chapter 28 - Hello 2D Collisions!

panel_update(app>obj_panel);
view_update(app>view);

}

/**/

void col2dhello_update_seg(Seg *seg)
{

V2Df hvec;
cassert_no_null(seg);
hvec.x = seg>length / 2;
hvec.y = 0;
v2d_rotatef(&hvec, seg>angle);
seg>seg.p0.x = seg>center.x hvec.x;
seg>seg.p0.y = seg>center.y hvec.y;
seg>seg.p1.x = seg>center.x + hvec.x;
seg>seg.p1.y = seg>center.y + hvec.y;

}

/**/

Box2Df col2dhello_cloud_box(const Cloud *cloud)
{

Box2Df box = cloud>box;
box.min = v2d_addf(&cloud>box.min, &cloud>center);
box.max = v2d_addf(&cloud>box.max, &cloud>center);
return box;

}

/**/

void col2dhello_update_cloud(Cloud *cloud)
{

V2Df *pt = NULL;
uint32_t i, n;
real32_t hw, hh;
cassert_no_null(cloud);
pt = arrst_all(cloud>pnts, V2Df);
n = arrst_size(cloud>pnts, V2Df);
hw = cloud>width / 2;
hh = cloud>height / 2;

for (i = 0; i < n; ++i)
{

real32_t ox = bmath_randf(.3f * hw, .3f * hw);
real32_t oy = bmath_randf(.3f * hh, .3f * hh);
pt[i].x = bmath_randf(hw, hw) + ox;
pt[i].y = bmath_randf(hh, hh) + oy;

}

if (cloud>angle != 0)

575

{
T2Df t2d;
t2d_rotatef(&t2d, kT2D_IDENTf, cloud>angle);
t2d_vmultnf(pt, &t2d, pt, n);

}

cloud>box = box2d_from_pointsf(pt, n);
col2dhello_update_cloud_bounds(cloud);

}

/**/

void col2dhello_update_cloud_bounds(Cloud *cloud)
{

const V2Df *p = arrst_all(cloud>pnts, V2Df);
uint32_t n = arrst_size(cloud>pnts, V2Df);

i_remove_bounds(cloud);
switch(cloud>type) {
case 0:

cloud>bound.cir = cir2d_from_boxf(&cloud>box);
break;

case 1:
cloud>bound.cir = cir2d_from_pointsf(p, n);
break;

case 2:
cloud>bound.cir = cir2d_minimumf(p, n);
break;

case 3:
cloud>bound.obb = obb2d_from_pointsf(p, n);
break;

case 4:
cloud>bound.poly = pol2d_convex_hullf(p, n);
break;

cassert_default();
}

cloud>ctype = cloud>type;
}

/**/

void col2dhello_update_box(Box *box)
{

cassert_no_null(box);
box>box.min.x = box>center.x box>width / 2;
box>box.min.y = box>center.y box>height / 2;

576 Chapter 28 - Hello 2D Collisions!

box>box.max.x = box>center.x + box>width / 2;
box>box.max.y = box>center.y + box>height / 2;

}

/**/

void col2dhello_update_obb(OBB *obb)
{

cassert_no_null(obb);
if (obb>obb == NULL)

obb>obb = obb2d_createf(&obb>center, obb>width, obb>height, obb>
↪→ angle);

else
obb2d_updatef(obb>obb, &obb>center, obb>width, obb>height, obb>

↪→ angle);
}

/**/

void col2dhello_update_tri(Tri *tri)
{

T2Df t2d, nt2d;
cassert_no_null(tri);
t2d_inversef(&t2d, &tri>t2d);
t2d_movef(&nt2d, kT2D_IDENTf, tri>center.x, tri>center.y);
t2d_rotatef(&nt2d, &nt2d, tri>angle);
t2d_scalef(&nt2d, &nt2d, tri>scale, tri>scale);
t2d_multf(&t2d, &nt2d, &t2d);
tri2d_transformf(&tri>tri, &t2d);
tri>t2d = nt2d;

}

/**/

void col2dhello_update_pol(Pol *pol)
{

T2Df t2d, nt2d;
cassert_no_null(pol);
cassert_no_null(pol>pol);
t2d_inversef(&t2d, &pol>t2d);
t2d_movef(&nt2d, kT2D_IDENTf, pol>center.x, pol>center.y);
t2d_rotatef(&nt2d, &nt2d, pol>angle);
t2d_scalef(&nt2d, &nt2d, pol>scale, pol>scale);
t2d_multf(&t2d, &nt2d, &t2d);
pol2d_transformf(pol>pol, &t2d);
pol>t2d = nt2d;

}

/**/

static bool_t i_mouse_inside(const Shape *shape, const real32_t mouse_x, const

577

↪→ real32_t mouse_y)
{

V2Df m = v2df(mouse_x, mouse_y);

switch(shape>type) {
case ekPOINT:

return col2d_point_pointf(&shape>body.pnt, &m, CENTER_RADIUS, NULL);

case ekPOINT_CLOUD:
{

Box2Df box = col2dhello_cloud_box(&shape>body.cloud);
return col2d_box_pointf(&box, &m, NULL);

}

case ekSEGMENT:
return col2d_segment_pointf(&shape>body.seg.seg, &m, CENTER_RADIUS,

↪→ NULL);

case ekCIRCLE:
return col2d_circle_pointf(&shape>body.cir, &m, NULL);

case ekBOX:
return col2d_box_pointf(&shape>body.box.box, &m, NULL);

case ekOBB:
return col2d_obb_pointf(shape>body.obb.obb, &m, NULL);

case ekTRIANGLE:
return col2d_tri_pointf(&shape>body.tri.tri, &m, NULL);

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

return col2d_poly_pointf(shape>body.pol.pol, &m, NULL);

cassert_default();
}

return FALSE;
}

/**/

void col2dhello_mouse_collisions(App *app, const real32_t mouse_x, const
↪→ real32_t mouse_y)

{
arrst_foreach(shape, app>shapes, Shape)

shape>mouse = i_mouse_inside(shape, mouse_x, mouse_y);
arrst_end();

}

/**/

578 Chapter 28 - Hello 2D Collisions!

static void i_point_segment_dist(const Seg2Df *seg, const V2Df *pnt, ArrSt(Dist
↪→) *dists)

{
Dist *dist = arrst_new(dists, Dist);
real32_t t = seg2d_close_paramf(seg, pnt);
dist>p0 = *pnt;
dist>p1 = seg2d_evalf(seg, t);

}

/**/

void col2dhello_collisions(App *app)
{

Shape *shape = arrst_all(app>shapes, Shape);
uint32_t n = arrst_size(app>shapes, Shape);
uint32_t i, j;

arrst_clear(app>dists, NULL, Dist);

for (i = 0; i < n; ++i)
shape[i].collisions = 0;

for (i = 0; i < n; ++i)
for (j = i + 1; j < n; ++j)
{

const Shape *shape1 = shape[i].type < shape[j].type ? &shape[i] : &
↪→ shape[j];

const Shape *shape2 = shape[i].type < shape[j].type ? &shape[j] : &
↪→ shape[i];

bool_t col = FALSE;

switch(shape1>type) {
case ekPOINT:

switch(shape2>type) {
case ekPOINT:

col = col2d_point_pointf(&shape1>body.pnt, &shape2>body.pnt,
↪→ CENTER_RADIUS, NULL);

break;

case ekPOINT_CLOUD:
col = FALSE;
break;

case ekSEGMENT:
col = col2d_segment_pointf(&shape2>body.seg.seg, &shape1>body

↪→ .pnt, CENTER_RADIUS, NULL);
i_point_segment_dist(&shape2>body.seg.seg, &shape1>body.pnt,

↪→ app>dists);
break;

579

case ekCIRCLE:
col = col2d_circle_pointf(&shape2>body.cir, &shape1>body.pnt,

↪→ NULL);
break;

case ekBOX:
col = col2d_box_pointf(&shape2>body.box.box, &shape1>body.pnt

↪→ , NULL);
break;

case ekOBB:
col = col2d_obb_pointf(shape2>body.obb.obb, &shape1>body.pnt,

↪→ NULL);
break;

case ekTRIANGLE:
col = col2d_tri_pointf(&shape2>body.tri.tri, &shape1>body.pnt

↪→ , NULL);
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

col = col2d_poly_pointf(shape2>body.pol.pol, &shape1>body.pnt
↪→ , NULL);

break;

cassert_default();
}
break;

case ekPOINT_CLOUD:
col = FALSE;
break;

case ekSEGMENT:
switch(shape2>type) {
case ekSEGMENT:

col = col2d_segment_segmentf(&shape1>body.seg.seg, &shape2>
↪→ body.seg.seg, NULL);

break;

case ekCIRCLE:
col = col2d_circle_segmentf(&shape2>body.cir, &shape1>body.

↪→ seg.seg, NULL);
break;

case ekBOX:
col = col2d_box_segmentf(&shape2>body.box.box, &shape1>body.

↪→ seg.seg, NULL);
break;

580 Chapter 28 - Hello 2D Collisions!

case ekOBB:
col = col2d_obb_segmentf(shape2>body.obb.obb, &shape1>body.

↪→ seg.seg, NULL);
break;

case ekTRIANGLE:
col = col2d_tri_segmentf(&shape2>body.tri.tri, &shape1>body.

↪→ seg.seg, NULL);
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

col = col2d_poly_segmentf(shape2>body.pol.pol, &shape1>body.
↪→ seg.seg, NULL);

break;

case ekPOINT:
case ekPOINT_CLOUD:
cassert_default();
}
break;

case ekCIRCLE:
switch(shape2>type) {
case ekCIRCLE:

col = col2d_circle_circlef(&shape1>body.cir, &shape2>body.cir
↪→ , NULL);

break;

case ekBOX:
col = col2d_box_circlef(&shape2>body.box.box, &shape1>body.

↪→ cir, NULL);
break;

case ekOBB:
col = col2d_obb_circlef(shape2>body.obb.obb, &shape1>body.cir

↪→ , NULL);
break;

case ekTRIANGLE:
col = col2d_tri_circlef(&shape2>body.tri.tri, &shape1>body.

↪→ cir, NULL);
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

col = col2d_poly_circlef(shape2>body.pol.pol, &shape1>body.
↪→ cir, NULL);

break;

case ekPOINT:

581

case ekPOINT_CLOUD:
case ekSEGMENT:
cassert_default();
}
break;

case ekBOX:
switch(shape2>type) {
case ekBOX:

col = col2d_box_boxf(&shape1>body.box.box, &shape2>body.box.
↪→ box, NULL);

break;

case ekOBB:
col = col2d_obb_boxf(shape2>body.obb.obb, &shape1>body.box.

↪→ box, NULL);
break;

case ekTRIANGLE:
col = col2d_tri_boxf(&shape2>body.tri.tri, &shape1>body.box.

↪→ box, NULL);
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

col = col2d_poly_boxf(shape2>body.pol.pol, &shape1>body.box.
↪→ box, NULL);

break;

case ekPOINT:
case ekPOINT_CLOUD:
case ekSEGMENT:
case ekCIRCLE:
cassert_default();
}
break;

case ekOBB:
switch(shape2>type) {
case ekOBB:

col = col2d_obb_obbf(shape1>body.obb.obb, shape2>body.obb.obb
↪→ , NULL);

break;

case ekTRIANGLE:
col = col2d_tri_obbf(&shape2>body.tri.tri, shape1>body.obb.

↪→ obb, NULL);
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

582 Chapter 28 - Hello 2D Collisions!

col = col2d_poly_obbf(shape2>body.pol.pol, shape1>body.obb.
↪→ obb, NULL);

break;

case ekPOINT:
case ekPOINT_CLOUD:
case ekSEGMENT:
case ekCIRCLE:
case ekBOX:
cassert_default();
}
break;

case ekTRIANGLE:
switch(shape2>type) {
case ekTRIANGLE:

col = col2d_tri_trif(&shape1>body.tri.tri, &shape2>body.tri.
↪→ tri, NULL);

break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

col = col2d_poly_trif(shape2>body.pol.pol, &shape1>body.tri.
↪→ tri, NULL);

break;

case ekPOINT:
case ekPOINT_CLOUD:
case ekSEGMENT:
case ekCIRCLE:
case ekBOX:
case ekOBB:
cassert_default();
}
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

switch(shape2>type) {
case ekCONVEX_POLY:
case ekSIMPLE_POLY:

col = col2d_poly_polyf(shape1>body.pol.pol, shape2>body.pol.
↪→ pol, NULL);

break;

case ekPOINT:
case ekPOINT_CLOUD:
case ekSEGMENT:
case ekCIRCLE:
case ekBOX:
case ekOBB:

583

case ekTRIANGLE:
cassert_default();
}
break;

cassert_default();
}

if (col == TRUE)
{

shape[i].collisions += 1;
shape[j].collisions += 1;

}
}

}

/**/

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

Listing 28.2: demo/col2dhello/col2dhello.hxx
/* 2D collision detection demo */

#ifndef __COL2DHELLO_HXX__
#define __COL2DHELLO_HXX__

#include <gui/gui.hxx>

#define CENTER_RADIUS 3
#define POINT_CLOUD_N 100

typedef struct _cloud_t Cloud;
typedef struct _seg_t Seg;
typedef struct _box_t Box;
typedef struct _obb_t OBB;
typedef struct _tri_t Tri;
typedef struct _pol_t Pol;
typedef struct _shape_t Shape;
typedef struct _dist_t Dist;
typedef struct _app_t App;

typedef enum _shtype_t
{

ekPOINT,
ekPOINT_CLOUD,
ekSEGMENT,
ekCIRCLE,
ekBOX,
ekOBB,

584 Chapter 28 - Hello 2D Collisions!

ekTRIANGLE,
ekCONVEX_POLY,
ekSIMPLE_POLY

} shtype_t;

struct _cloud_t
{

ArrSt(V2Df) *pnts;
Box2Df box;
V2Df center;
real32_t width;
real32_t height;
real32_t angle;
uint32_t ctype, type;

union
{

Cir2Df cir;
OBB2Df *obb;
Pol2Df *poly;

} bound;
};

struct _seg_t
{

V2Df center;
real32_t length;
real32_t angle;
Seg2Df seg;

};

struct _box_t
{

V2Df center;
real32_t width;
real32_t height;
Box2Df box;

};

struct _obb_t
{

V2Df center;
real32_t width;
real32_t height;
real32_t angle;
OBB2Df *obb;

};

struct _tri_t
{

V2Df center;

585

real32_t angle;
real32_t scale;
T2Df t2d;
Tri2Df tri;

};

struct _pol_t
{

V2Df center;
real32_t angle;
real32_t scale;
T2Df t2d;
Pol2Df *pol;

};

struct _shape_t
{

shtype_t type;
bool_t mouse;
uint32_t collisions;

union {
V2Df pnt;
Cloud cloud;
Seg seg;
Cir2Df cir;
Box box;
OBB obb;
Tri tri;
Pol pol;

} body;
};

struct _dist_t
{

V2Df p0;
V2Df p1;

};

struct _app_t
{

Window *window;
View *view;
Layout *main_layout;
Layout *pnt_layout;
Layout *cld_layout;
Layout *seg_layout;
Layout *cir_layout;
Layout *box_layout;
Layout *obb_layout;
Layout *tri_layout;

586 Chapter 28 - Hello 2D Collisions!

Layout *pol_layout;
Panel *obj_panel;
ArrSt(Shape) *shapes;
ArrSt(Dist) *dists;
shtype_t seltype;
uint32_t selshape;
bool_t show_seg_pt;
bool_t show_triangles;
bool_t show_convex_parts;
real32_t sel_area;
V2Df mouse_pos;
V2Df obj_pos;

};

DeclSt(Shape);
DeclSt(Dist);

#endif

Listing 28.3: demo/col2dhello/col2dgui.c
/* Col2D Hello GUI */

#include "col2dgui.h"
#include <nappgui.h>

/**/

void col2dhello_dbind(void)
{

dbind_enum(shtype_t, ekPOINT, "");
dbind_enum(shtype_t, ekPOINT_CLOUD, "");
dbind_enum(shtype_t, ekSEGMENT, "");
dbind_enum(shtype_t, ekCIRCLE, "");
dbind_enum(shtype_t, ekBOX, "");
dbind_enum(shtype_t, ekOBB, "");
dbind_enum(shtype_t, ekTRIANGLE, "");
dbind_enum(shtype_t, ekCONVEX_POLY, "");
dbind_enum(shtype_t, ekSIMPLE_POLY, "");
dbind(App, shtype_t, seltype);
dbind(App, bool_t, show_seg_pt);
dbind(App, bool_t, show_triangles);
dbind(App, bool_t, show_convex_parts);
dbind(App, real32_t, sel_area);
dbind(Cloud, real32_t, width);
dbind(Cloud, real32_t, height);
dbind(Cloud, real32_t, angle);
dbind(Cloud, uint32_t, type);
dbind(Seg, real32_t, length);
dbind(Seg, real32_t, angle);
dbind(Cir2Df, real32_t, r);

587

dbind(Box, real32_t, width);
dbind(Box, real32_t, height);
dbind(OBB, real32_t, width);
dbind(OBB, real32_t, height);
dbind(OBB, real32_t, angle);
dbind(Tri, real32_t, angle);
dbind(Tri, real32_t, scale);
dbind(Pol, real32_t, angle);
dbind(Pol, real32_t, scale);
dbind_range(Cloud, real32_t, width, 50, 200);
dbind_range(Cloud, real32_t, height, 50, 200);
dbind_range(Cloud, real32_t, angle, 0, 360 * kBMATH_DEG2RADf);
dbind_range(Seg, real32_t, length, 20, 300);
dbind_range(Seg, real32_t, angle, 0, 360 * kBMATH_DEG2RADf);
dbind_range(Cir2Df, real32_t, r, 5, 100);
dbind_range(Box, real32_t, width, 20, 300);
dbind_range(Box, real32_t, height, 20, 300);
dbind_range(OBB, real32_t, width, 20, 300);
dbind_range(OBB, real32_t, height, .2f, 300);
dbind_range(OBB, real32_t, angle, 0, 360 * kBMATH_DEG2RADf);
dbind_range(Tri, real32_t, angle, 0, 360 * kBMATH_DEG2RADf);
dbind_range(Tri, real32_t, scale, 5, 30);
dbind_range(Pol, real32_t, angle, 0, 360 * kBMATH_DEG2RADf);
dbind_range(Pol, real32_t, scale, 5, 30);

}

/**/

static void i_OnCloud(App *app, Event *e)
{

Shape *shape = arrst_get(app>shapes, app>selshape, Shape);
cassert(shape>type == ekPOINT_CLOUD);

if (evbind_modify(e, Cloud, uint32_t, type) == TRUE)
col2dhello_update_cloud_bounds(&shape>body.cloud);

else
col2dhello_update_cloud(&shape>body.cloud);

col2dhello_collisions(app);
col2dhello_update_gui(app);

}

/**/

static void i_OnSeg(App *app, Event *e)
{

Shape *shape = arrst_get(app>shapes, app>selshape, Shape);
cassert(shape>type == ekSEGMENT);
col2dhello_update_seg(&shape>body.seg);
col2dhello_collisions(app);
col2dhello_update_gui(app);

588 Chapter 28 - Hello 2D Collisions!

unref(e);
}

/**/

static void i_OnCircle(App *app, Event *e)
{

col2dhello_collisions(app);
col2dhello_update_gui(app);
unref(e);

}

/**/

static void i_OnBox(App *app, Event *e)
{

Shape *shape = arrst_get(app>shapes, app>selshape, Shape);
cassert(shape>type == ekBOX);
col2dhello_update_box(&shape>body.box);
col2dhello_collisions(app);
col2dhello_update_gui(app);
unref(e);

}

/**/

static void i_OnOBB(App *app, Event *e)
{

Shape *shape = arrst_get(app>shapes, app>selshape, Shape);
cassert(shape>type == ekOBB);
col2dhello_update_obb(&shape>body.obb);
col2dhello_collisions(app);
col2dhello_update_gui(app);
unref(e);

}

/**/

static void i_OnTri(App *app, Event *e)
{

Shape *shape = arrst_get(app>shapes, app>selshape, Shape);
cassert(shape>type == ekTRIANGLE);
col2dhello_update_tri(&shape>body.tri);
col2dhello_collisions(app);
col2dhello_update_gui(app);
unref(e);

}

/**/

static void i_OnPoly(App *app, Event *e)

589

{
Shape *shape = arrst_get(app>shapes, app>selshape, Shape);
cassert(shape>type == ekCONVEX_POLY || shape>type == ekSIMPLE_POLY);
col2dhello_update_pol(&shape>body.pol);
col2dhello_collisions(app);
col2dhello_update_gui(app);
unref(e);

}

/**/

static void i_OnOpt(App *app, Event *e)
{

col2dhello_update_gui(app);
unref(e);

}

/**/

static Layout *i_empty_layout(void)
{

Layout *layout = layout_create(1, 1);
return layout;

}

/**/

static Layout *i_point_layout(App *app)
{

Layout *layout = layout_create(1, 1);
Label *label = label_create();
label_text(label, "Selected Point");
layout_label(layout, label, 0, 0);
app>pnt_layout = layout;
return layout;

}

/**/

static Layout *i_bounding_layout(void)
{

Layout *layout = layout_create(1, 5);
Button *button1 = button_radio();
Button *button2 = button_radio();
Button *button3 = button_radio();
Button *button4 = button_radio();
Button *button5 = button_radio();
button_text(button1, "BBox Circle");
button_text(button2, "Points Circle");
button_text(button3, "Minimum Circle");
button_text(button4, "Gaussian OBB");

590 Chapter 28 - Hello 2D Collisions!

button_text(button5, "Convex Hull");
layout_button(layout, button1, 0, 0);
layout_button(layout, button2, 0, 1);
layout_button(layout, button3, 0, 2);
layout_button(layout, button4, 0, 3);
layout_button(layout, button5, 0, 4);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 1, 5);
layout_vmargin(layout, 2, 5);
layout_vmargin(layout, 3, 5);
cell_dbind(layout_cell(layout, 0, 0), Cloud, uint32_t, type);
return layout;

}

/**/

static Layout *i_cloud_layout(App *app)
{

Layout *layout1 = layout_create(1, 9);
Layout *layout2 = i_bounding_layout();
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Label *label5 = label_create();
Slider *slider1 = slider_create();
Slider *slider2 = slider_create();
Slider *slider3 = slider_create();
label_text(label1, "Selected Point Cloud");
label_text(label2, "Width:");
label_text(label3, "Height:");
label_text(label4, "Angle:");
label_text(label5, "Bounding Volume");
layout_label(layout1, label1, 0, 0);
layout_label(layout1, label2, 0, 1);
layout_label(layout1, label3, 0, 3);
layout_label(layout1, label4, 0, 5);
layout_label(layout1, label5, 0, 7);
layout_slider(layout1, slider1, 0, 2);
layout_slider(layout1, slider2, 0, 4);
layout_slider(layout1, slider3, 0, 6);
layout_layout(layout1, layout2, 0, 8);
layout_vmargin(layout1, 0, 5);
layout_vmargin(layout1, 2, 10);
layout_vmargin(layout1, 4, 10);
layout_vmargin(layout1, 6, 5);
layout_vmargin(layout1, 7, 8);
cell_dbind(layout_cell(layout1, 0, 2), Cloud, real32_t, width);
cell_dbind(layout_cell(layout1, 0, 4), Cloud, real32_t, height);
cell_dbind(layout_cell(layout1, 0, 6), Cloud, real32_t, angle);
layout_dbind(layout1, listener(app, i_OnCloud, App), Cloud);

591

app>cld_layout = layout1;
return layout1;

}

/**/

static Layout *i_segment_layout(App *app)
{

Layout *layout = layout_create(1, 5);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Slider *slider1 = slider_create();
Slider *slider2 = slider_create();
label_text(label1, "Selected Segment");
label_text(label2, "Length:");
label_text(label3, "Angle:");
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 1);
layout_label(layout, label3, 0, 3);
layout_slider(layout, slider1, 0, 2);
layout_slider(layout, slider2, 0, 4);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 2, 10);
cell_dbind(layout_cell(layout, 0, 2), Seg, real32_t, length);
cell_dbind(layout_cell(layout, 0, 4), Seg, real32_t, angle);
layout_dbind(layout, listener(app, i_OnSeg, App), Seg);
app>seg_layout = layout;
return layout;

}

/**/

static Layout *i_circle_layout(App *app)
{

Layout *layout = layout_create(1, 3);
Label *label1 = label_create();
Label *label2 = label_create();
Slider *slider = slider_create();
label_text(label1, "Selected Circle");
label_text(label2, "Radix:");
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 1);
layout_slider(layout, slider, 0, 2);
layout_vmargin(layout, 0, 5);
cell_dbind(layout_cell(layout, 0, 2), Cir2Df, real32_t, r);
layout_dbind(layout, listener(app, i_OnCircle, App), Cir2Df);
app>cir_layout = layout;
return layout;

}

592 Chapter 28 - Hello 2D Collisions!

/**/

static Layout *i_box_layout(App *app)
{

Layout *layout = layout_create(1, 5);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Slider *slider1 = slider_create();
Slider *slider2 = slider_create();
label_text(label1, "Selected Box");
label_text(label2, "Width:");
label_text(label3, "Height:");
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 1);
layout_label(layout, label3, 0, 3);
layout_slider(layout, slider1, 0, 2);
layout_slider(layout, slider2, 0, 4);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 2, 10);
cell_dbind(layout_cell(layout, 0, 2), Box, real32_t, width);
cell_dbind(layout_cell(layout, 0, 4), Box, real32_t, height);
layout_dbind(layout, listener(app, i_OnBox, App), Box);
app>box_layout = layout;
return layout;

}

/**/

static Layout *i_obb_layout(App *app)
{

Layout *layout = layout_create(1, 7);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Slider *slider1 = slider_create();
Slider *slider2 = slider_create();
Slider *slider3 = slider_create();
label_text(label1, "Selected Oriented Box");
label_text(label2, "Width:");
label_text(label3, "Height:");
label_text(label4, "Angle:");
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 1);
layout_label(layout, label3, 0, 3);
layout_label(layout, label4, 0, 5);
layout_slider(layout, slider1, 0, 2);
layout_slider(layout, slider2, 0, 4);
layout_slider(layout, slider3, 0, 6);
layout_vmargin(layout, 0, 5);

593

layout_vmargin(layout, 2, 10);
layout_vmargin(layout, 4, 10);
cell_dbind(layout_cell(layout, 0, 2), OBB, real32_t, width);
cell_dbind(layout_cell(layout, 0, 4), OBB, real32_t, height);
cell_dbind(layout_cell(layout, 0, 6), OBB, real32_t, angle);
layout_dbind(layout, listener(app, i_OnOBB, App), OBB);
app>obb_layout = layout;
return layout;

}

/**/

static Layout *i_tri_layout(App *app)
{

Layout *layout = layout_create(1, 5);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Slider *slider1 = slider_create();
Slider *slider2 = slider_create();
label_text(label1, "Selected Triangle");
label_text(label2, "Angle:");
label_text(label3, "Scale:");
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 0, 1);
layout_label(layout, label3, 0, 3);
layout_slider(layout, slider1, 0, 2);
layout_slider(layout, slider2, 0, 4);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 2, 10);
cell_dbind(layout_cell(layout, 0, 2), Tri, real32_t, angle);
cell_dbind(layout_cell(layout, 0, 4), Tri, real32_t, scale);
layout_dbind(layout, listener(app, i_OnTri, App), Tri);
app>tri_layout = layout;
return layout;

}

/**/

static Layout *i_pol_layout(App *app)
{

Layout *layout = layout_create(1, 5);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Slider *slider1 = slider_create();
Slider *slider2 = slider_create();
label_text(label1, "Selected Polygon");
label_text(label2, "Angle:");
label_text(label3, "Scale:");
layout_label(layout, label1, 0, 0);

594 Chapter 28 - Hello 2D Collisions!

layout_label(layout, label2, 0, 1);
layout_label(layout, label3, 0, 3);
layout_slider(layout, slider1, 0, 2);
layout_slider(layout, slider2, 0, 4);
layout_vmargin(layout, 0, 5);
layout_vmargin(layout, 2, 10);
cell_dbind(layout_cell(layout, 0, 2), Pol, real32_t, angle);
cell_dbind(layout_cell(layout, 0, 4), Pol, real32_t, scale);
layout_dbind(layout, listener(app, i_OnPoly, App), Pol);
app>pol_layout = layout;
return layout;

}

/**/

static void i_OnNewShape(App *app, Event *e)
{

S2Df size;
view_get_size(app>view, &size);
col2dhello_new_shape(app, v2df(size.width / 2, size.height / 2));
col2dhello_dbind_shape(app);
col2dhello_collisions(app);
view_update(app>view);
unref(e);

}

/**/

static Layout *i_new_layout(App *app)
{

Layout *layout = layout_create(1, 2);
PopUp *popup = popup_create();
Button *button = button_push();
button_text(button, "New Shape");
button_OnClick(button, listener(app, i_OnNewShape, App));
layout_popup(layout, popup, 0, 0);
layout_button(layout, button, 0, 1);
layout_vmargin(layout, 0, 5);
cell_dbind(layout_cell(layout, 0, 0), App, shtype_t, seltype);
return layout;

}

/**/

static Layout *i_area_layout(void)
{

Layout *layout = layout_create(2, 1);
Label *label1 = label_create();
Label *label2 = label_create();
label_text(label1, "Area:");
layout_label(layout, label1, 0, 0);

595

layout_label(layout, label2, 1, 0);
layout_hmargin(layout, 0, 5);
layout_halign(layout, 1, 0, ekJUSTIFY);
layout_hexpand(layout, 1);
cell_dbind(layout_cell(layout, 1, 0), App, real32_t, sel_area);
return layout;

}

/**/

static Layout *i_left_layout(App *app)
{

Layout *layout1 = layout_create(1, 6);
Layout *layout2 = i_new_layout(app);
Layout *layout3 = i_area_layout();
Layout *layout4 = i_empty_layout();
Layout *layout5 = i_point_layout(app);
Layout *layout6 = i_cloud_layout(app);
Layout *layout7 = i_segment_layout(app);
Layout *layout8 = i_circle_layout(app);
Layout *layout9 = i_box_layout(app);
Layout *layout10 = i_obb_layout(app);
Layout *layout11 = i_tri_layout(app);
Layout *layout12 = i_pol_layout(app);
Button *button1 = button_check();
Button *button2 = button_check();
Button *button3 = button_check();
Panel *panel = panel_create();
button_text(button1, "Show SegmentPoint distance");
button_text(button2, "Show Polygon triangles");
button_text(button3, "Show Convex partition");
panel_layout(panel, layout4);
panel_layout(panel, layout5);
panel_layout(panel, layout6);
panel_layout(panel, layout7);
panel_layout(panel, layout8);
panel_layout(panel, layout9);
panel_layout(panel, layout10);
panel_layout(panel, layout11);
panel_layout(panel, layout12);
layout_layout(layout1, layout2, 0, 0);
layout_button(layout1, button1, 0, 1);
layout_button(layout1, button2, 0, 2);
layout_button(layout1, button3, 0, 3);
layout_layout(layout1, layout3, 0, 4);
layout_panel(layout1, panel, 0, 5);
layout_vmargin(layout1, 0, 10);
layout_vmargin(layout1, 1, 5);
layout_vmargin(layout1, 2, 5);
layout_vmargin(layout1, 3, 5);
layout_vmargin(layout1, 4, 10);

596 Chapter 28 - Hello 2D Collisions!

layout_margin(layout1, 10);
app>obj_panel = panel;
app>main_layout = layout1;
cell_dbind(layout_cell(layout1, 0, 1), App, bool_t, show_seg_pt);
cell_dbind(layout_cell(layout1, 0, 2), App, bool_t, show_triangles);
cell_dbind(layout_cell(layout1, 0, 3), App, bool_t, show_convex_parts);
layout_dbind(layout1, listener(app, i_OnOpt, App), App);
layout_dbind_obj(layout1, app, App);
return layout1;

}

/**/

static color_t i_color(const uint32_t collision, const bool_t mouse)
{

if (collision > 0)
{

if (collision == 1)
return color_rgb(255, 170, 0);

if (collision == 2)
return color_rgb(255, 127, 0);

return color_rgb(255, 42, 0);
}
else
{

if (mouse == TRUE)
return color_rgb(127, 85, 255);

return color_gray(120);
}

}

/**/

static void i_draw_point(DCtx *ctx, const V2Df *pt)
{

draw_v2df(ctx, ekFILL, pt, CENTER_RADIUS);
}

/**/

static void i_draw_cloud(DCtx *ctx, const Cloud *cloud)
{

arrst_foreach(pt, cloud>pnts, V2Df)
draw_circle(ctx, ekSTROKE, pt>x + cloud>center.x, pt>y + cloud>

↪→ center.y, 1);
arrst_end();

switch(cloud>type) {

597

case 0:
case 1:
case 2:
{

real32_t cx = cloud>bound.cir.c.x + cloud>center.x;
real32_t cy = cloud>bound.cir.c.y + cloud>center.y;
draw_circle(ctx, ekSTROKE, cx, cy, cloud>bound.cir.r);
draw_fill_color(ctx, kCOLOR_BLACK);
draw_circle(ctx, ekFILL, cx, cy, CENTER_RADIUS);
break;

}

case 3:
{

T2Df t2d;
V2Df center = obb2d_centerf(cloud>bound.obb);
t2d_movef(&t2d, kT2D_IDENTf, cloud>center.x, cloud>center.y);
draw_matrixf(ctx, &t2d);
draw_obb2df(ctx, ekSTROKE, cloud>bound.obb);
draw_fill_color(ctx, kCOLOR_BLACK);
draw_circle(ctx, ekFILL, center.x, center.y, CENTER_RADIUS);
draw_matrixf(ctx, kT2D_IDENTf);
break;

}

case 4:
{

T2Df t2d;
V2Df center = pol2d_centroidf(cloud>bound.poly);
t2d_movef(&t2d, kT2D_IDENTf, cloud>center.x, cloud>center.y);
draw_matrixf(ctx, &t2d);
draw_pol2df(ctx, ekSTROKE, cloud>bound.poly);
draw_fill_color(ctx, kCOLOR_BLACK);
draw_circle(ctx, ekFILL, center.x, center.y, CENTER_RADIUS);
draw_matrixf(ctx, kT2D_IDENTf);
break;

}

cassert_default();
}

}

/**/

static void i_draw_segment(DCtx *ctx, const Seg *seg)
{

draw_seg2df(ctx, &seg>seg);
}

/**/

598 Chapter 28 - Hello 2D Collisions!

static void i_draw_circle(DCtx *ctx, const Cir2Df *circle)
{

draw_cir2df(ctx, ekFILL, circle);
draw_fill_color(ctx, kCOLOR_BLACK);
draw_circle(ctx, ekFILL, circle>c.x, circle>c.y, CENTER_RADIUS);

}

/**/

static void i_draw_box(DCtx *ctx, const Box *box)
{

draw_box2df(ctx, ekFILL, &box>box);
draw_fill_color(ctx, kCOLOR_BLACK);
draw_circle(ctx, ekFILL, box>center.x, box>center.y, CENTER_RADIUS);

}

/**/

static void i_draw_obb(DCtx *ctx, const OBB *obb)
{

draw_obb2df(ctx, ekFILL, obb>obb);
draw_fill_color(ctx, kCOLOR_BLACK);
draw_circle(ctx, ekFILL, obb>center.x, obb>center.y, CENTER_RADIUS);

}

/**/

static void i_draw_tri(DCtx *ctx, const Tri *tri)
{

V2Df center = tri2d_centroidf(&tri>tri);
draw_tri2df(ctx, ekFILL, &tri>tri);
draw_fill_color(ctx, kCOLOR_BLACK);
draw_circle(ctx, ekFILL, center.x, center.y, CENTER_RADIUS);

}

/**/

static void i_draw_poly(DCtx *ctx, const Pol *pol)
{

V2Df center = pol2d_visual_centerf(pol>pol, .05f);
draw_pol2df(ctx, ekFILL, pol>pol);
draw_fill_color(ctx, kCOLOR_BLACK);
draw_circle(ctx, ekFILL, center.x, center.y, CENTER_RADIUS);

}

/**/

static void i_draw_poly_triangles(DCtx *ctx, const Pol2Df *poly)
{

ArrSt(Tri2Df) *triangles = pol2d_trianglesf(poly);
bool_t ccw = pol2d_ccwf(poly);

599

arrst_foreach(tri, triangles, Tri2Df)
cassert_unref(tri2d_ccwf(tri) == ccw, ccw);
draw_tri2df(ctx, ekSTROKE, tri);

arrst_end();
arrst_destroy(&triangles, NULL, Tri2Df);

}

/**/

static void i_draw_poly_convex_parts(DCtx *ctx, const Pol2Df *poly)
{

ArrPt(Pol2Df) *convex_polys = pol2d_convex_partitionf(poly);
bool_t ccw = pol2d_ccwf(poly);

arrpt_foreach(convex, convex_polys, Pol2Df)
cassert(pol2d_convexf(convex) == TRUE);
cassert_unref(pol2d_ccwf(convex) == ccw, ccw);
draw_pol2df(ctx, ekSTROKE, convex);

arrpt_end();

arrpt_destroy(&convex_polys, pol2d_destroyf, Pol2Df);
}

/**/

static void i_draw_bbox(DCtx *ctx, const Shape *shape)
{

Box2Df bbox = kBOX2D_NULLf;
real32_t p[2] = {2, 2};
switch(shape>type) {
case ekPOINT:
{

Cir2Df c = cir2df(shape>body.pnt.x, shape>body.pnt.y, CENTER_RADIUS);
box2d_add_circlef(&bbox, &c);
break;

}

case ekPOINT_CLOUD:
bbox = col2dhello_cloud_box(&shape>body.cloud);
break;

case ekSEGMENT:
box2d_addf(&bbox, &shape>body.seg.seg.p0);
box2d_addf(&bbox, &shape>body.seg.seg.p1);
break;

case ekCIRCLE:
box2d_add_circlef(&bbox, &shape>body.cir);
break;

600 Chapter 28 - Hello 2D Collisions!

case ekBOX:
box2d_mergef(&bbox, &shape>body.box.box);
break;

case ekOBB:
{

const V2Df *corners = obb2d_cornersf(shape>body.obb.obb);
box2d_addnf(&bbox, corners, 4);
break;

}

case ekTRIANGLE:
{

const V2Df *points = (const V2Df*)&shape>body.tri.tri;
box2d_addnf(&bbox, points, 3);
break;

}

case ekCONVEX_POLY:
case ekSIMPLE_POLY:
{

const V2Df *points = pol2d_pointsf(shape>body.pol.pol);
uint32_t n = pol2d_nf(shape>body.pol.pol);
box2d_addnf(&bbox, points, n);
break;

}

cassert_default();
}

draw_line_color(ctx, color_rgb(0, 128, 0));
draw_line_dash(ctx, p, 2);
draw_box2df(ctx, ekSTROKE, &bbox);
draw_line_dash(ctx, NULL, 0);

}

/**/

static void i_OnDraw(App *app, Event *e)
{

const EvDraw *p = event_params(e, EvDraw);
real32_t dash[2] = {2,2};
draw_clear(p>ctx, color_rgb(255, 212, 255));

arrst_foreach(shape, app>shapes, Shape)
draw_fill_color(p>ctx, i_color(shape>collisions, shape>mouse));
draw_line_color(p>ctx, i_color(shape>collisions, shape>mouse));

switch(shape>type) {
case ekPOINT:

i_draw_point(p>ctx, &shape>body.pnt);

601

break;

case ekPOINT_CLOUD:
i_draw_cloud(p>ctx, &shape>body.cloud);
break;

case ekSEGMENT:
i_draw_segment(p>ctx, &shape>body.seg);
break;

case ekCIRCLE:
i_draw_circle(p>ctx, &shape>body.cir);
break;

case ekBOX:
i_draw_box(p>ctx, &shape>body.box);
break;

case ekOBB:
i_draw_obb(p>ctx, &shape>body.obb);
break;

case ekTRIANGLE:
i_draw_tri(p>ctx, &shape>body.tri);
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

i_draw_poly(p>ctx, &shape>body.pol);
break;

cassert_default();
}

if (app>selshape == shape_i)
i_draw_bbox(p>ctx, shape);

arrst_end()

if (app>show_seg_pt == TRUE)
{

real32_t pattern[2] = {2, 2};
draw_line_dash(p>ctx, pattern, 2);
draw_line_color(p>ctx, kCOLOR_MAGENTA);
arrst_foreach(dist, app>dists, Dist)

draw_line(p>ctx, dist>p0.x, dist>p0.y, dist>p1.x, dist>p1.y);
arrst_end();

}

draw_line_width(p>ctx, 1);
draw_line_color(p>ctx, kCOLOR_BLACK);

602 Chapter 28 - Hello 2D Collisions!

draw_line_dash(p>ctx, dash, 2);

if (app>show_triangles == TRUE)
{

arrst_foreach(shape, app>shapes, Shape)
if (shape>type == ekCONVEX_POLY || shape>type == ekSIMPLE_POLY)

i_draw_poly_triangles(p>ctx, shape>body.pol.pol);
arrst_end();

}

if (app>show_triangles == FALSE && app>show_convex_parts == TRUE)
{

arrst_foreach(shape, app>shapes, Shape)
if (shape>type == ekSIMPLE_POLY)

i_draw_poly_convex_parts(p>ctx, shape>body.pol.pol);
arrst_end();

}

draw_line_dash(p>ctx, NULL, 2);
}

/**/

static void i_OnMove(App *app, Event *e)
{

const EvMouse *p = event_params(e, EvMouse);
View *view = event_sender(e, View);
col2dhello_mouse_collisions(app, p>x, p>y);
view_update(view);

}

/**/

static void i_get_shape_pos(const Shape *shape, V2Df *pos)
{

switch(shape>type) {
case ekPOINT:

*pos = shape>body.pnt;
break;

case ekPOINT_CLOUD:
*pos = shape>body.cloud.center;
break;

case ekSEGMENT:
*pos = shape>body.seg.center;
break;

case ekCIRCLE:
*pos = shape>body.cir.c;
break;

603

case ekBOX:
*pos = shape>body.box.center;
break;

case ekOBB:
*pos = shape>body.obb.center;
break;

case ekTRIANGLE:
*pos = shape>body.tri.center;
*pos = shape>body.tri.center;
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

*pos = shape>body.pol.center;
break;

cassert_default();
}

}

/**/

static void i_set_shape_pos(Shape *shape, const V2Df pos)
{

switch(shape>type) {
case ekPOINT:

shape>body.pnt = pos;
break;

case ekPOINT_CLOUD:
shape>body.cloud.center = pos;
break;

case ekSEGMENT:
shape>body.seg.center = pos;
col2dhello_update_seg(&shape>body.seg);
break;

case ekCIRCLE:
shape>body.cir.c = pos;
break;

case ekBOX:
shape>body.box.center = pos;
col2dhello_update_box(&shape>body.box);
break;

case ekOBB:

604 Chapter 28 - Hello 2D Collisions!

shape>body.obb.center = pos;
col2dhello_update_obb(&shape>body.obb);
break;

case ekTRIANGLE:
shape>body.tri.center = pos;
col2dhello_update_tri(&shape>body.tri);
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

shape>body.pol.center = pos;
col2dhello_update_pol(&shape>body.pol);
break;

cassert_default();
}

}

/**/

static void i_OnDown(App *app, Event *e)
{

uint32_t selshape = UINT32_MAX;
arrst_foreach(shape, app>shapes, Shape)

if (shape>mouse == TRUE)
{

selshape = shape_i;
break;

}
arrst_end();

if (selshape != app>selshape)
{

View *view = event_sender(e, View);
app>selshape = selshape;
col2dhello_dbind_shape(app);
view_update(view);

}

if (app>selshape != UINT32_MAX)
{

const EvMouse *p = event_params(e, EvMouse);
const Shape *shape = arrst_get(app>shapes, app>selshape, Shape);
app>mouse_pos.x = p>x;
app>mouse_pos.y = p>y;
i_get_shape_pos(shape, &app>obj_pos);

}
}

/**/

605

static void i_OnDrag(App *app, Event *e)
{

if (app>selshape != UINT32_MAX)
{

const EvMouse *p = event_params(e, EvMouse);
Shape *shape = arrst_get(app>shapes, app>selshape, Shape);
V2Df move = v2df(app>obj_pos.x + (p>x app>mouse_pos.x), app>

↪→ obj_pos.y + (p>y app>mouse_pos.y));
i_set_shape_pos(shape, move);
col2dhello_collisions(app);
view_update(app>view);

}
}

/**/

static Layout *i_layout(App *app)
{

Layout *layout1 = layout_create(2, 1);
Layout *layout2 = i_left_layout(app);
View *view = view_create();
view_size(view, s2df(640, 580));
view_OnDraw(view, listener(app, i_OnDraw, App));
view_OnMove(view, listener(app, i_OnMove, App));
view_OnDown(view, listener(app, i_OnDown, App));
view_OnDrag(view, listener(app, i_OnDrag, App));
layout_layout(layout1, layout2, 0, 0);
layout_view(layout1, view, 1, 0);
layout_valign(layout1, 0, 0, ekTOP);
layout_hexpand(layout1, 1);
app>view = view;
return layout1;

}

/**/

Window *col2dhello_window(App *app)
{

Panel *panel = panel_create();
Layout *layout = i_layout(app);
Window *window = window_create(ekWINDOW_STDRES);
panel_layout(panel, layout);
window_panel(window, panel);
return window;

}

/**/

void col2dhello_dbind_shape(App *app)
{

606 Chapter 28 - Hello 2D Collisions!

if (app>selshape != UINT32_MAX)
{

Shape *shape = arrst_get(app>shapes, app>selshape, Shape);
switch(shape>type) {
case ekPOINT:

panel_visible_layout(app>obj_panel, 1);
app>sel_area = 0;
break;

case ekPOINT_CLOUD:
layout_dbind_obj(app>cld_layout, &shape>body.cloud, Cloud);
panel_visible_layout(app>obj_panel, 2);
app>sel_area = 0;
break;

case ekSEGMENT:
layout_dbind_obj(app>seg_layout, &shape>body.seg, Seg);
panel_visible_layout(app>obj_panel, 3);
app>sel_area = 0;
break;

case ekCIRCLE:
layout_dbind_obj(app>cir_layout, &shape>body.cir, Cir2Df);
panel_visible_layout(app>obj_panel, 4);
app>sel_area = cir2d_areaf(&shape>body.cir);
break;

case ekBOX:
layout_dbind_obj(app>box_layout, &shape>body.box, Box);
panel_visible_layout(app>obj_panel, 5);
break;

case ekOBB:
layout_dbind_obj(app>obb_layout, &shape>body.obb, OBB);
panel_visible_layout(app>obj_panel, 6);
break;

case ekTRIANGLE:
layout_dbind_obj(app>tri_layout, &shape>body.tri, Tri);
panel_visible_layout(app>obj_panel, 7);
break;

case ekCONVEX_POLY:
case ekSIMPLE_POLY:

layout_dbind_obj(app>pol_layout, &shape>body.pol, Pol);
panel_visible_layout(app>obj_panel, 8);
break;

cassert_default();
}

}

607

else
{

layout_dbind_obj(app>cld_layout, NULL, Cloud);
layout_dbind_obj(app>seg_layout, NULL, Seg);
layout_dbind_obj(app>cir_layout, NULL, Cir2Df);
layout_dbind_obj(app>box_layout, NULL, Box);
layout_dbind_obj(app>obb_layout, NULL, OBB);
layout_dbind_obj(app>tri_layout, NULL, Tri);
layout_dbind_obj(app>pol_layout, NULL, Pol);
panel_visible_layout(app>obj_panel, 0);

}

col2dhello_update_gui(app);
}

608 Chapter 28 - Hello 2D Collisions!

29C
ha

pt
er

Drawing on an image

In this example we see how to generate vector graphics in two different contexts using
the same drawing code (Figure 29.1). On the left side we render directly into the window
through a View control. On the right side generate an image using different resolutions.
To show it we use a ImageView control configured to stretch the image in case it is smaller
than the control itself, which makes clear the loss of quality. The source code is in folder
/src/howto/drawimg of the SDK distribution.

Figure 29.1: 2D Contexts: Window (left), Image (right).

Listing 29.1: demo/drawimg/drawimg.c
/* Drawing on an image */

#include "res_drawimg.h"
#include <nappgui.h>

typedef struct _app_t App;

610 Chapter 29 - Drawing on an image

Figure 29.2: macOS version.

Figure 29.3: Linux version.

struct _app_t
{

Window *window;
Window *expwin;
Font *font;
View *view;
ImageView *iview;
uint32_t res;
real32_t angle;
real32_t scale;
String *exp_path;
codec_t exp_codec;
uint32_t exp_bpp;
bool_t exp_alpha;

611

};

static uint32_t i_WIDTH[4] = {600, 300, 150, 75};
static uint32_t i_HEIGHT[4] = {400, 200, 100, 50};
static real32_t i_SCALE[4] = {1, .5f, .25f, .125f};

/**/

static void i_draw(DCtx *ctx, const T2Df *t2d_global, const Font *font)
{

T2Df t2d_object;
V2Df triangle[] = { {472,0}, {600,144}, {344,144} };
const Image *image1 = gui_image(MONKEY_GIF);
const Image *image2 = gui_image(ZOMBIE_PNG);
t2d_scalef(&t2d_object, t2d_global, .5f, .5f);
draw_matrixf(ctx, &t2d_object);
draw_image(ctx, image1, 688, 288);
draw_line_color(ctx, color_rgb(255, 0, 0));
draw_line_width(ctx, 3);
draw_fill_color(ctx, color_rgb(0, 0, 255));
t2d_rotatef(&t2d_object, t2d_global, kBMATH_PIf / 4);
draw_matrixf(ctx, &t2d_object);
draw_rect(ctx, ekSKFILL, 0, 0, 320, 200);
draw_fill_color(ctx, color_rgb(0, 255, 0));
draw_matrixf(ctx, t2d_global);
draw_circle(ctx, ekSKFILL, 300, 200, 100);
draw_line_color(ctx, color_rgb(0, 0, 255));
draw_fill_color(ctx, color_rgb(255, 0, 0));
draw_polygon(ctx, ekSKFILL, triangle, 3);
t2d_scalef(&t2d_object, t2d_global, .7f, .7f);
draw_matrixf(ctx, &t2d_object);
draw_image(ctx, image2, 0, 0);
draw_font(ctx, font);
draw_matrixf(ctx, t2d_global);
draw_text_color(ctx, color_rgb(255, 0, 0));
draw_text(ctx, "Hello Drawings!", 200, 15);
draw_line_color(ctx, color_rgb(0, 128, 0));
draw_line(ctx, 150, 350, 330, 350);
draw_line_color(ctx, color_rgb(0, 0, 255));
draw_line(ctx, 100, 370, 330, 370);
draw_line_color(ctx, color_rgb(128, 0, 0));
draw_line(ctx, 20, 390, 330, 390);

}

/**/

static void i_OnDraw(App *app, Event *e)
{

T2Df t2d;
const EvDraw *p = event_params(e, EvDraw);
t2d_rotatef(&t2d, kT2D_IDENTf, app>angle);

612 Chapter 29 - Drawing on an image

t2d_scalef(&t2d, &t2d, app>scale, 1);
draw_clear(p>ctx, color_rgb(200, 200, 200));
i_draw(p>ctx, &t2d, app>font);

}

/**/

static void i_draw_img(App *app)
{

T2Df t2d;
DCtx *ctx = dctx_bitmap(i_WIDTH[app>res], i_HEIGHT[app>res], ekRGB24);
Image *image;
t2d_scalef(&t2d, kT2D_IDENTf, i_SCALE[app>res], i_SCALE[app>res]);
draw_clear(ctx, color_rgb(200, 200, 200));
i_draw(ctx, &t2d, app>font);
image = dctx_image(&ctx);
imageview_image(app>iview, image);
image_destroy(&image);

}

/**/

static void i_OnResolution(App *app, Event *e)
{

const EvButton *p = event_params(e, EvButton);
app>res = p>index;
i_draw_img(app);

}

/**/

static Layout *i_filename_layout(void)
{

Layout *layout = layout_create(2, 1);
Edit *edit = edit_create();
Button *button = button_push();
button_text(button, "Open");
layout_edit(layout, edit, 0, 0);
layout_button(layout, button, 1, 0);
return layout;

}

/**/

static Layout *i_bpp_layout(void)
{

Layout *layout = layout_create(1, 5);
Button *button1 = button_radio();
Button *button2 = button_radio();
Button *button3 = button_radio();
Button *button4 = button_radio();

613

Button *button5 = button_radio();
button_text(button1, "1 bpp (2 colors)");
button_text(button2, "2 bpp (4 colors)");
button_text(button3, "4 bpp (16 colors)");
button_text(button4, "8 bpp (32 colors)");
button_text(button5, "RGB (True color)");
layout_button(layout, button1, 0, 0);
layout_button(layout, button2, 0, 1);
layout_button(layout, button3, 0, 2);
layout_button(layout, button4, 0, 3);
layout_button(layout, button5, 0, 4);
return layout;

}

/**/

static void i_OnOk(App *app, Event *e)
{

window_stop_modal(app>expwin, 1);
unref(e);

}

/**/

static void i_OnCancel(App *app, Event *e)
{

window_stop_modal(app>expwin, 0);
unref(e);

}

/**/

static Window *i_export_window(App *app)
{

Window *window = window_create(ekWINDOW_TITLE | ekWINDOW_CLOSE);
Panel *panel = panel_create();
Layout *layout1 = layout_create(3, 4);
Layout *layout2 = i_filename_layout();
Layout *layout3 = i_bpp_layout();
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
PopUp *popup = popup_create();
Button *button1 = button_check();
Button *button2 = button_push();
Button *button3 = button_push();
label_text(label1, "File name:");
label_text(label2, "Format:");
label_text(label3, "Pixel Depth (bpp):");
label_text(label4, "Transparent background:");

614 Chapter 29 - Drawing on an image

button_text(button2, "Ok");
button_text(button3, "Cancel");
button_OnClick(button2, listener(app, i_OnOk, App));
button_OnClick(button3, listener(app, i_OnCancel, App));
layout_label(layout1, label1, 0, 0);
layout_label(layout1, label2, 0, 1);
layout_label(layout1, label3, 0, 2);
layout_label(layout1, label4, 0, 3);
layout_layout(layout1, layout2, 1, 0);
layout_popup(layout1, popup, 1, 1);
layout_layout(layout1, layout3, 1, 2);
layout_button(layout1, button1, 1, 3);
layout_button(layout1, button2, 2, 0);
layout_button(layout1, button3, 2, 1);
panel_layout(panel, layout1);
window_panel(window, panel);
window_title(window, "Image export");
return window;

}

/**/

static void i_export_png(void)
{

const uint32_t w = 640, h = 400;
uint32_t i, j, wi = w / 4;
Palette *palette = palette_create(4);
Pixbuf *pixbuf = pixbuf_create(w, h, ekINDEX2);
color_t *c = palette_colors(palette);
Image *image = NULL;
c[0] = color_rgba(255, 0, 0, 255);
c[1] = color_rgba(0, 255, 0, 170);
c[2] = color_rgba(0, 0, 255, 85);
c[3] = color_rgba(255, 255, 255, 1);
for (i = 0; i < w; ++i)
{

uint32_t idx = 3;
if (i < wi)

idx = 0;
else if (i < 2 * wi)

idx = 1;
else if (i < 3 * wi)

idx = 2;

for (j = 0; j < h; ++j)
pixbuf_set(pixbuf, i, j, idx);

}

image = image_from_pixbuf(pixbuf, palette);
image_codec(image, ekGIF);
image_to_file(image, "/home/fran/Desktop/export.gif", NULL);

615

pixbuf_destroy(&pixbuf);
palette_destroy(&palette);
image_destroy(&image);

{
Image *img = image_from_file("/home/fran/Desktop/country.jpg", NULL);
image_codec(img, ekGIF);
image_to_file(img, "/home/fran/Desktop/country.gif", NULL);
image_destroy(&img);

}
}

/**/

static void i_OnExport(App *app, Event *e)
{

V2Df p0, p1;
S2Df s0, s1;
uint32_t res = 0;

unref(e);
app>expwin = i_export_window(app);
p0 = window_get_origin(app>window);
s0 = window_get_size(app>window);
s1 = window_get_size(app>expwin);
p1 = v2df(p0.x + (s0.width s1.width) / 2, p0.y + (s0.height s1.height)

↪→ / 2);
window_origin(app>expwin, p1);
res = window_modal(app>expwin, app>window);

if (res == 1)
{

i_export_png();
}

window_destroy(&app>expwin);
}

/**/

static Layout *i_img_layout(App *app)
{

Layout *layout = layout_create(7, 1);
Label *label = label_create();
Button *button1 = button_radio();
Button *button2 = button_radio();
Button *button3 = button_radio();
Button *button4 = button_radio();
Button *button5 = button_push();
label_text(label, "Image context:");
button_text(button1, "600x400");
button_text(button2, "300x200");

616 Chapter 29 - Drawing on an image

button_text(button3, "150x100");
button_text(button4, "75x50");
button_text(button5, "Export...");
button_state(button1, ekGUI_ON);
button_OnClick(button1, listener(app, i_OnResolution, App));
button_OnClick(button5, listener(app, i_OnExport, App));
layout_label(layout, label, 0, 0);
layout_button(layout, button1, 1, 0);
layout_button(layout, button2, 2, 0);
layout_button(layout, button3, 3, 0);
layout_button(layout, button4, 4, 0);
layout_button(layout, button5, 6, 0);
layout_hmargin(layout, 0, 5);
layout_hmargin(layout, 1, 10);
layout_hmargin(layout, 2, 10);
layout_hmargin(layout, 3, 10);
layout_hexpand(layout, 5);
return layout;

}

/**/

static void i_OnAngle(App *app, Event *e)
{

const EvSlider *p = event_params(e, EvSlider);
app>angle = (p>pos .5f) * kBMATH_PIf;
view_update(app>view);

}

/**/

static void i_OnScale(App *app, Event *e)
{

const EvSlider *p = event_params(e, EvSlider);
app>scale = p>pos + .5f;
view_update(app>view);

}

/**/

static Layout *i_win_layout(App *app)
{

Layout *layout = layout_create(5, 1);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Slider *slider1 = slider_create();
Slider *slider2 = slider_create();
label_text(label1, "Window context: 600x400");
label_text(label2, "Angle:");
label_text(label3, "Scale:");

617

slider_value(slider1, .5f);
slider_value(slider2, .5f);
slider_OnMoved(slider1, listener(app, i_OnAngle, App));
slider_OnMoved(slider2, listener(app, i_OnScale, App));
layout_label(layout, label1, 0, 0);
layout_label(layout, label2, 1, 0);
layout_label(layout, label3, 3, 0);
layout_slider(layout, slider1, 2, 0);
layout_slider(layout, slider2, 4, 0);
layout_hmargin(layout, 0, 10);
layout_hmargin(layout, 2, 10);
layout_hexpand2(layout, 2, 4, .5f);
return layout;

}

/**/

static Panel *i_panel(App *app)
{

Panel *panel = panel_create();
Layout *layout1 = layout_create(2, 2);
Layout *layout2 = i_win_layout(app);
Layout *layout3 = i_img_layout(app);
View *view = view_create();
ImageView *iview = imageview_create();
view_size(view, s2df(600, 400));
imageview_size(iview, s2df(600, 400));
view_OnDraw(view, listener(app, i_OnDraw, App));
imageview_scale(iview, ekGUI_SCALE_ASPECT);
layout_layout(layout1, layout2, 0, 0);
layout_view(layout1, view, 0, 1);
layout_imageview(layout1, iview, 1, 1);
layout_layout(layout1, layout3, 1, 0);
layout_margin(layout1, 10);
layout_hmargin(layout1, 0, 5);
layout_vmargin(layout1, 0, 5);
panel_layout(panel, layout1);
app>view = view;
app>iview = iview;
return panel;

}

/**/

static void i_OnClose(App *app, Event *e)
{

osapp_finish();
unref(app);
unref(e);

}

618 Chapter 29 - Drawing on an image

/**/

static App *i_create(void)
{

App *app = heap_new0(App);
Panel *panel = i_panel(app);
gui_respack(res_drawimg_respack);
gui_language("");
app>window = window_create(ekWINDOW_STD);
app>font = font_system(25.f, 0);
app>res = 0;
app>angle = 0;
app>scale = 1;
i_draw_img(app);
window_panel(app>window, panel);
window_title(app>window, "Drawing on an image");
window_origin(app>window, v2df(500, 200));
window_OnClose(app>window, listener(app, i_OnClose, App));
window_show(app>window);
return app;

}

/**/

static void i_destroy(App **app)
{

window_destroy(&(*app)>window);
font_destroy(&(*app)>font);
heap_delete(app, App);

}

/**/

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

30C
ha

pt
er

Scroll drawings

The next application shows how to manage a very large drawing area, of which only a
small portion is visible. We will represent a grid of 2000x2000 cells, using a View control
with scroll bars. The objectives we are pursuing with this example are:

• Optimize the OnDraw event to draw only the visible area, avoiding launching unnec-
essary commands.

• Size scroll bars with view_content_size.

• Move the visible area using view_scroll_x, view_scroll_y.

• Get the visible area with view_viewport.

• Use of the mouse: To be able to click on a cell or highlight it when the cursor is
hover it.

• Using the keyboard: Allow the view to capture the focus and move the active cell
with the [Left], [Right], [Up] and [Down] keys. Keyboard navigation requires
this cell to always be visible.

Listing 30.1: demo/drawbig/drawbig.c
/* Drawing a big area with scrollbars */

#include <nappgui.h>

typedef struct _app_t App;

struct _app_t
{

Window *window;
View *view;
Label *label;
uint32_t col_id;
uint32_t row_id;

620 Chapter 30 - Scroll drawings

Figure 30.1: Windows version.

Figure 30.2: macOS version.

uint32_t margin;
uint32_t mouse_cell_x;
uint32_t mouse_cell_y;
uint32_t sel_cell_x;
uint32_t sel_cell_y;
bool_t focus;

};

static const uint32_t i_NUM_COLS = 2000;
static const uint32_t i_NUM_ROWS = 2000;

621

Figure 30.3: Linux version.

static const real32_t i_CELL_SIZE = 50;

/*
↪→
↪→ */

static void i_dbind(void)
{

dbind(App, uint32_t, col_id);
dbind(App, uint32_t, row_id);
dbind(App, uint32_t, margin);
dbind_range(App, uint32_t, col_id, 0, i_NUM_COLS 1);
dbind_range(App, uint32_t, row_id, 0, i_NUM_ROWS 1);
dbind_range(App, uint32_t, margin, 10, 50);

}

/*
↪→
↪→ */

static void i_content_size(App *app)
{

real32_t width = i_NUM_COLS * i_CELL_SIZE + (i_NUM_COLS + 1) * app>
↪→ margin;

real32_t height = i_NUM_ROWS * i_CELL_SIZE + (i_NUM_ROWS + 1) * app>
↪→ margin;

view_content_size(app>view, s2df((real32_t)width, (real32_t)height),
↪→ s2df(10, 10));

}

622 Chapter 30 - Scroll drawings

/*
↪→
↪→ */

static void i_scroll_to_cell(App *app)
{

real32_t xpos = app>col_id * i_CELL_SIZE + (app>col_id + 1) * app>
↪→ margin;

real32_t ypos = app>row_id * i_CELL_SIZE + (app>row_id + 1) * app>
↪→ margin;

xpos = 5;
ypos = 5;
view_scroll_x(app>view, xpos);
view_scroll_y(app>view, ypos);

}

/*
↪→
↪→ */

static void i_draw_clipped(App *app, DCtx *ctx, const real32_t x, const
↪→ real32_t y, const real32_t width, const real32_t height)

{
register uint32_t sti, edi;
register uint32_t stj, edj;
real32_t cellsize = i_CELL_SIZE + (real32_t)app>margin;
real32_t hcell = i_CELL_SIZE / 2;
register real32_t posx = 0;
register real32_t posy = 0;
register uint32_t i, j;

/* Calculate the visible cols */
sti = (uint32_t)bmath_floorf(x / cellsize);
edi = sti + (uint32_t)bmath_ceilf(width / cellsize) + 1;
if (edi > i_NUM_COLS)

edi = i_NUM_COLS;

/* Calculate the visible rows */
stj = (uint32_t)bmath_floorf(y / cellsize);
edj = stj + (uint32_t)bmath_ceilf(height / cellsize) + 1;
if (edj > i_NUM_ROWS)

edj = i_NUM_ROWS;

posy = (real32_t)app>margin + stj * cellsize;

{
char_t text[256];
bstd_sprintf(text, sizeof(text), "Real draw cols: [%d %d], rows:

↪→ [%d %d]", sti, edi, stj, edj);
label_text(app>label, text);

}

623

draw_fill_color(ctx, color_gray(240));
draw_rect(ctx, ekFILL, x, y, width, height);
draw_fill_color(ctx, color_gray(200));
draw_line_color(ctx, kCOLOR_BLUE);
draw_line_width(ctx, 1);
draw_text_align(ctx, ekCENTER, ekCENTER);
draw_text_halign(ctx, ekCENTER);

for (j = stj; j < edj; ++j)
{

posx = (real32_t)app>margin + sti * cellsize;
for (i = sti; i < edi; ++i)
{

char_t text[128];
bool_t special_cell = FALSE;

bstd_sprintf(text, sizeof(text), "%d\n%d", i, j);

if (app>sel_cell_x == i && app>sel_cell_y == j)
{

draw_line_width(ctx, 6);
if (app>focus == TRUE)

draw_line_color(ctx, kCOLOR_RED);
else

draw_line_color(ctx, color_gray(100));

special_cell = TRUE;
}
else if (app>mouse_cell_x == i && app>mouse_cell_y == j)
{

draw_line_width(ctx, 3);
draw_line_color(ctx, kCOLOR_BLUE);
special_cell = TRUE;

}

draw_rect(ctx, ekSKFILL, posx, posy, i_CELL_SIZE, i_CELL_SIZE)
↪→ ;

draw_text(ctx, text, posx + hcell, posy + hcell);

if (special_cell == TRUE)
{

draw_line_width(ctx, 1);
draw_line_color(ctx, kCOLOR_BLUE);

}

posx += cellsize;
}

posy += cellsize;
}

624 Chapter 30 - Scroll drawings

}

/*
↪→
↪→ */

static void i_OnDraw(App *app, Event *e)
{

const EvDraw *p = event_params(e, EvDraw);
i_draw_clipped(app, p>ctx, p>x, p>y, p>width, p>height);

}

/*
↪→
↪→ */

static void i_mouse_cell(App *app, const real32_t x, const real32_t y,
↪→ const uint32_t action)

{
real32_t cellsize = i_CELL_SIZE + (real32_t)app>margin;
uint32_t mx = (uint32_t)bmath_floorf(x / cellsize);
uint32_t my = (uint32_t)bmath_floorf(y / cellsize);
real32_t xmin = mx * cellsize + (real32_t)app>margin;
real32_t xmax = xmin + i_CELL_SIZE;
real32_t ymin = my * cellsize + (real32_t)app>margin;
real32_t ymax = ymin + i_CELL_SIZE;

if (x >= xmin && x <= xmax && y >= ymin && y <= ymax)
{

if (action == 0)
{

app>mouse_cell_x = mx;
app>mouse_cell_y = my;

}
else
{

app>sel_cell_x = mx;
app>sel_cell_y = my;

}
}
else
{

app>mouse_cell_x = UINT32_MAX;
app>mouse_cell_y = UINT32_MAX;

}

view_update(app>view);
}

/*
↪→

625

↪→ */

static void i_OnMove(App *app, Event *e)
{

const EvMouse *p = event_params(e, EvMouse);
i_mouse_cell(app, p>x, p>y, 0);

}

/*
↪→
↪→ */

static void i_OnUp(App *app, Event *e)
{

const EvMouse *p = event_params(e, EvMouse);
i_mouse_cell(app, p>x, p>y, 0);

}

/*
↪→
↪→ */

static void i_OnDown(App *app, Event *e)
{

const EvMouse *p = event_params(e, EvMouse);
i_mouse_cell(app, p>x, p>y, 1);

}

/*
↪→
↪→ */

static void i_OnFocus(App *app, Event *e)
{

const bool_t *p = event_params(e, bool_t);
app>focus = *p;
view_update(app>view);

}

/*
↪→
↪→ */

static void i_OnKeyDown(App *app, Event *e)
{

const EvKey *p = event_params(e, EvKey);
View *view = event_sender(e, View);
real32_t margin = (real32_t)app>margin;
real32_t cellsize = i_CELL_SIZE + margin;
V2Df scroll;
S2Df size;

626 Chapter 30 - Scroll drawings

view_viewport(view, &scroll, &size);

if (p>key == ekKEY_DOWN && app>sel_cell_y < i_NUM_ROWS 1)
{

real32_t ymin = (app>sel_cell_y + 1) * cellsize + margin;
ymin += i_CELL_SIZE;

if (scroll.y + size.height <= ymin)
{

view_scroll_y(view, ymin size.height + margin);
app>mouse_cell_x = UINT32_MAX;
app>mouse_cell_y = UINT32_MAX;

}

app>sel_cell_y += 1;
view_update(app>view);

}

if (p>key == ekKEY_UP && app>sel_cell_y > 0)
{

real32_t ymin = (app>sel_cell_y 1) * cellsize + (real32_t)app>
↪→ margin;

if (scroll.y >= ymin)
{

view_scroll_y(view, ymin margin);
app>mouse_cell_x = UINT32_MAX;
app>mouse_cell_y = UINT32_MAX;

}

app>sel_cell_y = 1;
view_update(app>view);

}

if (p>key == ekKEY_RIGHT && app>sel_cell_x < i_NUM_COLS 1)
{

real32_t xmin = (app>sel_cell_x + 1) * cellsize + margin;
xmin += i_CELL_SIZE;

if (scroll.x + size.width <= xmin)
{

view_scroll_x(view, xmin size.width + margin);
app>mouse_cell_x = UINT32_MAX;
app>mouse_cell_y = UINT32_MAX;

}

app>sel_cell_x += 1;
view_update(app>view);

}

627

if (p>key == ekKEY_LEFT && app>sel_cell_x > 0)
{

real32_t xmin = (app>sel_cell_x 1) * cellsize + (real32_t)app>
↪→ margin;

if (scroll.x >= xmin)
{

view_scroll_x(view, xmin margin);
app>mouse_cell_x = UINT32_MAX;
app>mouse_cell_y = UINT32_MAX;

}

app>sel_cell_x = 1;
view_update(app>view);

}
}

/*
↪→
↪→ */

static void i_OnDataChange(App *app, Event *e)
{

unref(e);
i_scroll_to_cell(app);
view_update(app>view);

}

/*
↪→
↪→ */

static Panel *i_panel(App *app)
{

Panel *panel = panel_create();
Layout *layout1 = layout_create(6, 1);
Layout *layout2 = layout_create(1, 3);
Label *label1 = label_create();
Label *label2 = label_create();
Label *label3 = label_create();
Label *label4 = label_create();
Edit *edit1 = edit_create();
Edit *edit2 = edit_create();
Slider *slider = slider_create();
View *view = view_scroll();
label_text(label1, "Goto column:");
label_text(label2, "Goto row:");
label_text(label3, "Margin:");
edit_align(edit1, ekRIGHT);
edit_align(edit2, ekRIGHT);
view_size(view, s2df(256, 256));

628 Chapter 30 - Scroll drawings

view_OnDraw(view, listener(app, i_OnDraw, App));
view_OnMove(view, listener(app, i_OnMove, App));
view_OnUp(view, listener(app, i_OnUp, App));
view_OnDown(view, listener(app, i_OnDown, App));
view_OnFocus(view, listener(app, i_OnFocus, App));
view_OnKeyDown(view, listener(app, i_OnKeyDown, App));
layout_label(layout1, label1, 0, 0);
layout_label(layout1, label2, 2, 0);
layout_label(layout1, label3, 4, 0);
layout_edit(layout1, edit1, 1, 0);
layout_edit(layout1, edit2, 3, 0);
layout_slider(layout1, slider, 5, 0);
layout_layout(layout2, layout1, 0, 0);
layout_label(layout2, label4, 0, 1);
layout_view(layout2, view, 0, 2);
layout_tabstop(layout2, 0, 2, TRUE);
layout_margin2(layout1, 0, 5);
layout_hmargin(layout1, 0, 5);
layout_hmargin(layout1, 1, 10);
layout_hmargin(layout1, 2, 5);
layout_hmargin(layout1, 3, 10);
layout_hmargin(layout1, 4, 5);
layout_vmargin(layout2, 0, 5);
layout_vmargin(layout2, 1, 5);
layout_halign(layout2, 0, 0, ekLEFT);
layout_halign(layout2, 0, 1, ekJUSTIFY);
layout_vexpand(layout2, 2);
cell_padding2(layout_cell(layout2, 0, 1), 0, 5);
cell_dbind(layout_cell(layout1, 1, 0), App, uint32_t, col_id);
cell_dbind(layout_cell(layout1, 3, 0), App, uint32_t, row_id);
cell_dbind(layout_cell(layout1, 5, 0), App, uint32_t, margin);
layout_dbind(layout2, listener(app, i_OnDataChange, App), App);
layout_dbind_obj(layout2, app, App);
panel_layout(panel, layout2);
app>view = view;
app>label = label4;
return panel;

}

/*
↪→
↪→ */

static void i_OnClose(App *app, Event *e)
{

osapp_finish();
unref(app);
unref(e);

}

/*

629

↪→
↪→ */

static App *i_create(void)
{

App *app = heap_new0(App);
Panel *panel = NULL;
i_dbind();
app>col_id = 50;
app>row_id = 50;
app>margin = 10;
app>mouse_cell_x = UINT32_MAX;
app>mouse_cell_y = UINT32_MAX;
app>sel_cell_x = app>col_id;
app>sel_cell_y = app>row_id;
app>focus = FALSE;
panel = i_panel(app);
app>window = window_create(ekWINDOW_STDRES);
i_content_size(app);
window_panel(app>window, panel);
window_title(app>window, "Big drawing area");
window_origin(app>window, v2df(500, 200));
window_OnClose(app>window, listener(app, i_OnClose, App));
window_show(app>window);
i_scroll_to_cell(app);
return app;

}

/*
↪→
↪→ */

static void i_destroy(App **app)
{

window_destroy(&(*app)>window);
heap_delete(app, App);

}

/*
↪→
↪→ */

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

630 Chapter 30 - Scroll drawings

31C
ha

pt
er

Images from URLs

In this demo we build a simple web image viewer. The program allows you to download
and view them through a list. The source code is in folder /src/howto/urlimg of the
SDK distribution.

Figure 31.1: Windows version

Listing 31.1: demo/urlimg/urlimg.c
/* Images from URL */

#include <inet/inet.h>
#include <inet/httpreq.h>
#include <nappgui.h>

632 Chapter 31 - Images from URLs

Figure 31.2: macOS version

Figure 31.3: Linux version

typedef struct _app_t App;

struct _app_t
{

Window *window;

633

ImageView *view;
uint32_t selected;
Label *imgname;
Label *imgsize;
Label *imgres;
Label *imgformat;

};

static const char_t *i_FILES[] = {
"anim_04_bat.gif",
"anim_04_cube.gif",
"anim_04_dragon.gif",
"anim_04_game.gif",
"anim_04_item.gif",
"anim_04_player.gif",
"static_05_cube.gif",
"home_01_gray.jpg",
"home_01_rgb.jpg",
"home_02_index02.png",
"home_02_index02c.png",
"home_02_index04.png",
"home_02_index04c.png",
"home_02_index16.png",
"home_02_index16c.png",
"home_02_index256.png",
"home_02_index256c.png",
"home_02_rgba.png",
"home_02_rgbac.png",
"sea_01_gray.jpg",
"sea_01_rgb.jpg",
"sea_02_index02.png",
"sea_02_index02c.png",
"sea_02_index04.png",
"sea_02_index04c.png",
"sea_02_index16.png",
"sea_02_index16c.png",
"sea_02_index256.png",
"sea_02_index256c.png",
"sea_02_rgb.png",
"sea_02_rgbc.png",
"sea_03_bmp_index02.bmp",
"sea_03_bmp_index04.bmp",
"sea_03_bmp_index16.bmp",
"sea_03_bmp_index256.bmp",
"sea_03_bmp_rgb.bmp" };

/**/

static __INLINE String *i_pixformat(const pixformat_t format, const uint32_t
↪→ ncolors)

{

634 Chapter 31 - Images from URLs

switch (format) {
case ekINDEX1:

return str_printf("Indexed 1bbp (%d colors)", ncolors);
case ekINDEX2:

return str_printf("Indexed 2bbp (%d colors)", ncolors);
case ekINDEX4:

return str_printf("Indexed 4bbp (%d colors)", ncolors);
case ekINDEX8:

return str_printf("Indexed 8bbp (%d colors)", ncolors);
case ekGRAY8:

return str_c("Gray8");
case ekRGB24:

return str_c("RGB24");
case ekRGBA32:

return str_c("RGBA32");
case ekFIMAGE:

break;
}
return str_c("Unknown");

}

/**/

static void i_download(App *app)
{

String *url = str_printf("http://test.nappgui.com/image_formats/%s",
↪→ i_FILES[app>selected]);

Stream *stm = http_dget(tc(url), NULL, NULL);
if (stm != NULL)
{

uint32_t ncolors = 0;
uint64_t start = stm_bytes_readed(stm);
Image *image = image_read(stm);
uint64_t end = stm_bytes_readed(stm);
uint32_t width = image_width(image);
uint32_t height = image_width(image);
pixformat_t format = image_format(image);
String *ssize = str_printf("%d bytes", (uint32_t)(end start));
String *sres = NULL;
String *sformat = NULL;

/* Full check of read/write pixels
We create again the same image, based on pixel info */
if (image_get_codec(image) != ekGIF)
{

Pixbuf *pixels = image_pixels(image, ekFIMAGE);
Image *nimage = image_from_pixbuf(pixels, NULL);
cassert(format == pixbuf_format(pixels));
pixbuf_destroy(&pixels);
image_destroy(&image);
image = nimage;

635

}

imageview_image(app>view, image);
sres = str_printf("%d x %d", width, height);
sformat = i_pixformat(format, ncolors);
label_text(app>imgname, i_FILES[app>selected]);
label_text(app>imgsize, tc(ssize));
label_text(app>imgres, tc(sres));
label_text(app>imgformat, tc(sformat));
stm_close(&stm);
image_destroy(&image);
str_destroy(&ssize);
str_destroy(&sres);
str_destroy(&sformat);

}

str_destroy(&url);
}

/**/

static Layout* i_label(const char_t *title, Label **info)
{

Layout *layout = layout_create(2, 1);
Label *label = label_create();
Font *font = font_system(font_regular_size(), ekFBOLD);
*info = label_create();
label_text(label, title);
label_font(label, font);
layout_label(layout, label, 0, 0);
layout_label(layout, *info, 1, 0);
layout_halign(layout, 1, 0, ekJUSTIFY);
layout_hmargin(layout, 0, 5);
layout_hexpand(layout, 1);
font_destroy(&font);
return layout;

}

/**/

static void i_add_files(ListBox *listbox)
{

register uint32_t i, n = sizeof(i_FILES) / sizeof(char_t*);
for (i = 0; i < n; ++i)

listbox_add_elem(listbox, i_FILES[i], NULL);
listbox_select(listbox, 0, TRUE);

}

/**/

static void i_OnSelect(App *app, Event *e)

636 Chapter 31 - Images from URLs

{
const EvButton *p = event_params(e, EvButton);
app>selected = p>index;
i_download(app);

}

/**/

static Panel *i_panel(App *app)
{

Panel *panel = panel_create();
Layout *layout1 = layout_create(2, 1);
Layout *layout2 = layout_create(1, 2);
Layout *layout3 = layout_create(1, 5);
Label *label = label_create();
ListBox *listbox = listbox_create();
ImageView *view = imageview_create();
app>view = view;
label_text(label, "Images");
i_add_files(listbox);
listbox_OnSelect(listbox, listener(app, i_OnSelect, App));
imageview_size(view, s2df(600, 400));
layout_label(layout2, label, 0, 0);
layout_listbox(layout2, listbox, 0, 1);
layout_imageview(layout3, view, 0, 0);
layout_layout(layout3, i_label("Image name:", &app>imgname), 0, 1);
layout_layout(layout3, i_label("Image size:", &app>imgsize), 0, 2);
layout_layout(layout3, i_label("Image dimensions:", &app>imgres), 0, 3);
layout_layout(layout3, i_label("Pixel format:", &app>imgformat), 0, 4);
layout_layout(layout1, layout2, 0, 0);
layout_layout(layout1, layout3, 1, 0);
layout_margin(layout1, 5);
layout_hmargin(layout1, 0, 5);
layout_vmargin(layout2, 0, 5);
layout_vmargin(layout3, 0, 5);
layout_vmargin(layout3, 1, 3);
layout_vmargin(layout3, 2, 3);
layout_hsize(layout1, 0, 200);
layout_vexpand(layout2, 1);
panel_layout(panel, layout1);
return panel;

}

/**/

static void i_OnClose(App *app, Event *e)
{

osapp_finish();
unref(app);
unref(e);

}

637

/**/

static App *i_create(void)
{

App *app = heap_new0(App);
Panel *panel = i_panel(app);
app>window = window_create(ekWINDOW_STD);
app>selected = 0;
inet_start();
i_download(app);
window_panel(app>window, panel);
window_title(app>window, "Images from URL 'http://test.nappgui.com/

↪→ image_formats'");
window_origin(app>window, v2df(500, 200));
window_OnClose(app>window, listener(app, i_OnClose, App));
window_show(app>window);
return app;

}

/**/

static void i_destroy(App **app)
{

window_destroy(&(*app)>window);
inet_finish();
heap_delete(app, App);

}

/**/

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

638 Chapter 31 - Images from URLs

32C
ha

pt
er

Color table

The choice of arbitrary RGB colors for use in graphic interfaces will not always be
consistent with the desktop theme of the target platform. In “Colors” (page 277) a se-
ries of “system” colors are defined and the possibility of creating alternative versions for
light or dark themes. This demo shows this repertoire depending on the platform where
the program runs. The source code is in folder /src/howto/colorview of the SDK
distribution.

Figure 32.1: Color table.

Listing 32.1: demo/colorview/colorview.c
/* Color View */

#include <nappgui.h>

typedef struct _viewitem_t ViewItem;
typedef struct _app_t App;

640 Chapter 32 - Color table

struct _viewitem_t
{

const char_t *name;
color_t color;

};

struct _app_t
{

Window *window;
View *view;
ArrSt(ViewItem) *items;
uint32_t num_cols;
Font *font;

};

DeclSt(ViewItem);
static const real32_t i_ITEM_WIDTH = 64;
static const real32_t i_VER_MARGIN = 10;
static const real32_t i_HOR_MARGIN = 15;

/**/

static void i_add(ArrSt(ViewItem) *items, const char_t *name, const color_t
↪→ color)

{
ViewItem *item = arrst_new(items, ViewItem);
item>name = name;
item>color = color;

}

/**/

static ArrSt(ViewItem)* i_colors(void)
{

ArrSt(ViewItem) *items = arrst_create(ViewItem);
i_add(items, "Label", gui_label_color());
i_add(items, "View", gui_view_color());
i_add(items, "Line", gui_line_color());
i_add(items, "Border", gui_border_color());
i_add(items, "Link", gui_link_color());
i_add(items, "Alt1", gui_alt_color(color_rgb(192, 255, 255), color_rgb(48,

↪→ 112, 112)));
i_add(items, "Alt2", gui_alt_color(color_rgb(255, 192, 255), color_rgb(128,

↪→ 48, 112)));
i_add(items, "Alt3", gui_alt_color(color_rgb(255, 255, 192), color_rgb(112,

↪→ 112, 48)));
i_add(items, "Black", kCOLOR_BLACK);
i_add(items, "White", kCOLOR_WHITE);
i_add(items, "Red", kCOLOR_RED);
i_add(items, "Green", kCOLOR_GREEN);
i_add(items, "Blue", kCOLOR_BLUE);

641

i_add(items, "Yellow", kCOLOR_YELLOW);
i_add(items, "Cyan", kCOLOR_CYAN);
i_add(items, "Magenta", kCOLOR_MAGENTA);
i_add(items, "Silver", color_rgb(192, 192, 192));
i_add(items, "Gray", color_rgb(128, 128, 128));
i_add(items, "Maroon", color_rgb(128, 0, 0));
i_add(items, "Olive", color_rgb(128, 128, 0));
i_add(items, "DGreen", color_rgb(0, 128, 0));
i_add(items, "Teal", color_rgb(0, 128, 128));
i_add(items, "Navy", color_rgb(0, 0, 128));
i_add(items, "Purple", color_rgb(128, 0, 128));
return items;

}

/**/

static void i_draw(DCtx *ctx, real32_t x, real32_t y, real32_t width, real32_t
↪→ height, const ViewItem *item)

{
real32_t cx1 = x + width / 2;
real32_t cx2 = x + (width i_ITEM_WIDTH) / 2;
real32_t cy = y + height i_ITEM_WIDTH;
draw_fill_color(ctx, item>color);
draw_rect(ctx, ekFILL, cx2, cy, i_ITEM_WIDTH, i_ITEM_WIDTH);
draw_text_color(ctx, gui_label_color());
draw_text(ctx, item>name, cx1, cy);

}

/**/

static void i_OnDraw(App *app, Event *e)
{

const EvDraw *p = event_params(e, EvDraw);
real32_t cwidth = (p>width 2 * i_HOR_MARGIN) / app>num_cols;
real32_t cheight = i_ITEM_WIDTH + font_height(app>font);

draw_font(p>ctx, app>font);
draw_text_align(p>ctx, ekCENTER, ekBOTTOM);

arrst_foreach(item, app>items, ViewItem)
uint32_t row = item_i / app>num_cols;
uint32_t col = item_i % app>num_cols;
real32_t x = i_HOR_MARGIN + col * cwidth;
real32_t y = row * cheight + (row + 1) * i_VER_MARGIN;
i_draw(p>ctx, x, y, cwidth, cheight, item);

arrst_end();
}

/**/

static void i_OnSize(App *app, Event *e)

642 Chapter 32 - Color table

{
const EvSize *p = event_params(e, EvSize);
View *view = event_sender(e, View);
real32_t minwidth = i_ITEM_WIDTH + 2 * i_HOR_MARGIN;
real32_t cwidth = 0, cheight = 0;

cwidth = p>width;

if (cwidth < minwidth)
{

cwidth = minwidth;
app>num_cols = 1;

}
else
{

uint32_t n, num_rows;
app>num_cols = (uint32_t)((cwidth i_HOR_MARGIN) / (i_ITEM_WIDTH +

↪→ i_HOR_MARGIN));
n = arrst_size(app>items, ViewItem);
num_rows = (n / app>num_cols);
if ((n % app>num_cols) > 0)

num_rows += 1;

cheight = num_rows * (i_ITEM_WIDTH + font_height(app>font) +
↪→ i_VER_MARGIN) + i_VER_MARGIN;

if (cheight < p>height)
cheight = p>height;

}

view_content_size(view, s2df(cwidth, cheight), s2df(1, 1));
view_update(view);

}

/**/

static Panel *i_panel(App *app)
{

Panel *panel = panel_create();
Layout *layout = layout_create(1, 1);
View *view = view_scroll();
view_size(view, s2df(300, 200));
view_OnDraw(view, listener(app, i_OnDraw, App));
view_OnSize(view, listener(app, i_OnSize, App));
layout_view(layout, view, 0, 0);
panel_layout(panel, layout);
return panel;

}

/**/

static void i_OnClose(App *app, Event *e)

643

{
osapp_finish();
unref(app);
unref(e);

}

/**/

static App *i_create(void)
{

App *app = heap_new0(App);
Panel *panel = i_panel(app);
app>items = i_colors();
app>font = font_system(font_regular_size(), 0);
app>window = window_create(ekWINDOW_STDRES);
window_panel(app>window, panel);
window_title(app>window, "Color View");
window_origin(app>window, v2df(500, 200));
window_size(app>window, s2df(500, 300));
window_OnClose(app>window, listener(app, i_OnClose, App));
window_show(app>window);
return app;

}

/**/

static void i_destroy(App **app)
{

arrst_destroy(&(*app)>items, NULL, ViewItem);
window_destroy(&(*app)>window);
font_destroy((&(*app)>font));
heap_delete(app, App);

}

/**/

#include "osmain.h"
osmain(i_create, i_destroy, "", App)

644 Chapter 32 - Color table

33C
ha

pt
er

Read/Write Json

Listing 33.1: demo/htjson/htjson.c
/* JSON parsing examples */

#include "res_htjson.h"
#include <draw2d/draw2dall.h>
#include <inet/json.h>

/**/

/* C structs that map a Json object */
typedef struct _product_t Product;
typedef struct _products_t Products;

struct _product_t
{

String *description;
real32_t price;

};

struct _products_t
{

uint32_t size;
ArrSt(Product) *data;

};

DeclSt(Product);

/**/

static Stream* i_stm_from_json(const char_t* json_data)
{

return stm_from_block((const byte_t*)json_data, str_len_c(json_data));
}

646 Chapter 33 - Read/Write Json

/**/

int main(int argc, char *argv[])
{

unref(argc);
unref(argv);
draw2d_start();

/* Parsing a Json boolean */
{

Stream *stm = i_stm_from_json("true");
bool_t *json = json_read(stm, NULL, bool_t);
bstd_printf("bool_t from Json: %d\n", *json);
json_destroy(&json, bool_t);
stm_close(&stm);

}

/* Parsing a Json unsigned int */
{

Stream *stm = i_stm_from_json("6654");
uint16_t *json = json_read(stm, NULL, uint16_t);
bstd_printf("uint16_t from Json: %d\n", *json);
json_destroy(&json, uint16_t);
stm_close(&stm);

}

/* Parsing a Json signed int */
{

Stream *stm = i_stm_from_json("567");
int16_t *json = json_read(stm, NULL, int16_t);
bstd_printf("int16_t from Json: %d\n", *json);
json_destroy(&json, int16_t);
stm_close(&stm);

}

/* Parsing a Json real */
{

Stream *stm = i_stm_from_json("456.45");
real32_t *json = json_read(stm, NULL, real32_t);
bstd_printf("real32_t from Json: %.3f\n", *json);
json_destroy(&json, real32_t);
stm_close(&stm);

}

/* Parsing a Json string */
{

Stream *stm = i_stm_from_json("\"Hello World\"");
String *json = json_read(stm, NULL, String);
bstd_printf("String from Json: %s\n", tc(json));
json_destroy(&json, String);
stm_close(&stm);

647

}

/* Parsing a Json b64 encoded image */
{

uint32_t size;
ResPack *pack = res_htjson_respack("");
const byte_t *data = respack_file(pack, JSON_B64_IMAGE_TXT, &size);
Stream *stm = stm_from_block(data, size);
Image *json = json_read(stm, NULL, Image);
uint32_t width = image_width(json);
uint32_t height = image_height(json);
bstd_printf("Image from Json: width: %d height: %d\n", width, height);
json_destroy(&json, Image);
stm_close(&stm);
respack_destroy(&pack);

}

/* Parsing a Json int array */
{

Stream *stm = i_stm_from_json("[321, 12, 8943, 228, 220, 347]");
ArrSt(int16_t) *json = json_read(stm, NULL, ArrSt(int16_t));
bstd_printf("ArrSt(int16_t) from Json: ");
arrst_foreach(id, json, int16_t)

bstd_printf("%d ", *id);
arrst_end()
bstd_printf("\n");
json_destroy(&json, ArrSt(int16_t));
stm_close(&stm);

}

/* Parsing a Json String array */
{

Stream *stm = i_stm_from_json("[\"Red\", \"Green\", \"Blue\", \"Yellow
↪→ \", \"Orange\"]");

ArrPt(String) *json = json_read(stm, NULL, ArrPt(String));
bstd_printf("ArrPt(String) from Json: ");
arrpt_foreach(str, json, String)

bstd_printf("%s ", tc(str));
arrpt_end()
bstd_printf("\n");
json_destroy(&json, ArrPt(String));
stm_close(&stm);

}

/* Data binding (only once time in application) */
/* This allows the Json parser to know the structure of the objects */
dbind(Product, String*, description);
dbind(Product, real32_t, price);
dbind(Products, uint32_t, size);
dbind(Products, ArrSt(Product)*, data);

648 Chapter 33 - Read/Write Json

/* Parsing a Json object */
{

static const char_t *JSON_OBJECT = "\
{\

\"size\" : 3,\
\"data\" : [\

{\
\"description\" : \"Intel i77700K\",\
\"price\" : 329.99\

},\
{\

\"description\" : \"Ryzen51600\",\
\"price\" : 194.99\

},\
{\

\"description\" : \"GTX1060\",\
\"price\" : 449.99\

}\
]\

}";

Stream *stm = i_stm_from_json(JSON_OBJECT);
Products *json = json_read(stm, NULL, Products);
bstd_printf("Products object from Json: size %d\n", json>size);
arrst_foreach(elem, json>data, Product)

bstd_printf(" Product: %s Price %.2f\n", tc(elem>description),
↪→ elem>price);

arrst_end()
bstd_printf("\n");
json_destroy(&json, Products);
stm_close(&stm);

}

/* Writting data/objects to JSon */
{

Stream *stm = stm_memory(1024);

/* Write boolean as Json */
{

bool_t data_bool = TRUE;
stm_writef(stm, "Json from bool_t: ");
json_write(stm, &data_bool, NULL, bool_t);
stm_writef(stm, "\n");

}

/* Write unsigned integer as Json */
{

uint16_t data_uint = 6654;
stm_writef(stm, "Json from uint16_t: ");
json_write(stm, &data_uint, NULL, uint16_t);
stm_writef(stm, "\n");

649

}

/* Write integer as Json */
{

int16_t data_int = 567;
stm_writef(stm, "Json from int16_t: ");
json_write(stm, &data_int, NULL, int16_t);
stm_writef(stm, "\n");

}

/* Write real32_t as Json */
{

real32_t data_real = 456.45f;
stm_writef(stm, "Json from real32_t: ");
json_write(stm, &data_real, NULL, real32_t);
stm_writef(stm, "\n");

}

/* Write String as Json */
{

String *data_str = str_c("Hello World");
stm_writef(stm, "Json from String: ");
json_write(stm, data_str, NULL, String);
stm_writef(stm, "\n");
str_destroy(&data_str);

}

/* Write Image as Json (string b64) */
{

Pixbuf *pixbuf = pixbuf_create(2, 2, ekGRAY8);
Image *data_image = NULL;
bmem_set1(pixbuf_data(pixbuf), 2 * 2, 128);
data_image = image_from_pixbuf(pixbuf, NULL);
stm_writef(stm, "Json from Image: ");
json_write(stm, data_image, NULL, Image);
stm_writef(stm, "\n");
pixbuf_destroy(&pixbuf);
image_destroy(&data_image);

}

/* Write int array as Json */
{

ArrSt(int16_t) *array = arrst_create(int16_t);
arrst_append(array, 321, int16_t);
arrst_append(array, 12, int16_t);
arrst_append(array, 8943, int16_t);
arrst_append(array, 228, int16_t);
arrst_append(array, 220, int16_t);
arrst_append(array, 347, int16_t);
stm_writef(stm, "Json from int array: ");
json_write(stm, array, NULL, ArrSt(int16_t));

650 Chapter 33 - Read/Write Json

stm_writef(stm, "\n");
arrst_destroy(&array, NULL, int16_t);

}

/* Write string array as Json */
{

ArrPt(String) *array = arrpt_create(String);
arrpt_append(array, str_c("Red"), String);
arrpt_append(array, str_c("Green"), String);
arrpt_append(array, str_c("Blue"), String);
arrpt_append(array, str_c("Yellow"), String);
arrpt_append(array, str_c("Orange"), String);
stm_writef(stm, "Json from string array: ");
json_write(stm, array, NULL, ArrPt(String));
stm_writef(stm, "\n");
arrpt_destroy(&array, str_destroy, String);

}

/* Write object as Json */
{

Products *products = heap_new(Products);
products>size = 3;
products>data = arrst_create(Product);

{
Product *product = arrst_new(products>data, Product);
product>description = str_c("Intel i77700K");
product>price = 329.99f;

}

{
Product *product = arrst_new(products>data, Product);
product>description = str_c("Ryzen51600");
product>price = 194.99f;

}

{
Product *product = arrst_new(products>data, Product);
product>description = str_c("GTX1060");
product>price = 449.99f;

}

stm_writef(stm, "Json from object: ");
json_write(stm, products, NULL, Products);
stm_writef(stm, "\n");
dbind_destroy(&products, Products);

}

{
String *str = stm_str(stm);
bstd_printf("%s\n", tc(str));

651

str_destroy(&str);
}

stm_close(&stm);
}

draw2d_finish();
return 0;

}

Program output.
bool_t from Json: 1
uint16_t from Json: 6654
int16_t from Json: 567
real32_t from Json: 456.450
String from Json: Hello World
Image from Json: width: 269 height: 400
ArrSt(int16_t) from Json: 321 12 8943 228 220 347
ArrPt(String) from Json: Red Green Blue Yellow Orange
Products object from Json: size 3

Product: Intel i77700K Price 329.99
Product: Ryzen51600 Price 194.99
Product: GTX1060 Price 449.99

Json from bool_t: true
Json from uint16_t: 6654
Json from int16_t: 567
Json from real32_t: 456.450012
Json from String: "Hello World"
Json from Image: "iVBORw0KGgoAAAANSUhEUgAAAAI..."
Json from int array: [321, 12, 8943, 228, 220, 347]
Json from string array: ["Red", "Green", "Blue", "Yellow", "Orange"]
Json from object: {"size" : 3, "data" : [{"description" : "Intel i77700K", "

↪→ price" : 329.989990 }, {"description" : "Ryzen51600", "price" :
↪→ 194.990005 }, {"description" : "GTX1060", "price" : 449.989990 }] }

652 Chapter 33 - Read/Write Json

34C
ha

pt
er

Alternative to STL

The C++ Standard Template Library provides generic containers and algorithms as
part of the language. The problem is that they cannot be used from “pure” C code, so
NAppGUI provides an implementation of Arrays and Set at least as efficient as those of
STL.

Result in i7-4970k Win10 x64
NAppGUI Containers vs STL.
 Created 2000000 elements of 328 bytes
 Starting...
 Add to ArrSt(Product) and sort: 2.160294
 Add to vector<Product> and sort: 2.499203
 Add to ArrPt(Product) and sort: 0.697777
 Add to vector<Product*> and sort: 0.541828
 Add to SetSt(Product): 2.386245
 Add to set<Product>: 2.533197
 Add to SetPt(Product): 2.861091
 Add to set<Product*>: 2.919082

Listing 34.1: demo/stlcmp/stlcmp.cpp
/* NAppGUI containers VS STL */

#include <core/coreall.h>
#include <core/arrst.hpp>
#include <core/arrpt.hpp>
#include <core/setst.hpp>
#include <core/setpt.hpp>
#include <sewer/nowarn.hxx>
#include <vector>
#include <set>
#include <algorithm>
#include <sewer/warn.hxx>

using namespace std;

654 Chapter 34 - Alternative to STL

struct Product
{

uint32_t id;
char_t code[64];
char_t description[256];
real32_t price;

};

DeclSt(Product);
DeclPt(Product);

/**/

static void i_init(Product *product, uint32_t id, real32_t price)
{

cassert_no_null(product);
product>id = id;
bstd_sprintf(product>code, 64, "Code[%d]", id);
bstd_sprintf(product>description, 256, "Description[%d]", id);
product>price = price;

}

/**/

static Product *i_create(uint32_t id, real32_t price)
{

Product *product = heap_new(Product);
i_init(product, id, price);
return product;

}

/**/

static int i_compare(const Product *p1, const Product *p2)
{

return (int)p1>id (int)p2>id;
}

/**/

struct i_stl_compare
{

inline bool operator()(const Product &lhs, const Product &rhs) const
{ return lhs.id < rhs.id; }

inline bool operator()(const Product* lhs, const Product* rhs) const
{ return lhs>id < rhs>id; }

};

655

/**/

// All stl destructors should be called before 'core_finish',
// because this function makes a Debug memory dump.
static void i_core_finish(void)
{

core_finish();
}

/**/

int main(int argc, char *argv[])
{

bool_t err;
uint32_t n;
uint32_t *ids;
Product *products;
Product **pproducts;
ArrSt(Product) *arrst;
ArrPt(Product) *arrpt;
SetSt(Product) *setst;
SetPt(Product) *setpt;
vector<Product> stl_arrst;
vector<Product*> stl_arrpt;
set<Product,i_stl_compare> stl_setst;
set<Product*,i_stl_compare> stl_setpt;
Clock *clock;
real64_t t;

core_start();
atexit(i_core_finish);

if (argc == 2)
{

n = str_to_u32(argv[1], 10, &err);
if (err == TRUE)
{

log_printf("Use: stlcmp [size].");
return 0;

}
}
else
{

n = 2000000;
}

bstd_printf("NAppGUI Containers vs STL.\n");

// Create the elements. This time is out of the test
// The elements will be shuffled randomly
ids = heap_new_n(n, uint32_t);

656 Chapter 34 - Alternative to STL

for (uint32_t i = 0; i < n; ++i)
ids[i] = i;

bmath_rand_seed(526);
bmem_shuffle_n(ids, n, uint32_t);

products = heap_new_n(n, Product);
pproducts = heap_new_n(n, Product*);
for (uint32_t i = 0; i < n; ++i)
{

i_init(&products[i], ids[i], 100.f + i);
pproducts[i] = i_create(ids[i], 100.f + i);

}

arrst = arrst_create(Product);
arrpt = arrpt_create(Product);
setst = setst_create(i_compare, Product);
setpt = setpt_create(i_compare, Product);

clock = clock_create(0.);
bstd_printf(" Created %d elements of %lu bytes\n", n, sizeof(Product));
bstd_printf(" Starting...\n");

// NAppGUI struct array
clock_reset(clock);
for (uint32_t i = 0; i < n; ++i)
{

Product *p = arrst_new(arrst, Product);
*p = products[i];

}
arrst_sort(arrst, i_compare, Product);
t = clock_elapsed(clock);
bstd_printf(" Add to ArrSt(Product) and sort: %.6f\n", t);

// STL struct array
clock_reset(clock);
for (uint32_t i = 0; i < n; ++i)

stl_arrst.push_back(products[i]);
sort(stl_arrst.begin(), stl_arrst.end(), i_stl_compare());
t = clock_elapsed(clock);
bstd_printf(" Add to vector<Product> and sort: %.6f\n", t);

// NAppGUI pointer array
clock_reset(clock);
for (uint32_t i = 0; i < n; ++i)

arrpt_append(arrpt, pproducts[i], Product);
arrpt_sort(arrpt, i_compare, Product);
t = clock_elapsed(clock);
bstd_printf(" Add to ArrPt(Product) and sort: %.6f\n", t);

// STL pointer array
clock_reset(clock);

657

for (uint32_t i = 0; i < n; ++i)
stl_arrpt.push_back(pproducts[i]);

sort(stl_arrpt.begin(), stl_arrpt.end(), i_stl_compare());
t = clock_elapsed(clock);
bstd_printf(" Add to vector<Product*> and sort: %.6f\n", t);

// NAppGUI struct set
clock_reset(clock);
for (uint32_t i = 0; i < n; ++i)
{

// TODO: review 'setst_insert'. The copy makes the insertion slower
Product *product = setst_insert(setst, &products[i], Product);
*product = products[i];

}
t = clock_elapsed(clock);
bstd_printf(" Add to SetSt(Product): %.6f\n", t);

// STL struct set
clock_reset(clock);
for (uint32_t i = 0; i < n; ++i)

stl_setst.insert(products[i]);
t = clock_elapsed(clock);
bstd_printf(" Add to set<Product>: %.6f\n", t);

// NAppGUI pointer set
clock_reset(clock);
for (uint32_t i = 0; i < n; ++i)

setpt_insert(setpt, pproducts[i], Product);
t = clock_elapsed(clock);
bstd_printf(" Add to SetPt(Product): %.6f\n", t);

// STL pointer set
clock_reset(clock);
for (uint32_t i = 0; i < n; ++i)

stl_setpt.insert(pproducts[i]);
t = clock_elapsed(clock);
bstd_printf(" Add to set<Product*>: %.6f\n", t);

// Verify the sorting correctness
clock_reset(clock);
arrst_foreach(product, arrst, Product)

if (product>id != product_i)
bstd_printf(" Sorting error!!!!!\n");

arrst_end();
t = clock_elapsed(clock);
bstd_printf(" Loop ArrSt(Product): %.6f\n", t);

clock_reset(clock);
for (size_t i = 0; i < stl_arrst.size(); ++i)
{

if (i != stl_arrst[i].id)

658 Chapter 34 - Alternative to STL

bstd_printf(" Sorting error!!!!!\n");
}
t = clock_elapsed(clock);
bstd_printf(" Loop vector<Product>: %.6f\n", t);

clock_reset(clock);
arrpt_foreach(product, arrpt, Product)

if (product>id != product_i)
bstd_printf(" Sorting error!!!!!\n");

arrpt_end();
t = clock_elapsed(clock);
bstd_printf(" Loop ArrPt(Product): %.6f\n", t);

clock_reset(clock);
for (size_t i = 0; i < stl_arrpt.size(); ++i)
{

if (i != stl_arrpt[i]>id)
bstd_printf(" Sorting error!!!!!\n");

}
t = clock_elapsed(clock);
bstd_printf(" Loop vector<Product*>: %.6f\n", t);

clock_reset(clock);
setst_foreach(product, setst, Product)

if (product>id != product_i)
bstd_printf(" Sorting error!!!!!\n");

setst_fornext(product, setst, Product);
t = clock_elapsed(clock);
bstd_printf(" Loop SetSt<Product>: %.6f\n", t);

uint32_t ic = 0;
clock_reset(clock);
for (set<Product,i_stl_compare>::iterator i = stl_setst.begin(); i !=

↪→ stl_setst.end(); ++i)
{

if (i>id != ic++)
bstd_printf(" Sorting error!!!!!\n");

}
t = clock_elapsed(clock);
bstd_printf(" Loop set<Product>: %.6f\n", t);

clock_reset(clock);
setpt_foreach(product, setpt, Product)

if (product>id != product_i)
bstd_printf(" Sorting error!!!!!\n");

setpt_fornext(product, setpt, Product);
t = clock_elapsed(clock);
bstd_printf(" Loop SetPt<Product>: %.6f\n", t);

ic = 0;
clock_reset(clock);

659

for (set<Product*,i_stl_compare>::iterator i = stl_setpt.begin(); i !=
↪→ stl_setpt.end(); ++i)

{
if ((*i)>id != ic++)

bstd_printf(" Sorting error!!!!!\n");
}
t = clock_elapsed(clock);
bstd_printf(" Loop set<Product*>: %.6f\n", t);

clock_destroy(&clock);
arrst_destroy(&arrst, NULL, Product);
arrpt_destroy(&arrpt, NULL, Product);
setst_destroy(&setst, NULL, Product);
setpt_destroy(&setpt, NULL, Product);

for (uint32_t i = 0; i < n; ++i)
heap_delete(&pproducts[i], Product);

heap_delete_n(&products, n, Product);
heap_delete_n(&pproducts, n, Product*);
heap_delete_n(&ids, n, uint32_t);

return 0;
}

660 Chapter 34 - Alternative to STL

Part 4

Library reference

661

35C
ha

pt
er

Sewer library

35.1. Types and Constants

int8_t
8-bit signed integer. It can represent a value between INT8_MIN and INT8_MAX.

int16_t
16-bit signed integer. It can represent a value between INT16_MIN and INT16_MAX.

int32_t
32-bit signed integer. It can represent a value between INT32_MIN and INT32_MAX.

int64_t
64-bit signed integer. It can represent a value between INT64_MIN and INT64_MAX.

uint8_t
8-bit unsigned integer. It can represent a value between 0 and UINT8_MAX.

uint16_t
16-bit unsigned integer. It can represent a value between 0 and UINT16_MAX.

uint32_t
32-bit unsigned integer. It can represent a value between 0 and UINT32_MAX.

663

664 Chapter 35 - Sewer library

uint64_t
64-bit unsigned integer. It can represent a value between 0 and UINT64_MAX.

char_t
8-bit character type (Unicode). A single character may need 1, 2, 3 or 4 elements (bytes),
depending on “UTF encodingsUTF encodings” (page 157).

byte_t
8-bit type to store generic memory blocks.

bool_t
8-bit boolean. Only two values are allowed TRUE (1) and FALSE (0).

real
32 or 64-bit floating point number.

real32_t
32-bit floating point number. The C float type.

real64_t
64-bit floating point number. The C double type.

TRUE
True.
const bool_t TRUE = 1;

FALSE
False.
const bool_t FALSE = 0;

35.1 - Types and Constants 665

NULL
Null pointer.
const void* NULL = 0;

INT8_MIN
-128.
const int8_t INT8_MIN = 0x80;

INT8_MAX
127.
const int8_t INT8_MAX = 0x7F;

INT16_MIN
-32.768.
const int16_t INT16_MIN = 0x8000;

INT16_MAX
32.767.
const int16_t INT16_MAX = 0x7FFF;

INT32_MIN
-2.147.483.648.
const int32_t INT32_MIN = 0x80000000;

INT32_MAX
2.147.483.647.
const int32_t INT32_MAX = 0x7FFFFFFF;

666 Chapter 35 - Sewer library

INT64_MIN
-9.223.372.036.854.775.808.
const int64_t INT64_MIN = 0x8000000000000000;

INT64_MAX
9.223.372.036.854.775.807.
const int64_t INT64_MAX = 0x7FFFFFFFFFFFFFFF;

UINT8_MAX
255.
const uint8_t UINT8_MAX = 0xFF;

UINT16_MAX
65.535.
const uint16_t UINT16_MAX = 0xFFFF;

UINT32_MAX
4.294.967.295.
const uint32_t UINT32_MAX = 0xFFFFFFFF;

UINT64_MAX
18.446.744.073.709.551.615.
const uint64_t UINT64_MAX = 0xFFFFFFFFFFFFFFFF;

kE
Euler’s number.
const real32_t kBMATH_Ef = 2.718281828459045f;
const real64_t kBMATH_Ed = 2.718281828459045;
const real BMath::kE;

35.1 - Types and Constants 667

kLN2
The natural logarithm of 2.
const real32_t kBMATH_LN2f = 0.6931471805599453f;
const real64_t kBMATH_LN2d = 0.6931471805599453;
const real BMath::kLN2;

kLN10
The natural logarithm of 10.
const real32_t kBMATH_LN10f = 2.302585092994046f;
const real64_t kBMATH_LN10d = 2.302585092994046;
const real BMath::kLN10;

kPI
The number Pi.
const real32_t kBMATH_PIf = 3.141592653589793f;
const real64_t kBMATH_PId = 3.141592653589793;
const real BMath::kPI;

kSQRT2
Square root of 2.
const real32_t kBMATH_SQRT2f = 1.414213562373095f;
const real64_t kBMATH_SQRT2d = 1.414213562373095;
const real BMath::kSQRT2;

kSQRT3
Square root of 3.
const real32_t kBMATH_SQRT3f = 1.732050807568878f;
const real64_t kBMATH_SQRT3d = 1.732050807568878;
const real BMath::kSQRT3;

kDEG2RAD
Conversion from one degree to radians.

668 Chapter 35 - Sewer library

const real32_t kBMATH_DEG2RADf = 0.017453292519943f;
const real64_t kBMATH_DEG2RADd = 0.017453292519943;
const real BMath::kDEG2RAD;

kRAD2DEG
Conversion of a radian to degrees.
const real32_t kBMATH_RAD2DEGf = 57.2957795130823f;
const real64_t kBMATH_RAD2DEGd = 57.2957795130823;
const real BMath::kRAD2DEG;

kINFINITY
Infinite, represented by a very large value.
const real32_t kBMATH_INFINITYf = ∞f;
const real64_t kBMATH_INFINITYd = ∞;
const real BMath::kINFINITY;

enum unicode_t
Represents the “UTF encodingsUTF encodings” (page 157).

ekUTF8 UTF8 encoding.
ekUTF16 UTF16 encoding.
ekUTF32 UTF32 encoding.

struct REnv
“Random numbersRandom numbers” (page 160) environment.
struct REnv;

35.2. Functions

FPtr_destroy
Destructor function prototype.
void
(*FPtr_destroy)(type **item);

35.2 - Functions 669

item Double pointer to the object to destroy. It must be assigned to NULL
after the destruction to invalidate its use.

FPtr_copy
Copy constructor function prototype.
type*
(*FPtr_copy)(const type *item);

item Pointer to the object to be copied.

Return:

The new object that is an exact copy of the input.

FPtr_scopy
Unallocated memory copy constructor prototype.
void
(*FPtr_scopy)(type *dest,

const type *src);

dest Destination object (copy).
src Pointer to the object to be copied (source).

Remarks:

In this copy operation, the memory required by the object has already been allocated.
We must create dynamic memory for the fields of the object that require it, but not for
the object itself. Usually used to copy arrays of objects (not pointers to objects).

FPtr_compare
Comparison function prototype.
int
(*FPtr_compare)(const type *item1,

const type *item2);

item1 First item to compare.
item2 Second item to compare.

Return:

Comparison result.

670 Chapter 35 - Sewer library

FPtr_compare_ex
Similar to FPtr_compare, but receive an additional parameter that may influence the
comparison.
int
(*FPtr_compare_ex)(const type *item1,

const type *item2,
const dtype *data);

item1 First item to compare.
item2 Second item to compare.
data Additional parameter.

Return:

Comparison result.

FPtr_assert
Callback function prototype called when an assert occurs.
void
(*FPtr_assert)(type *item,

const uint32_t group,
const char_t *caption,
const char_t *detail,
const char_t *file,
const uint32_t line);

item User data passed as the first parameter.
group 0 = Fatal error, 1 = Execution can continue.

caption Title.
detail Detailed message.

file Source file where the assert occurred.
line Line inside the source file.

unref
Mark the parameter as non-referenced, disabling the compiler’s warnings.
void
unref(param);

35.2 - Functions 671

static void i_OnClick(App *app, Event *e)
{

unref(e);
app_click_action(app);

}

param Parameter.

cassert
Basic assert sentence. If the condition is evaluated at FALSE , a “continuable” assert will
be launched. The message shown will be the literal of the condition itself.
void
cassert(bool_t cond);

// "row < arrpt_size(layout>rows)"
// will be shown in the assert window
cassert(row < arrpt_size(layout>rows));

cond Boolean expression.

cassert_msg
Same as the cassert() sentence, but using a custom message, instead of the literal
condition.
void
cassert_msg(bool_t cond,

const char_t *msg);

// "'row' out of range"
// will be shown in the assert window
cassert_msg(layout < layout>num_rows, "'row' out of range");

cond Boolean expression.
msg Message related to the assert.

cassert_fatal
Same as the cassert() sentence, but throwing a critical assert (not “continuable”).
void
cassert_fatal(bool_t cond);

672 Chapter 35 - Sewer library

// "gravity > 0."
// will be shown in the assert window
cassert_fatal(gravity > 0.);

cond Boolean expression.

cassert_fatal_msg
Same as the cassert_msg() sentence, but throwing a critical assert (not “continuable”).
void
cassert_fatal_msg(bool_t cond,

const char_t *msg);

// "'gravity' can't be negative."
// will be shown in the assert window
cassert_fatal_msg(gravity > 0., "'gravity' can't be negative");

cond Boolean expression.
msg Message related to the assert.

cassert_no_null
Triggers a critical assert if a pointer has NULL value.
void
cassert_no_null(void *ptr);

ptr Pointer to evaluate.

cassert_no_nullf
Triggers a critical assert if a function pointer has NULL value.
void
cassert_no_nullf(void *fptr);

fptr Pointer to evaluate.

cassert_default
Triggers a “continuable” assert if the switch statement reaches the default: state. Useful
to ensure that, for example, all the values of an enum have been considered.
void
cassert_default(void);

35.2 - Functions 673

switch(align) {
case LEFT:

// Do something
break;

case RIGHT:
// Do something
break;

// Others are not allowed.
cassert_default();
}

cassert_set_func
Set a custom function to execute an alternative code when an assert occurs. By default,
in desktop applications, an informative window is displayed (Figure 13.4) and the message
is saved in a “Log” (page 184) file.
void
cassert_set_func(void *data,

FPtr_assert func_assert);

data User data or application context.
func_assert Callback function called after the activation of an assert.

Remarks:

When using this function, the previous asserts management will be deactivated.

ptr_get
Access to the content of the pointer (dereference), verifying previously that it is not NULL.
void
ptr_get(type *ptr,

type);

void compute(const V2Df *v1, const V2Df *v2)
{

/* Safer than t = *v1; */
V2Df t = ptr_get(v1, V2Df);
...

}

ptr Pointer.
type Pointer type.

674 Chapter 35 - Sewer library

ptr_dget
Access the content of a double pointer, invalidating it later.
void
ptr_dget(type **ptr,

type);

Ctrl *create(Model **model, View **view)
{

Ctrl *ctrl = heap_new(Ctrl);
ctrl>model = ptr_dget(model, Model);
ctrl>view = ptr_dget(view, View);
// *model = NULL
// *view = NULL
return ctrl;

}

ptr Double pointer.
type Pointer type.

ptr_dget_no_null
Like ptr_dget, but the content of the double pointer (*dptr) can not be NULL.
void
ptr_dget_no_null(type **ptr,

type);

Ctrl *create(Model **model, View **view)
{

// *model and *view can't be NULL
Ctrl *ctrl = heap_new(Ctrl);
ctrl>model = ptr_dget_no_null(model, Model);
ctrl>view = ptr_dget_no_null(view, View);
return ctrl;

}

ptr Double pointer.
type Pointer type.

ptr_assign
Assign content from one pointer to another, if the destination is not NULL.
void
ptr_assign(dest,

src);

35.2 - Functions 675

dest Destination pointer.
src Source pointer.

ptr_destopt
Destroy an object if not NULL.

void
ptr_destopt(FPtr_destroy func_destroy,

type dptr,
type);

cassert_no_null(dptr);
if (*dptr != NULL)
{

func_destroy(*dptr);
*dptr = NULL;

}

func_destroy Destructor.
dptr Double pointer to the object to destroy.
type Object type.

ptr_copyopt
Copy the object if not NULL.

void
ptr_copyopt(FPtr_copy func_copy,

type ptr,
type);

if (ptr != NULL)
return func_copy(ptr);

else
return NULL;

func_copy Copy constructor.
ptr Object to copy (source).

type Object type.

676 Chapter 35 - Sewer library

unicode_convers
Converts a Unicode string from one encoding to another.

uint32_t
unicode_convers(const char_t *from_str,

char_t *to_str,
const unicode_t from,
const unicode_t to,
const uint32_t osize);

const char32_t str[] = U"Hello World";
char_t utf8_str[256];
unicode_convers((const char_t*)str, utf8_str, ekUTF32, ekUTF8, 256);

from_str Source string (terminated in null character ’\0’).
to_str Destination buffer.

from Source string encoding.
to Coding required in to_str.

osize Size of the output buffer. Maximum number of bytes that will be written
in to_str, including the null character ('\0'). If the original string can
not be copied entirety, it will be cutted and the null character added.

Return:

Number of bytes written in to_str (including the null character).

unicode_convers_n
Like unicode_convers, but indicating a maximum size for the input string.

uint32_t
unicode_convers_n(const char_t *from_str,

char_t *to_str,
const unicode_t from,
const unicode_t to,
const uint32_t isize,
const uint32_t osize);

35.2 - Functions 677

from_str Source string.
to_str Destination buffer.

from Source string encoding.
to Coding required in to_str.

isize Size of the input string (in bytes).
osize Size of the output buffer.

Return:

Number of bytes written in to_str (including the null character).

unicode_convers_nbytes
Gets the number of bytes needed to convert a Unicode string from one encoding to another.
It will be useful to calculate the space needed in dynamic memory allocation.
uint32_t
unicode_convers_nbytes(const char_t *str,

const unicode_t from,
const unicode_t to);

const char32_t str[] = U"Hello World";
uint32_t size = unicode_convers_nbytes((char_t*)str, ekUTF32, ekUTF8);
/ * size == 12 * /

str Origin string (null-terminated).
from Encoding of str.

to Required encoding.

Return:

Number of bytes required (including the null character).

unicode_nbytes
Gets the size (in bytes) of a Unicode string.
uint32_t
unicode_nbytes(const char_t *str,

const unicode_t format);

str Unicode string (null-terminated ’\0’).
format Encoding of str.

678 Chapter 35 - Sewer library

Return:

The size in bytes (including the null character).

unicode_nchars
Gets the length (in characters) of a Unicode string.
uint32_t
unicode_nchars(const char_t *str,

const unicode_t format);

str Unicode string (null-terminated ’\0’).
format Encoding of str.

Return:

The number of characters (’\0’ not included).

Remarks:

In ASCII strings, the number of bytes is equal to the number of characters. In Unicode
it depends on the coding and the string.

unicode_to_u32
Gets the value of the first codepoint of the Unicode string.
uint32_t
unicode_to_u32(const char_t *str,

const unicode_t format);

char_t str[] = "áéíóúÄÑ£";
uint32_t cp = unicode_to_u32(str, ekUTF8);
/* cp == 'á' == 225 == U+E1 */

str Unicode string (null-terminated ’\0’).
format Encoding of str.

Return:

The code of the first str character.

unicode_to_u32b
Like unicode_to_u32 but with an additional field to store the number of bytes occupied
by the codepoint.

35.2 - Functions 679

uint32_t
unicode_to_u32b(const char_t *str,

const unicode_t format,
uint32_t *bytes);

str Unicode string (null-terminated ’\0’).
format Encoding of str.
bytes Saves the number of bytes needed to represent the codepoint by format.

Return:

The code of the first str character.

unicode_to_char
Write the codepoint at the beginning of str, using the format encoding.

uint32_t
unicode_to_char(const uint32_t codepoint,

char_t *str,
const unicode_t format);

char_t str[64] = \"\";
uint32_t n = unicode_to_char(0xE1, str, ekUTF8);
unicode_to_char(0, str + n, ekUTF8);
/* str == "á" */
/* n = 2 */

codepoint Character code.
str Destination string.

format Encoding for codepoint.

Return:

The number of bytes written (1, 2, 3 or 4).

Remarks:

To write several codepoints, combine unicode_to_char with unicode_next.

unicode_valid_str
Check if a string is a valid Unicode.

680 Chapter 35 - Sewer library

bool_t
unicode_valid_str(const char_t *str,

const unicode_t format);

str String to be checked (ending in ’\0’).
format Expected Unicode encoding.

Return:

TRUE if it is valid.

unicode_valid_str_n
Like unicode_valid_str, but indicating a maximum size for the input string.
bool_t
unicode_valid_str_n(const char_t *str,

const uint32_t size,
const unicode_t format);

str String to be checked (ending in ’\0’).
size Maximum size of the string (in bytes).

format Expected Unicode encoding.

Return:

TRUE if it is valid.

unicode_valid
Check if a codepoint is valid.
bool_t
unicode_valid(const uint32_t codepoint);

codepoint The Unicode code of the character.

Return:

TRUE if the parameter is a valid codepoint. FALSE otherwise.

unicode_next
Advance to the next character in a Unicode string. In general, random access is not
possible as we do in ANSI-C (str[i ++]). We must iterate a string from the beginning.
More in “UTF encodingsUTF encodings” (page 157).

35.2 - Functions 681

const char_t*
unicode_next(const char_t *str,

const unicode_t format);

char_t str[] = "áéíóúÄ";
char_t *iter = str; /* iter == "áéíóúÄ" */
iter = unicode_next(iter, ekUTF8); /* iter == "éíóúÄ" */
iter = unicode_next(iter, ekUTF8); /* iter == "íóúÄ" */
iter = unicode_next(iter, ekUTF8); /* iter == "óúÄ" */
iter = unicode_next(iter, ekUTF8); /* iter == "úÄ" */
iter = unicode_next(iter, ekUTF8); /* iter == "Ä" */
iter = unicode_next(iter, ekUTF8); /* iter == "" */
iter = unicode_next(iter, ekUTF8); /* Segmentation fault!! */

str Unicode string.
format str encoding.

Return:

Pointer to the next character in the string.

Remarks:

It does not verify the end of the string. We must stop the iteration when codepoint
== 0.

unicode_back
Go back to the previous character of a Unicode string.

const char_t*
unicode_back(const char_t *str,

const unicode_t format);

str Unicode string.
format str encoding.

Return:

Pointer to the previous character of the string.

Remarks:

It does not verify the beginning of the string.

682 Chapter 35 - Sewer library

unicode_isascii
Check if codepoint is a US-ASCII 7 character.

bool_t
unicode_isascii(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

Test result.

unicode_isalnum
Check if codepoint is an alphanumeric character.

bool_t
unicode_isalnum(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

Test result.

Remarks:

Only consider US-ASCII characters.

unicode_isalpha
Check if codepoint is an alphabetic character.

bool_t
unicode_isalpha(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

Test result.

Remarks:

Only consider US-ASCII characters.

35.2 - Functions 683

unicode_iscntrl
Check if codepoint is a control character.
bool_t
unicode_iscntrl(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

Test result.

Remarks:

Only consider US-ASCII characters.

unicode_isdigit
Check if codepoint is digit (0-9).
bool_t
unicode_isdigit(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

Test result.

Remarks:

Only consider US-ASCII characters.

unicode_isgraph
Check if codepoint is a printable character (except white space ’ ’).
bool_t
unicode_isgraph(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

Test result.

Remarks:

Only consider US-ASCII characters.

684 Chapter 35 - Sewer library

unicode_isprint
Check if codepoint is a printable character (including white space ’ ’).
bool_t
unicode_isprint(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

Test result.

Remarks:

Only consider US-ASCII characters.

unicode_ispunct
Check if codepoint is a printable character (expect white space ’ ’ and alphanumeric).
bool_t
unicode_ispunct(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

Test result.

Remarks:

Only consider US-ASCII characters.

unicode_isspace
Check if codepoint is a spacing character, new line, carriage return, horizontal or vertical
tab.
bool_t
unicode_isspace(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

Test result.

Remarks:

35.2 - Functions 685

Only consider US-ASCII characters.

unicode_isxdigit
Check if codepoint is a hexadecimal digit 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D
E F.

bool_t
unicode_isxdigit(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

Test result.

Remarks:

Only consider US-ASCII characters.

unicode_islower
Check if codepoint is a lowercase letter.

bool_t
unicode_islower(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

Test result.

Remarks:

Only consider US-ASCII characters.

unicode_isupper
Check if codepoint is a capital letter.

bool_t
unicode_isupper(const uint32_t codepoint);

codepoint The Unicode character code.

686 Chapter 35 - Sewer library

Return:

Test result.

Remarks:

Only consider US-ASCII characters.

unicode_tolower
Convert a letter to lowercase.
uint32_t
unicode_tolower(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

The conversion to lowercase if the entry is a capital letter. Otherwise, the same
codepoint.

Remarks:

Only consider US-ASCII characters.

unicode_toupper
Convert a letter to uppercase.
uint32_t
unicode_toupper(const uint32_t codepoint);

codepoint The Unicode character code.

Return:

The conversion to upper case if the entry is a lowercase letter. Otherwise, the same
codepoint.

Remarks:

Only consider US-ASCII characters.

bmath_cos
Get the cosine of an angle.

35.2 - Functions 687

real32_t
bmath_cosf(const real32_t angle);

real64_t
bmath_cosd(const real64_t angle);

real
BMath::cos(const real angle);

angle Angle in radians.

Return:

The cosine of the angle.

bmath_sin
Get the sine of an angle.
real32_t
bmath_sinf(const real32_t angle);

real64_t
bmath_sind(const real64_t angle);

real
BMath::sin(const real angle);

angle Angle in radians.

Return:

The sine of the angle.

bmath_tan
Get the tangent of an angle.
real32_t
bmath_tanf(const real32_t angle);

real64_t
bmath_tand(const real64_t angle);

real
BMath::tan(const real angle);

angle Angle in radians.

688 Chapter 35 - Sewer library

Return:

The angle tangent.

bmath_acos
Get the cosine arc, or inverse cosine, which is the angle whose cosine is the value.
real32_t
bmath_acosf(const real32_t cos);

real64_t
bmath_acosd(const real64_t cos);

real
BMath::acos(const real cos);

cos Cosine (-1, 1).

Return:

The angle (0, Pi).

bmath_asin
Get the sine arc, or inverse sine, which is the angle whose sine is the value.
real32_t
bmath_asinf(const real32_t sin);

real64_t
bmath_asind(const real64_t sin);

real
BMath::asin(const real sin);

sin Sine (-1, 1).

Return:

The angle (0, Pi).

bmath_atan2
Get the tangent arc, or inverse tangent. Es is the angle measured from the X axis to the
line containing the origin (0, 0) and the point with the coordinates (x, y).
real32_t
bmath_atan2f(const real32_t y,

35.2 - Functions 689

const real32_t x);

real64_t
bmath_atan2d(const real64_t y,

const real64_t x);

real
BMath::atan2(const real y,

const real x);

y Y coordinate.
x Coordinate X.

Return:

The angle (-Pi, Pi).

bmath_norm_angle
Normalizes an angle, that is, it returns the same angle expressed in the range (-Pi, Pi).
real32_t
bmath_norm_anglef(const real32_t a);

real64_t
bmath_norm_angled(const real64_t a);

real
BMath::norm_angle(const real a);

a The angle in radians.

Return:

The angle (-Pi, Pi).

bmath_sqrt
Get the square root of a number.
real32_t
bmath_sqrtf(const real32_t value);

real64_t
bmath_sqrtd(const real64_t value);

real
BMath::sqrt(const real value);

690 Chapter 35 - Sewer library

value The number.

Return:

The square root.

bmath_isqrt
Get the inverse square root of a number (1/sqrt).
real32_t
bmath_isqrtf(const real32_t value);

real64_t
bmath_isqrtd(const real64_t value);

real
BMath::isqrt(const real value);

value The number.

Return:

The inverse square root.

bmath_log
Get the natural logarithm (base e) of a number.
real32_t
bmath_logf(const real32_t value);

real64_t
bmath_logd(const real64_t value);

real
BMath::log(const real value);

value The number.

Return:

The logarithm.

bmath_log10
Get the logarithm in base 10 of a number.

35.2 - Functions 691

real32_t
bmath_log10f(const real32_t value);

real64_t
bmath_log10d(const real64_t value);

real
BMath::log10(const real value);

value The number.

Return:

The logarithm.

bmath_exp
Get the number of Euler e (2.7182818) raised to a power.
real32_t
bmath_expf(const real32_t value);

real64_t
bmath_expd(const real64_t value);

real
BMath::exp(const real value);

value The exponent.

Return:

The exponential.

bmath_pow
Calculate a power, base raised to exponent.
real32_t
bmath_powf(const real32_t base,

const real32_t exponent);

real64_t
bmath_powd(const real64_t base,

const real64_t exponent);

real
BMath::pow(const real base,

const real exponent);

692 Chapter 35 - Sewer library

base Base.
exponent Exponent.

Return:

The result of the power.

bmath_abs
Get the absolute value of a number.
real32_t
bmath_absf(const real32_t value);

real64_t
bmath_absd(const real64_t value);

real
BMath::abs(const real value);

value The number.

Return:

The absolute value.

bmath_max
Get the maximum of two values.
real32_t
bmath_maxf(const real32_t value1,

const real32_t value2);

real64_t
bmath_maxd(const real64_t value1,

const real64_t value2);

real
BMath::max(const real value1,

const real value2);

value1 First number.
value2 Second number.

Return:

The maximum value.

35.2 - Functions 693

bmath_min
Get the minimum of two values.
real32_t
bmath_minf(const real32_t value1,

const real32_t value2);

real64_t
bmath_mind(const real64_t value1,

const real64_t value2);

real
BMath::min(const real value1,

const real value2);

value1 First number.
value2 Second number.

Return:

The minimum value.

bmath_clamp
Restrict a value to a certain range.
real32_t
bmath_clampf(const real32_t value,

const real32_t min,
const real32_t max);

real64_t
bmath_clampd(const real64_t value,

const real64_t min,
const real64_t max);

real
BMath::clamp(const real value,

const real min,
const real max);

value The number.
min Minimum value of the range.
max Maximum value of the range.

Return:

The limited value.

694 Chapter 35 - Sewer library

bmath_mod
Get the module of divide num/den.
real32_t
bmath_modf(const real32_t num,

const real32_t den);

real64_t
bmath_modd(const real64_t num,

const real64_t den);

real
BMath::mod(const real num,

const real den);

num Numerator.
den Denominator.

Return:

The module.

bmath_modf
Get the integer and fraction part of a real number.
real32_t
bmath_modff(const real32_t value,

real32_t *intpart);

real64_t
bmath_modfd(const real64_t value,

real64_t *intpart);

real
BMath::modf(const real value,

real *intpart);

value The number.
intpart Get the integer part.

Return:

The fractional part [0,1).

bmath_prec
Get the number of decimals (precision) of a real number.

35.2 - Functions 695

uint32_t
bmath_precf(const real32_t value);

uint32_t
bmath_precd(const real64_t value);

uint32_t
BMath::prec(const real value);

value The number.

Return:

The number of decimal places.

bmath_round
Rounds a number to the nearest integer (above or below).
real32_t
bmath_roundf(const real32_t value);

real64_t
bmath_roundd(const real64_t value);

real
BMath::round(const real value);

value The number.

Return:

The nearest whole.

bmath_round_step
Round a number to the nearest fraction.
real32_t
bmath_round_stepf(const real32_t value,

const real32_t step);

real64_t
bmath_round_stepd(const real64_t value,

const real64_t step);

real
BMath::round_step(const real value,

const real step);

696 Chapter 35 - Sewer library

value The number.
step The fraction.

Return:

The nearest number.

bmath_floor
Rounds a number to the integer below.
real32_t
bmath_floorf(const real32_t value);

real64_t
bmath_floord(const real64_t value);

real
BMath::floor(const real value);

value The number.

Return:

The largest integer number, less than or equal to the number.

bmath_ceil
Round a number to the integer above.
real32_t
bmath_ceilf(const real32_t value);

real64_t
bmath_ceild(const real64_t value);

real
BMath::ceil(const real value);

value The number.

Return:

The smallest integer number, greater than or equal to the number.

bmath_rand_seed
Establish a new seed of random numbers.

35.2 - Functions 697

void
bmath_rand_seed(const uint32_t seed);

seed The new seed.

Remarks:

Each time the seed changes, a new sequence of random numbers begins. For the same
seed, we will get the same sequence, so they are pseudo-random numbers. Similar seeds
(eg. 4, 5) produce radically different sequences. Use bmath_rand_env in multi-threaded
applications.

bmath_rand
Gets a random real number, within an interval.
real32_t
bmath_randf(const real32_t from,

const real32_t to);

real64_t
bmath_randd(const real64_t from,

const real64_t to);

real
BMath::rand(const real from,

const real to);

from The lower limit of the interval.
to The upper limit of the interval.

Return:

The random number.

bmath_randi
Gets a random number, within an interval.
uint32_t
bmath_randi(const uint32_t from,

const uint32_t to);

from The lower limit of the interval.
to The upper limit of the interval.

698 Chapter 35 - Sewer library

Return:

The random number.

bmath_rand_env
Create thread-safe environment for random numbers.
REnv*
bmath_rand_env(const uint32_t seed);

seed The seed.

Return:

The environment.

bmath_rand_destroy
Destroy an environment of random numbers.
void
bmath_rand_destroy(REnv **env);

env The environment. Will be set to NULL after destruction.

bmath_rand_mt
Gets a random real number, within an interval.
real32_t
bmath_rand_mtf(REnv *env,

const real32_t from,
const real32_t to);

real64_t
bmath_rand_mtd(REnv *env,

const real64_t from,
const real64_t to);

real
BMath::rand_mt(REnv *env,

const real from,
const real to);

env The random number environment.
from The lower limit of the interval.

to The upper limit of the interval.

35.2 - Functions 699

Return:

The random number.

bmath_rand_mti
Gets a random number, within an interval.
uint32_t
bmath_rand_mti(REnv *env,

const uint32_t from,
const uint32_t to);

env The random number environment.
from The lower limit of the interval.

to The upper limit of the interval.

Return:

The random number.

blib_strlen
Returns the length in bytes of a text string.
uint32_t
blib_strlen(const char_t *str);

str String terminated with null character ’\0’.

Return:

String length not including the null character.

Remarks:

See “Unicode” (page 155), the number of bytes is not equivalent to the number of
characters.

blib_strstr
Find a substring within a longer string.
const char_t*
blib_strstr(const char_t *str,

const char_t *substr);

700 Chapter 35 - Sewer library

str String terminated with null character ’\0’.
substr Substring to search ending in null character ’\0’.

Return:

Pointer to the start of the first substring found or NULL if none exists.

blib_strcpy
Copy the content of one string to another.

void
blib_strcpy(char_t *dest,

const uint32_t size,
const char_t *src);

dest Destiny buffer.
size Destination buffer size in bytes.
src String to copy ending in null character ’\0’.

Remarks:

Only the first size1 bytes will be copied, in case src is longer than the capacity of
dest.

blib_strncpy
Copy the first n bytes of one string to another.

void
blib_strncpy(const char_t *dest,

const uint32_t size,
const char_t *src,
const uint32_t n);

dest Destiny buffer.
size Destination buffer size in bytes.
src String to copy ending in null character ’\0’.

n Number of bytes to copy.

Remarks:

Only the first size1 bytes will be copied, in case n is greater than size.

35.2 - Functions 701

blib_strcat
Concatenation of strings.
void
blib_strcat(char_t *dest,

const uint32_t size,
const char_t *src);

dest Source and destination buffer.
size Destination buffer size in bytes.
src String to add to dest, terminated with null character ’\0’.

Remarks:

The size1 bytes in dest will not be exceeded, so the concatenation will be truncated
if necessary.

blib_strcmp
Compare two strings.
int
blib_strcmp(const char_t *str1,

const char_t *str2);

str1 First string to compare, terminated with null character ’\0’.
str2 Second string to compare, terminated with null character ’\0’.

Return:

Comparison Result.

blib_strncmp
Compare the first n bytes of two strings.
int
blib_strncmp(const char_t *str1,

const char_t *str2,
const uint32_t n);

str1 First string to compare, terminated with null character ’\0’.
str2 Second string to compare, terminated with null character ’\0’.

n Maximum number of bytes to compare.

702 Chapter 35 - Sewer library

Return:

Comparison Result.

blib_strtol
Convert a text string to an integer.
int64_t
blib_strtol(const char_t *str,

char_t **endptr,
uint32_t base,
bool_t *err);

str String starting with an integer.
endptr Pointer whose value will be the first character after the number. Can

be NULL.
base Number base: 2, 8, 10, 16.
err Value TRUE is assigned if there is an error in the parsing of the string.

Can be NULL.

Return:

String parsing result number.

blib_strtoul
Convert a text string to an unsigned integer.
uint64_t
blib_strtoul(const char_t *str,

char_t **endptr,
uint32_t base,
bool_t *err);

str String starting with an integer.
endptr Pointer whose value will be the first character after the number. Can

be NULL.
base Number base: 2, 8, 10, 16.
err Value TRUE is assigned if there is an error in the parsing of the string.

Can be NULL.

Return:

String parsing result number.

35.2 - Functions 703

blib_strtof
Convert a text string to a 32-bit real number.
real32_t
blib_strtof(const char_t *str,

char_t **endptr,
bool_t *err);

str String starting with an real number.
endptr Pointer whose value will be the first character after the number. Can

be NULL.
err Value TRUE is assigned if there is an error in the parsing of the string.

Can be NULL.

Return:

String parsing result number.

blib_strtod
Convert a text string to a 32-bit real number.
real64_t
blib_strtod(const char_t *str,

char_t **endptr,
bool_t *err);

str String starting with an real number.
endptr Pointer whose value will be the first character after the number. Can

be NULL.
err Value TRUE is assigned if there is an error in the parsing of the string.

Can be NULL.

Return:

String parsing result number.

blib_qsort
Sorts a vector of elements using the QuickSort algorithm.
void
blib_qsort(byte_t *array,

const uint32_t nelems,
const uint32_t size,
FPtr_compare func_compare);

704 Chapter 35 - Sewer library

array Vector of elements.
nelems Number of elements.

size Size of each element.
func_compare Comparison function.

blib_qsort_ex
Sorts a vector of elements using the QuickSort algorithm.

void
blib_qsort_ex(byte_t *array,

const uint32_t nelems,
const uint32_t size,
FPtr_compare_ex func_compare,
const byte_t *data);

array Vector of elements.
nelems Number of elements.

size Size of each element.
func_compare Compare function that accepts extra data.

data Extra data that will be passed in each comparison.

blib_bsearch
Search for an element in an ordered vector.

bool_t
blib_bsearch(const byte_t *array,

const byte_t *key,
const uint32_t nelems,
const uint32_t size,
FPtr_compare func_compare,
uint32_t *pos);

35.2 - Functions 705

array Vector of elements.
key Search key.

nelems Number of elements.
size Size of each element.

func_compare Comparison function.
pos Position of the found element. It can be NULL.

Return:

TRUE if the element was found.

blib_bsearch_ex
Search for an element in an ordered vector.
bool_t
blib_bsearch_ex(const byte_t *array,

const byte_t *key,
const uint32_t nelems,
const uint32_t size,
FPtr_compare_ex func_compare,
const byte_t *data,
uint32_t *pos);

array Vector of elements.
key Search key.

nelems Number of elements.
size Size of each element.

func_compare Compare function that accepts extra data.
data Extra data that will be passed in each comparison.
pos Position of the found element. It can be NULL.

Return:

TRUE if the element was found.

blib_atexit
Add a function that will be called when the program ends.
void

706 Chapter 35 - Sewer library

blib_atexit(void()(void) *func);

func Function.

blib_abort
The execution of the program ends abruptly.
void
blib_abort(void);

Remarks:

No resources are released or a controlled shutdown is performed. The only case where
its use is justified is to exit the program after detecting an unrecoverable error (eg NULL
pointer).

blib_debug_break
Stops program execution at the point where the function is located and returns debugger
control so we can inspect the stack, variables, etc.
void
blib_debug_break(void);

bstd_sprintf
Write a string with the printf format in a memory buffer.
uint32_t
bstd_sprintf(char_t *str,

const uint32_t size,
const char_t *format,
...);

str Pointer to the buffer where the result will be written. It will end in a
null character '\0'.

size Size of str in bytes.
format String with the printf-like format with a variable number of parameters.

... Arguments or variables of printf.

Return:

The number of bytes written, not including the null character '\0'.

35.2 - Functions 707

Remarks:

It is a safe function and will not write more than size bytes. To obtain the necessary
size of str, call this function with str=NULL and size=0.

bstd_vsprintf
Like bstd_sprintf but with the list of arguments already resolved.

uint32_t
bstd_vsprintf(char_t *str,

const uint32_t size,
const char_t *format,
va_list args);

str Pointer to the buffer where the result will be written. It will end in a
null character '\0'.

size Size of str in bytes.
format String with the printf-like format with a variable number of parameters.

args Arguments.

Return:

The number of bytes written, not including the null character '\0'.

Remarks:

It is a safe function and will not write more than size bytes.

bstd_printf
Writes a formatted string in the standard output (stdout). It is equivalent to the function
printf from the standard library.

uint32_t
bstd_printf(const char_t *format,

...);

format String with the printf-like format with a variable number of parameters.
... Arguments or variables of printf.

Return:

The number of bytes written in stdout.

708 Chapter 35 - Sewer library

bstd_eprintf
Writes a formatted string in the error output (stderr).
uint32_t
bstd_eprintf(const char_t *format,

...);

format String with the printf-like format with a variable number of parameters.
... Arguments or variables of printf.

Return:

The number of bytes written in stderr.

bstd_writef
Write a string C UTF8 in the standard output (stdout).
uint32_t
bstd_writef(const char_t *str);

str String C UTF8 ending in null character '\0'.

Return:

The number of bytes written in stdout.

bstd_ewritef
Write a string C UTF8 on the error output (stderr).
uint32_t
bstd_ewritef(const char_t *str);

str String C UTF8 ending in null character '\0'.

Return:

The number of bytes written in stderr.

bstd_read
Read data from standard input stdin.
bool_t
bstd_read(byte_t *data,

const uint32_t size,
uint32_t *rsize);

35.2 - Functions 709

data Buffer where the read data will be written.
size The number of maximum bytes to read (buffer size).

rsize Receive the number of bytes actually read. Can be NULL.

Return:

TRUE if data has been read. FALSE if any error has occurred.

Remarks:

“Standard streamStandard stream” (page 196) implements high-level functions for read-
ing/writing on standard channels.

bstd_write
Write data in the standard output stdout.

bool_t
bstd_write(const byte_t *data,

const uint32_t size,
uint32_t *wsize);

data Buffer that contains the data to write.
size The number of bytes to write.

wsize It receives the number of bytes actually written. Can be NULL.

Return:

TRUE if data has been written. FALSE if any error has occurred.

Remarks:

“Standard streamStandard stream” (page 196) implements high-level functions for read-
ing/writing on standard channels.

bstd_ewrite
Write data in the error output stderr.

bool_t
bstd_ewrite(const byte_t *data,

const uint32_t size,
uint32_t *wsize);

710 Chapter 35 - Sewer library

data Buffer that contains the data to write.
size The number of bytes to write.

wsize It receives the number of bytes actually written. Can be NULL.

Return:

TRUE if data has been written. FALSE if any error has occurred.

Remarks:

“Standard streamStandard stream” (page 196) implements high-level functions for read-
ing/writing on standard channels.

bmem_malloc
Reserve a memory block with the default alignment sizeof(void*).
byte_t*
bmem_malloc(const uint32_t size);

size Size in bytes of the block.

Return:

Pointer to the new block. Must be released with bmem_free when it is no longer
necessary.

Remarks:

Use “Heap - Memory manager” (page 188) for more efficient and secure allocations.

bmem_realloc
Reallocs an existing memory block due to the expansion or reduction of it. Guarantees
that the previous content of the block is preserved min(size, new_size). Try to do it
without moving memory (in situ), but if it is not possible look for a new zone. It also
guarantees the default alignment sizeof(void*) if has to reserve a new block.
byte_t*
bmem_realloc(byte_t *mem,

const uint32_t size,
const uint32_t new_size);

mem Pointer to the original block to relocate.
size Size in bytes of the original block mem.

new_size New required size, in bytes.

35.2 - Functions 711

Return:

Pointer to the relocated block. It will be the same as the original pointer mem if the
relocation “in-situ” has been successful. Must be released with bmem_free when it is no
longer necessary.

Remarks:

Use “Heap - Memory manager” (page 188) for more efficient and secure allocations.

bmem_aligned_malloc
Reserve a memory block with alignment.
byte_t*
bmem_aligned_malloc(const uint32_t size,

const uint32_t align);

size Size in bytes of the block.
align Alignment. It must be power of 2.

Return:

Pointer to the new block. Must be released with bmem_free when it is no longer
necessary.

Remarks:

Use “Heap - Memory manager” (page 188) for more efficient and secure allocations.

bmem_aligned_realloc
Like bmem_realloc, but it guarantees a specific alignment.
byte_t*
bmem_aligned_realloc(byte_t *mem,

const uint32_t size,
const uint32_t new_size,
const uint32_t align);

mem Pointer to the original block to relocate.
size Size in bytes of the original block mem.

new_size New required size, in bytes.
align Alignment. It must be power of 2.

712 Chapter 35 - Sewer library

Return:

Pointer to the relocated block.

Remarks:

Use “Heap - Memory manager” (page 188) for more efficient and secure allocations.

bmem_free
Free memory pointed by mem, previously reserved by bmem_malloc, bmem_realloc or its
equivalents with alignment.
void
bmem_free(byte_t *mem);

mem Pointer to the memory block to be released.

Remarks:

Use “Heap - Memory manager” (page 188) for more efficient and secure allocations.

bmem_set1
Fill a block of memory with the same 1-byte mask.
void
bmem_set1(byte_t *dest,

const uint32_t size,
const byte_t mask);

dest Pointer to the memory block.
size Size in bytes of the block dest.

mask Mask.

bmem_set4
Fill a block of memory with the same 4-byte mask.
void
bmem_set4(byte_t *dest,

const uint32_t size,
const byte_t *mask);

byte_t mblock[10];
byte_t mask[4] = "abcd";
bmem_set4(mblock, 10, mask);

35.2 - Functions 713

/* mblock = "abcdabcdab" */

dest Pointer to the memory block.
size Size in bytes of the block dest. It is not necessary to be a multiple of

4.
mask 4-byte mask.

bmem_set8
Fill a block of memory with the same 8-byte mask.
void
bmem_set8(byte_t *dest,

const uint32_t size,
const byte_t *mask);

dest Pointer to the memory block.
size Size in bytes of the block dest. It is not necessary to be a multiple of

8.
mask 8-byte mask.

bmem_set16
Fill a block of memory with the same 16-byte mask.
void
bmem_set16(byte_t *dest,

const uint32_t size,
const byte_t *mask);

dest Pointer to the memory block.
size Size in bytes of the block dest. It is not necessary to be a multiple of

16.
mask 16-byte mask.

bmem_set_u32
Fill an array of type uint32_t with the same value.
void
bmem_set_u32(uint32_t *dest,

const uint32_t n,
const uint32_t value);

714 Chapter 35 - Sewer library

dest Pointer to the array.
n Array size (number of elements).

value Filling value.

bmem_set_r32
Fills an array of type real32_t with the same value.
void
bmem_set_r32(real32_t *dest,

const uint32_t n,
const real32_t value);

dest Pointer to the array.
n Array size (number of elements).

value Filling value.

bmem_cmp
Compare two generic memory blocks.
int
bmem_cmp(const byte_t *mem1,

const byte_t *mem2,
const uint32_t size);

mem1 Pointer to the first block of memory.
mem2 Pointer to the second block of memory.

size Number of bytes to compare.

Return:

Comparison result.

bmem_is_zero
Check if a memory block is completely filled with 0s.
bool_t
bmem_is_zero(const byte_t *mem,

const uint32_t size);

mem Pointer to the memory block.
size Size in bytes of the block mem.

35.2 - Functions 715

Return:

TRUE if all positions are 0, otherwise FALSE.

bmem_set_zero
Fill a memory block with 0s.
void
bmem_set_zero(byte_t *dest,

const uint32_t size);

dest Pointer to the memory block that must be filled.
size Size in bytes of the block dest.

bmem_zero
Initialize an object with 0s.
void
bmem_zero(type *dest,

type);

typedef struct
{

uint32_t f1;
real32_t f2;
String *f3;
...

} MyType;

MyType t1;
bmem_zero(&t1, MyType);
/* t1 = {0} */

dest Pointer to the object.
type Object type.

bmem_zero_n
Initialize an array of objects with 0s.
void
bmem_zero_n(type *dest,

const uint32_t n,
type);

716 Chapter 35 - Sewer library

dest Object array.
n Array size.

type Object type.

bmem_copy
Copy the contents of one block in another. The blocks must not be overlapping.
void
bmem_copy(byte_t *dest,

const byte_t *src,
const uint32_t size);

dest Pointer to the destination block.
src Pointer to the source block.
size Number of bytes to copy.

bmem_copy_n
Copy an array of objects to another location.
void
bmem_copy_n(type *dest,

const type *src,
const uint32_t n,
type);

real32_t v1[64];
real32_t v2[64]; = {1.f, 45.f, 12.4f, ...};
bmem_copy_n(v1, v2, 64, real32_t);

dest Pointer to the destination array.
src Pointer to the source array.

n Array size (number of elements, not bytes).
type Object type.

bmem_move
Like bmem_copy, but the blocks can overlap.
void
bmem_move(byte_t *dest,

const byte_t *src,
const uint32_t size);

35.2 - Functions 717

dest Pointer to the destination block.
src Pointer to the source block.
size Number of bytes to copy.

Remarks:

If we have the certainty that both blocks do not overlap, bmem_copy is much more
efficient.

bmem_overlaps
Check if two memory blocks overlap.
bool_t
bmem_overlaps(byte_t *mem1,

byte_t *mem2,
const uint32_t size1,
const uint32_t size2);

mem1 Pointer to the first block.
mem2 Pointer to the second block.
size1 Size of the first block (in bytes).
size2 Size of the second block (in bytes).

Return:

TRUE if there is overlap.

bmem_rev
Reverts a memory block m[i] = m[ni1].
void
bmem_rev(byte_t *mem,

const uint32_t size);

mem Pointer to the memory block.
size Block size in bytes.

bmem_rev2
Reverts a 2-byte memory block.
void
bmem_rev2(byte_t *mem);

718 Chapter 35 - Sewer library

mem Pointer to the memory block.

bmem_rev4
Reverts a 4-byte memory block.
void
bmem_rev4(byte_t *mem);

mem Pointer to the memory block.

bmem_rev8
Reverts an 8-byte memory block.
void
bmem_rev8(byte_t *mem);

mem Pointer to the memory block.

bmem_revcopy
Make a reverse copy of a memory block.
void
bmem_revcopy(byte_t *dest,

const byte_t *src,
const uint32_t size);

dest Pointer to the destination block.
src Pointer to the source block.
size Number of bytes to copy.

bmem_rev_elems
Reverts the elements inside an array.
void
bmem_rev_elems(type*,

const uint32_t num_elems,
type);

type* Pointer to the beginning of the array.
num_elems Number of elements of the array.

type Object type.

35.2 - Functions 719

bmem_swap
Exchanges the contents of two memory blocks (not overlapping). At end, mem1[i] =
mem2[i] and mem2[i] = mem1[i].
void
bmem_swap(byte_t *mem1,

byte_t *mem2,
const uint32_t size);

mem1 Pointer to the first block.
mem2 Pointer to the second block.

size Number of bytes to be exchanged.

bmem_swap_type
Exchange the contents of two objects.
void
bmem_swap_type(type *obj1,

type *obj2,
type);

obj1 First object.
obj2 Second object.
type Object type.

bmem_shuffle
Randomly shuffles a memory block.
void
bmem_shuffle(byte_t *mem,

const uint32_t size,
const uint32_t esize);

mem Pointer to the memory block.
size Block size (number of elements).

esize Size of each element.

Remarks:

This function is based on a pseudo-random number generator. Use bmath_rand_seed
to change the sequence.

720 Chapter 35 - Sewer library

bmem_shuffle_n
Randomly shuffle an object array.
void
bmem_shuffle_n(type *array,

const uint32_t size,
type);

array Elements array.
size Number of elements.

type Object type.

Remarks:

This function is based on a pseudo-random number generator. Use bmath_rand_seed
to change the sequence.

36C
ha

pt
er

Osbs library

36.1. Types and Constants

enum platform_t
Operating systems supported by NAppGUI.

ekWINDOWS Microsoft Windows.
ekMACOS Apple macOS.
ekLINUX GNU/Linux.
ekIOS Apple iOS.

enum device_t
Device type.

ekDESKTOP Desktop or laptop computer.
ekPHONE Phone.
ekTABLET Tablet.

enum win_t
Microsoft Windows versions.

ekWIN_9x Windows 95, 98 or ME.
ekWIN_NT4 Windows NT4.
ekWIN_2K Windows 2000.
ekWIN_XP Windows XP.

721

722 Chapter 36 - Osbs library

ekWIN_XP1 Windows XP Service Pack 1.
ekWIN_XP2 Windows XP Service Pack 2.
ekWIN_XP3 Windows XP Service Pack 3.
ekWIN_VI Windows Vista.

ekWIN_VI1 Windows Vista Service Pack 1.
ekWIN_VI2 Windows Vista Service Pack 2.

ekWIN_7 Windows 7.
ekWIN_71 Windows 7 Service Pack 1.
ekWIN_8 Windows 8.
ekWIN_81 Windows 8 Service Pack 1.
ekWIN_10 Windows 10.
ekWIN_NO The system is not Windows.

enum endian_t
Represents the “Byte orderByte order” (page 206), or how multi-byte data is stored in
memory.

ekLITEND Little endian. The lowest byte first.
ekBIGEND Big endian. The highest byte first.

enum week_day_t
Weekday.

ekSUNDAY Sunday.
ekMONDAY Monday.
ekTUESDAY Tuesday.

ekWEDNESDAY Wednesday.
ekTHURSDAY Thursday.

ekFRIDAY Friday.
ekSATURDAY Saturday.

enum month_t
Month.

36.1 - Types and Constants 723

724 Chapter 36 - Osbs library

ekJANUARY January.
ekFEBRUARY February.

ekMARCH March.
ekAPRIL April.

ekMAY May.
ekJUNE June.
ekJULY July.

ekAUGUST August.
ekSEPTEMBER September.

ekOCTOBER October.
ekNOVEMBER November.
ekDECEMBER December.

enum file_type_t
File type.

ekARCHIVE Ordinary file.
ekDIRECTORY Directory.
ekOTHERFILE Another type of file reserved for the operating system (de-

vices, pipes, etc.)

enum file_mode_t
Different ways to open a file.

ekREAD Read only.
ekWRITE Read and write.

ekAPPEND Writing at the end of the file.

enum file_seek_t
Initial position of the pointer in bfile_seek.

ekSEEKSET Start of file.
ekSEEKCUR Current pointer position.

36.1 - Types and Constants 725

ekSEEKEND End of file.

enum ferror_t
Error codes manipulating files.

ekFEXISTS The file already exists.
ekFNOPATH The directory does not exist.
ekFNOFILE The file does not exists.

ekFBIGNAME The name of the file exceeds the capacity of the buffer to
store it.

ekFNOFILES There are no more files when we travel through a directory.
bfile_dir_get.

ekFNOEMPTY You are trying to delete a non-empty directory.
hfile_dir_destroy.

ekFNOACCESS The file can not be accessed (possibly due to lack of permis-
sions).

ekFLOCK The file is being used by another process.
ekFBIG The file is so big. It may appear in functions that can not

handle files larger than 4Gb.
ekFSEEKNEG Negative position within a file. See bfile_seek.

ekFUNDEF There is no more information about the error.
ekFOK There is no error.

enum perror_t
Error codes working with processes.

ekPPIPE Error in the standard I/O channel.
ekPEXEC Error when launching the process. Surely the command is

invalid.
ekPOK There is no error.

enum serror_t
Error code in network communications.

726 Chapter 36 - Osbs library

ekSNONET There is no Internet connection on the device.
ekSNOHOST Unable to connect to the remote server.
ekSTIMEOUT The maximum wait time for the connection has been ex-

ceeded.
ekSSTREAM Error in the I/O channel when reading or writing.
ekSUNDEF There is no more information about the error.

ekSOK There is no error.

struct Date
Public structure that contains the fields of a time stamp (date + time) for direct access.
struct Date
{

int16_t year;
uint8_t month;
uint8_t wday;
uint8_t mday;
uint8_t hour;
uint8_t minute;
uint8_t second;

};

year Year.
month The month (1-12). month_t.
wday The day of the week (0-6). week_day_t.
mday The day of the month (1-31).
hour The hour (0-23).

minute The minute (0-59).
second The second (0-59).

struct Dir
Represents an open directory, by which you can browse. bfile_dir_open.
struct Dir;

struct File
File handler on disk. bfile_open.

36.2 - Functions 727

struct File;

struct Mutex
Mutual exclusion mechanism (mutex) used to control concurrent access to a resource.
“LocksLocks” (page 175).
struct Mutex;

struct Proc
Represents a running process, with which the main program can communicate using the
standard I/O channels. bproc_exec.
struct Proc;

struct DLib
Represents a dynamically loaded library in the process. dlib_open.
struct DLib;

struct Thread
Represents a thread of execution, launched from the main process. bthread_create.
struct Thread;

struct Socket
Handler of network connection. bsocket_connect.
struct Socket;

36.2. Functions

FPtr_thread_main
Prototype of a thread start function (thread main). bthread_create.
uint32_t
(*FPtr_thread_main)(type *data);

728 Chapter 36 - Osbs library

data Data passed to the thread main function.

Return:

The thread return value.

osbs_start
Start osbs library, reserving space for global internal structures.

void
osbs_start(void);

osbs_finish
Ends osbs library, freeing space from global internal structures.

void
osbs_finish(void);

osbs_platform
Get the operating system in which the application is running.

platform_t
osbs_platform(void);

Return:

The platform.

osbs_windows
Get the Windows version.

win_t
osbs_windows(void);

Return:

The Microsoft Windows version.

36.2 - Functions 729

osbs_endian
Get the “Byte orderByte order” (page 206) of the running platform.
endian_t
osbs_endian(void);

Return:

The byte order of multi-byte data types.

bproc_exec
Launch a new process.
Proc*
bproc_exec(const char_t *command,

perror_t *error);

command The command to execute (path and arguments). Eg. "ls lh" or
"C:\Programs\imgresize background.png w640 h480".

error Error code if the function fails. Can be NULL.

Return:

Child process handler that we can use to communicate with him. If the function fails,
return NULL.

Remarks:

“Multi-processing examplesMulti-processing examples” (page 168).

bproc_close
Close communication with the child process and free resources.
void
bproc_close(Proc **proc);

proc Process handler. It will be set to NULL after closing.

Remarks:

If the process is still running, this function does not finish it. It only closes the com-
munication channel between the parent and child that will continue to run independently.
Like any other object, a process must always be closed, even if it has already finished its
execution. “Multi-processing examplesMulti-processing examples” (page 168).

730 Chapter 36 - Osbs library

bproc_cancel
Force the finalization of the process.

bool_t
bproc_cancel(Proc *proc);

proc Process handler.

Return:

TRUE if the process is finish. FALSE otherwise.

bproc_wait
Wait until the child process finishes.

uint32_t
bproc_wait(Proc *proc);

proc Process handler.

Return:

The return value of the child process or UINT32_MAX if there is any error.

bproc_finish
Check if the child process is still running.

bool_t
bproc_finish(Proc *proc,

uint32_t *code);

proc Process handler.
code The output value of the process (if it has finished). Can be NULL.

Return:

TRUE if the child process has finish, FALSE if not.

Remarks:

This function returns immediately. It does not block the process that calls it.

36.2 - Functions 731

bproc_read
Read data from the process standard output (stdout).
bool_t
bproc_read(Proc *proc,

byte_t *data,
const uint32_t size,
uint32_t *rsize,
perror_t *error);

proc Process handler.
data Buffer where the read data will be written.
size The maximum bytes to read (buffer size).

rsize Receive the number of bytes actually read. Can be NULL.
error Error code if the function fails. Can be NULL.

Return:

TRUE if data has been read. FALSE if any error has occurred.

Remarks:

This function will block the parent process until the child writes in its stdout. If
there is no data in the channel and the child ends, will return FALSE with rsize = 0
and error = ekPROC_SUCCESS. “Multi-processing examplesMulti-processing examples”

(page 168).

bproc_eread
Read data from the process error output (stderr).
bool_t
bproc_eread(Proc *proc,

byte_t *data,
const uint32_t size,
uint32_t *rsize,
perror_t *error);

proc Process handler.
data Buffer where the read data will be written.
size The maximum bytes to read (buffer size).

rsize Receive the number of bytes actually read. Can be NULL.
error Error code if the function fails. Can be NULL.

732 Chapter 36 - Osbs library

Return:

TRUE if data has been read. FALSE if any error has occurred.

Remarks:

This function will block the parent process until the child writes in its stdout. If
there is no data in the channel and the child ends, will return FALSE with rsize = 0
and error = ekPROC_SUCCESS. “Multi-processing examplesMulti-processing examples”

(page 168).

bproc_write
Write data in the process input channel (stdin).
bool_t
bproc_write(Proc *proc,

const byte_t *data,
const uint32_t size,
uint32_t *wsize,
perror_t *error);

proc Process handler.
data Buffer that contains the data to write.
size The number of bytes to write.

wsize It receives the number of bytes actually written. Can be NULL.
error Error code if the function fails. Can be NULL.

Return:

TRUE if data has been written. FALSE if any error has occurred.

Remarks:

This function will block the parent process if there is no space in the buffer to complete
the write. When the child process reads stdin and free space, the writing will be com-
pleted and the parent process will continue its execution. “Multi-processing examplesMulti-
processing examples” (page 168).

bproc_read_close
Close the stdout channel of child process.
bool_t
bproc_read_close(Proc *proc);

36.2 - Functions 733

proc Process handler.

Return:

TRUE if the channel has been closed. FALSE if it was already closed.

Remarks:

This function allows ignoring the output of the child process, preventing blockages due
to channel saturation. “Launching processesLaunching processes” (page 167).

bproc_eread_close
Close the stderr channel of child process.
bool_t
bproc_eread_close(Proc *proc);

proc Process handler.

Return:

TRUE if the channel has been closed. FALSE if it was already closed.

Remarks:

This function allows ignoring the error output of the child process, preventing blockages
due to channel saturation. “Launching processesLaunching processes” (page 167).

bproc_write_close
Close the stdin channel of child process.
bool_t
bproc_write_close(Proc *proc);

proc Process handler.

Return:

TRUE if the channel has been closed. FALSE if it was already closed.

Remarks:

Some processes need to read all the stdin content before starting work. When closing
the channel, the child process receives the signal EOF End-Of-File in stdin. “Launching
processesLaunching processes” (page 167).

734 Chapter 36 - Osbs library

bproc_exit
End the current process (the caller) and all its execution children.

void
bproc_exit(const uint32_t code);

code The exit code of the process.

bthread_create
Create a new execution thread, which starts in thmain.

Thread*
bthread_create(FPtr_thread_main thmain,

type *data,
type);

thmain The thread start function thread_main. Shared data can be passed
through the data pointer.

data Data passed as a parameter to thmain.
type Type of data.

Return:

Thread handle. If the function fails, return NULL.

Remarks:

The thread will run in parallel until thmain return or call bthread_cancel. “Throwing
threadsThrowing threads” (page 171).

bthread_current_id
Returns the identifier of the current thread, that is, the one that is running when this
function is called.

int
bthread_current_id(void);

Return:

Thread identifier.

36.2 - Functions 735

bthread_close
Close the thread handler and free resources.

void
bthread_close(Thread **thread);

thread Thread handle. It will be put to NULL after closing.

Remarks:

If the thread is still running, this function does not finish it. Like any other object,
a thread must always be closed, even if it has already finished its execution. “Throwing
threadsThrowing threads” (page 171).

bthread_cancel
Force a thread termination.

void
bthread_cancel(Thread *thread);

thread Thread handler.

Remarks:

It is not recommended to call this function. There will be no “clean” exit of the
thread. If it is within a critical section, it will not be released. Neither will it release the
dynamic memory reserved privately by the thread. The correct way to end a thread of ex-
ecution is to return thmain. Shared variables can be used (“Mutual exclusion” (page 175))
to indicate to a thread that it should end cleanly.

bthread_wait
Stops the thread that calls this function until thread finishes its execution.

uint32_t
bthread_wait(Thread *thread);

thread Thread handle to which we must wait.

Return:

The thread return value. If an error occurs, return UINT32_MAX.

736 Chapter 36 - Osbs library

bthread_finish
Check if the thread is still running.
bool_t
bthread_finish(Thread *thread,

uint32_t *code);

thread Thread handler.
code The return value of the thmain function (if it has ended). Can be NULL.

Return:

TRUE if the thread has finished, FALSE otherwise.

Remarks:

This function returns immediately.

bthread_sleep
Suspends the execution of the current thread (the one that calls this function) for a certain
number of milliseconds.
void
bthread_sleep(const uint32_t milliseconds);

milliseconds Time interval (in milliseconds) that the suspension will last.

Remarks:

Performs a “passive” suspension, where no “empty loop” will be executed. The thread
is dropped by the scheduler and reactivated later.

bmutex_create
Creates a mutual exclusion object that allows multiple threads to share the same resource,
such as a memory or file area on disk, preventing them from accessing at the same time.
Mutex*
bmutex_create(void);

Return:

The mutual exclusion handler.

Remarks:

“Threads” (page 170), “Multi-thread exampleMulti-thread example” (page 172).

36.2 - Functions 737

bmutex_close
Close the mutual exclusion object and free memory.
void
bmutex_close(Mutex **mutex);

mutex The mutual exclusion handler. It will be set to NULL after closing.

Remarks:

“Threads” (page 170), “Multi-thread exampleMulti-thread example” (page 172).

bmutex_lock
Marks the start of a critical section, blocking access to a shared resource. If another thread
tries to block, it will be stopped until the current thread calls bmutex_unlock.
void
bmutex_lock(Mutex *mutex);

mutex The mutual exclusion handler.

Remarks:

“Threads” (page 170), “Multi-thread exampleMulti-thread example” (page 172).

bmutex_unlock
Mark the end of a critical section, unlocking access to a shared resource. If another thread
is waiting, access will be allowed to its critical section and, therefore, to the shared resource.
void
bmutex_unlock(Mutex *mutex);

mutex The mutual exclusion handler.

Remarks:

To avoid unnecessary delays, the time between bmutex_lock and bmutex_unlock
should be as short as possible. Any calculation that the thread can make in its private
memory space must precede the call to bmutex_lock. “Threads” (page 170), “Multi-thread
exampleMulti-thread example” (page 172).

dlib_open
Load a dynamic library at runtime.

738 Chapter 36 - Osbs library

DLib*
dlib_open(const char_t *path,

const char_t *libname);

DLib *lib = dlib_open(NULL, "myplugin");
// myplugin.dll In Windows
// libmyplugin.so In Linux
// libmyplugin.dylib In macOS

path Directory where the library is located. Can be NULL.
libname Library name. It must be the “plain” name without prefixes, suffixes or

extensions specific to each operating system.

Return:

Pointer to library or NULL if failed to load.

Remarks:

If path is NULL, the library search strategy of each operating system will be followed.
See “Library search pathsLibrary search paths” (page 176).

dlib_close
Close a previously opened library with dlib_open.

void
dlib_close(DLib **dlib);

dlib Pointer to the library. Will be set to NULL upon destruction.

dlib_proc
Get a pointer to a library method.

type
dlib_proc(DLib *lib,

const char_t *procname,
type);

typedef uint32_t(*FPtr_add)(const uint32_t, const uint32_t);
FPtr_add func_add = dlib_proc(lib, "plugin_add", FPtr_add);
uint32_t ret = func_add(67, 44);

36.2 - Functions 739

lib Library.
procname Method name.

type Method type. Needed to convert from a generic pointer.

Return:

Pointer to method.

dlib_var
Get a pointer to a library variable.
type*
dlib_var(DLib *lib,

const char_t *varname,
type);

const V2Df *vzero = dlib_var(lib, "kV2D_ZEROf", V2Df);

lib Library.
varname Variable name.

type Variable type.

Return:

Pointer to variable.

bfile_dir_work
Gets the current working directory of the process. It is the directory from which the
relative pathnames will be interpreted.
uint32_t
bfile_dir_work(char_t *pathname,

const uint32_t size);

pathname Buffer where the directory will be written.
size Size in bytes of the buffer pathname.

Return:

The number of bytes written in pathname, including the null character '\0'.

Remarks:

“Filename and pathnameFilename and pathname” (page 178)

740 Chapter 36 - Osbs library

bfile_dir_set_work
Change the current working directory of the application. The relative pathnames will be
interpreted from here.
bool_t
bfile_dir_set_work(const char_t *pathname,

ferror_t *error);

pathname The name of the directory.
error Error code if the function fails. Can be NULL.

Return:

TRUE if the working directory has changed, FALSE if there have been any errors.

Remarks:

“Filename and pathnameFilename and pathname” (page 178)

bfile_dir_home
Get the home directory of the current user.
uint32_t
bfile_dir_home(char_t *pathname,

const uint32_t size);

pathname Buffer where the directory will be written.
size Size in bytes of the buffer pathname.

Return:

The number of bytes written in pathname, including the null character '\0'.

Remarks:

“Filename and pathnameFilename and pathname” (page 178)

bfile_dir_data
Gets the AppData directory where application configuration data can be saved.
uint32_t
bfile_dir_data(char_t *pathname,

const uint32_t size);

36.2 - Functions 741

pathname Buffer where the directory will be written.
size Size in bytes of the buffer pathname.

Return:

The number of bytes written in pathname, including the null character '\0'.

Remarks:

“Home and AppDataHome and AppData” (page 179)

bfile_dir_exec
Gets the absolute pathname of the current executable.
uint32_t
bfile_dir_exec(char_t *pathname,

const uint32_t size);

char_t path[512];
bfile_dir_exec(path, 512);
path = "C:\Program Files\TheApp\theapp.exe"

pathname Buffer where the directory will be written.
size Size in bytes of the buffer pathname.

Return:

The number of bytes written in pathname, including the null character '\0'.

bfile_dir_create
Create a new directory. It will fail if any intermediate directory of pathname does not
exist.
bool_t
bfile_dir_create(const char_t *pathname,

ferror_t *error);

pathname Name of the directory to be created, ending in a null character '\0'.
error Error code if the function fails. Can be NULL.

Return:

TRUE if the directory has been created, FALSE if there have been any errors.

Remarks:

742 Chapter 36 - Osbs library

hfile_dir_create create all intermediate directories at once.

bfile_dir_open
Open a directory to browse its contents. Then you have to use bfile_dir_get to it-
erate. The filename is not ordered under any criteria. At the end, you should call
bfile_dir_close.

Dir*
bfile_dir_open(const char_t *pathname,

ferror_t *error);

pathname Name of the directory, ending in a null character '\0'.
error Error code if the function fails. Can be NULL.

Return:

The directory handler or NULL if there has been an error.

bfile_dir_close
Close a previously open directory with bfile_dir_open.

void
bfile_dir_close(Dir **dir);

dir The directory handler. It will be set to NULL after the closing.

bfile_dir_get
Gets the attributes of the current file when we go through a directory. Previously we have
to open the directory with bfile_dir_open.

bool_t
bfile_dir_get(Dir *dir,

char_t *filename,
const uint32_t size,
file_type_t *type,
uint64_t *fsize,
Date *updated,
ferror_t *error);

36.2 - Functions 743

dir Open directory handler.
filename Here will write the name of the file or sub-directory, ending in a null

character '\0' and without including any path. Can be NULL.
size Size in bytes of the name buffer.

type Get the file type. Can be NULL.
fsize Gets the file size in bytes. Can be NULL.

updated Gets the date of the last update of the file. Can be NULL.
error Error code if the function fails. Can be NULL.

Return:

TRUE if the file attributes have been read correctly. When there are no more files to go,
it returns FALSE with error=ekFNOFILES.

Remarks:

This function will advance to the next file within the open directory after obtaining the
current item’s data. If there is not enough space in name, will return FALSE with error
=ekFBIGNAME and will not advance to the next file. Use hfile_dir_loop to browse the
contents of a directory more comfortably.

bfile_dir_delete
Delete a directory. It will fail if the directory is not completely empty. Use hfile_dir_destroy
to completely and recursively erase a directory that may have content.

bool_t
bfile_dir_delete(const char_t *pathname,

ferror_t *error);

pathname Name of the directory, ending in a null character '\0'.
error Error code if the function fails. Can be NULL.

Return:

TRUEif the directory has been deleted, FALSE otherwise.

bfile_create
Create a new file. If previously it already exists its content will be erased. The new file
will be opened for writing.

744 Chapter 36 - Osbs library

File*
bfile_create(const char_t *pathname,

ferror_t *error);

pathname File name including its absolute or relative path.
error Error code if the function fails. Can be NULL.

Return:

The file handler or NULL if there has been an error.

bfile_open
Open an existing file. Do not create it, if file does not exist this function will fail.
File*
bfile_open(const char_t *pathname,

const file_mode_t mode,
ferror_t *error);

pathname File name including its absolute or relative path.
mode Opening mode.
error Error code if the function fails. Can be NULL.

Return:

The file handler or NULL if there has been an error.

bfile_close
Close a file previously opened with bfile_create or bfile_open.
void
bfile_close(File **file);

file File handler. It will be set to NULL after closing.

bfile_lstat
Get the attributes of a file through its pathname.
bool_t
bfile_lstat(const char_t *pathname,

file_type_t *type,
uint64_t *fsize,
Date *updated,

36.2 - Functions 745

ferror_t *error);

pathname File name including its absolute or relative path.
type Get the file type. Can be NULL.
fsize Gets the file size in bytes. Can be NULL.

updated Gets the date of the last update of the file. Can be NULL.
error Error code if the function fails. Can be NULL.

Return:

TRUEif it worked correctly, or FALSE otherwise.

bfile_fstat
Get the attributes of a file through its handler.
bool_t
bfile_fstat(File *file,

file_type_t *type,
uint64_t *fsize,
Date *updated,
ferror_t *error);

file File manager.
type Get the file type. Can be NULL.
fsize Gets the file size in bytes. Can be NULL.

updated Gets the date of the last update of the file. Can be NULL.
error Error code if the function fails. Can be NULL.

Return:

TRUEif it worked correctly, or FALSE otherwise.

bfile_read
Read data from an open file.
bool_t
bfile_read(File *file,

byte_t *data,
const uint32_t size,
uint32_t *rsize,
ferror_t *error);

746 Chapter 36 - Osbs library

file File handler.
data Buffer where the read data will be written.
size The number of maximum bytes to read.

rsize Receive the number of bytes actually read. Can be NULL.
error Error code if the function fails. Can be NULL.

Return:

TRUE if the data has been read correctly. If there is no more data (end of the file) it
returns FALSE with rsize = 0 and error=ekFOK.

Remarks:

“File streamFile stream” (page 194) implements high-level functions for reading/writing
files.

bfile_write
Write data in an open file.

bool_t
bfile_write(File *file,

const byte_t *data,
const uint32_t size,
uint32_t *wsize,
ferror_t *error);

file File handler.
data Buffer that contains the data to write.
size The number of bytes to write.

wsize It receives the number of bytes actually written. Can be NULL.
error Error code if the function fails. Can be NULL.

Return:

TRUE if the data has been written, or FALSE if there have been any errors.

Remarks:

“File streamFile stream” (page 194) implements high-level functions for reading/writing
files.

36.2 - Functions 747

bfile_seek
Move a file pointer to a new location.
bool_t
bfile_seek(File *file,

const int64_t offset,
const file_seek_t whence,
ferror_t *error);

file File handler.
offset Number of bytes to move the pointer. Can be negative.

whence Pointer position from which offset will be added.
error Error code if the function fails. Can be NULL.

Return:

TRUE if it worked correctly, FALSE if not.

Remarks:

It will return FALSE and error ekFSEEKNEG if the final pointer position is negative.
It is not an error to set a pointer to a position beyond the end of the file. The file size
does not increase until it is written to. A write operation increases the size of the file to
the pointer position plus the size of the write buffer. Intermediate bytes would be left
undetermined.

bfile_pos
Return the current position of the file pointer.
uint64_t
bfile_pos(const File *file);

file File handler.

Return:

Position from start of file.

bfile_delete
Delete a file from the file system.
bool_t
bfile_delete(const char_t *pathname,

ferror_t *error);

748 Chapter 36 - Osbs library

pathname File name including its absolute or relative path.
error Error code if the function fails. Can be NULL.

Return:

TRUE if the file has been deleted, or FALSE if any error has occurred.

bsocket_connect
Create a client socket and try to establish a connection to a remote server.
Socket*
bsocket_connect(const uint32_t ip,

const uint16_t port,
const uint32_t timeout_ms,
serror_t *error);

ip The 32-bit IPv4 address of the remote host. bsocket_str_ip.
port The connection port.

timeout_ms Maximum number of milliseconds to wait to establish connection. If it
is 0 it will wait indefinitely.

error Error code if the function fails. Can be NULL.

Return:

Socket handle, or NULL if the function fails.

Remarks:

The process will be blocked until a response is obtained from the server or the timeout
is fulfilled. See “Client/Server exampleClient/Server example” (page 180).

bsocket_server
Create a server socket.
Socket*
bsocket_server(const uint16_t port,

const uint32_t max_connect,
serror_t *error);

port The port where the server will “listen”.
max_connect The maximum number of connections can queue.

error Error code if the function fails. It can be NULL.

36.2 - Functions 749

Return:

Socket handle, or NULL if the function fails.

Remarks:

Client requests will be stored in a queue until a call to bsocket_accept is received.
See “Client/Server exampleClient/Server example” (page 180).

bsocket_accept
Accepts a connection to the server created with bsocket_server and starts the conver-
sation with the client.

Socket*
bsocket_accept(Socket *socket,

const uint32_t timeout_ms,
serror_t *error);

socket Handler returned by bsocket_server.
timeout_ms Maximum number of milliseconds to wait to receive the request. If it is

0 it will wait indefinitely.
error Error code if the function fails. It can be NULL.

Return:

Socket handle, or NULL if the function fails.

Remarks:

The process will be blocked until a request is obtained from a client or the timeout is
fulfilled. See “Client/Server exampleClient/Server example” (page 180).

bsocket_close
Close a previously created socket with bsocket_connect, bsocket_server or bsocket_accept
.

void
bsocket_close(Socket **socket);

socket The socket handler. It will be set to NULL after closing.

750 Chapter 36 - Osbs library

bsocket_local_ip
Get the local ip address and port associated with the socket.

void
bsocket_local_ip(Socket *socket,

uint32_t *ip,
uint16_t *port);

socket Socket handle.
ip Local IP address.

port Local IP port.

bsocket_remote_ip
Get the IP address and the remote port associated with the other interlocutor of the
connection.

void
bsocket_remote_ip(Socket *socket,

uint32_t *ip,
uint16_t *port);

socket Socket handle.
ip Remote IP address.

port Remote IP port.

bsocket_read_timeout
Sets the maximum time to wait for the function bsocket_read.

void
bsocket_read_timeout(Socket *socket,

const uint32_t timeout_ms);

socket Socket handle.
timeout_ms Maximum number of milliseconds to wait for the caller to write data to

the channel. If it is 0 it will wait indefinitely.

bsocket_write_timeout
Sets the maximum time to wait for the function bsocket_write.

36.2 - Functions 751

void
bsocket_write_timeout(Socket *socket,

const uint32_t timeout_ms);

socket Socket handle.
timeout_ms Maximum number of milliseconds that will wait until the caller reads

the data and unblocked on the channel. If it is 0 it will wait indefinitely.

bsocket_read
Read data from the socket.
bool_t
bsocket_read(Socket *socket,

byte_t *data,
const uint32_t size,
uint32_t *rsize,
serror_t *error);

socket Socket handle.
data Buffer where the read data will be written.
size The number of maximum bytes to read (buffer size).

rsize Receive the number of bytes actually read. Can be NULL.
error Error code if the function fails. Can be NULL.

Return:

TRUE if data has been read. FALSE if any error has occurred.

Remarks:

The process will be blocked until the interlocutor writes data to the channel or the
timeout expires. See bsocket_read_timeout.

bsocket_write
Write data in the socket.
bool_t
bsocket_write(Socket *socket,

const byte_t *data,
const uint32_t size,
uint32_t *wsize,
serror_t *error);

752 Chapter 36 - Osbs library

socket Socket handle.
data Buffer that contains the data to write.
size The number of bytes to write.

wsize It receives the number of bytes actually written. Can be NULL.
error Error code if the function fails. Can be NULL.

Return:

TRUE if data has been written. FALSE if any error has occurred.

Remarks:

The process will be blocked if the channel is full until the interlocutor reads the data
and unblocks or expires the timeout. See bsocket_write_timeout.

bsocket_url_ip
Get the IPv4 address of a host from its url.
uint32_t
bsocket_url_ip(const char_t *url,

serror_t *error);

uint32_t ip = bsocket_url_ip("www.google.com", NULL);
if (ip != 0)
{

Socket *sock = bsocket_connect(ip, 80, NULL);
...

}

url The host url, eg. www.google.com.
error Error code if the function fails. Can be NULL.

Return:

Value of the host’s IPv4 address or 0 if there has been an error.

bsocket_str_ip
Get the IPv4 address from a string of type "192.168.1.1".
uint32_t
bsocket_str_ip(const char_t *ip);

36.2 - Functions 753

uint32_t ip = bsocket_str_ip("192.168.1.1");
Socket *sock = bsocket_connect(ip, 80, NULL);

...
}

ip The string with the IP.

Return:

Value of the IPv4 address in 32-bit binary format.

bsocket_host_name
Gets the name of the host.

const char_t*
bsocket_host_name(char_t *buffer,

const uint32_t size);

buffer Buffer to store the name.
size Size of buffer.

Return:

Pointer to the string buffer.

bsocket_host_name_ip
Gets the host name from its IP.

const char_t*
bsocket_host_name_ip(uint32_t ip,

char_t *buffer,
const uint32_t size);

ip Value of the IPv4 address in 32-bit binary format.
buffer Buffer to store the name.

size Size of buffer.

Return:

Pointer to the string buffer.

754 Chapter 36 - Osbs library

bsocket_ip_str
Gets the IP address in text string format.
const char_t*
bsocket_ip_str(uint32_t ip,

const char_t *ip);

ip Value of the IPv4 address in 32-bit binary format.
ip The string with the IP.

Return:

String of type “192.168.1.1”.

Remarks:

The string is returned in an internal buffer that will be overwritten on the next call.
Make a copy of the string if we need it to be persistent.

bsocket_hton2
Change the “endianness” of a 16bit value prior to being sent through the socket Host-to-
Network.
void
bsocket_hton2(byte_t *dest,

const byte_t *src);

uint16_t value = 45321;
byte_t dest[2];
bsocket_hton2(dest, (const byte_t*)&value);
bsocket_write(sock, dest, 2, NULL, NULL);

dest Destination buffer (at least 2 bytes).
src Buffer (variable).

bsocket_hton4
Same as bsocket_hton2, for 4-byte values.
void
bsocket_hton4(byte_t *dest,

const byte_t *src);

dest Destination buffer (at least 4 bytes).
src Buffer (variable).

36.2 - Functions 755

bsocket_hton8
Same as bsocket_hton2, for 8-byte values.
void
bsocket_hton8(byte_t *dest,

const byte_t *src);

dest Destination buffer (at least 8 bytes).
src Buffer (variable).

bsocket_ntoh2
Change the “endianness” of a 16bit value after being received by the socket Network-to-
Host.
void
bsocket_ntoh2(byte_t *dest,

const byte_t *src);

byte_t src[2];
uint16_t value;
bsocket_read(sock, src, 2, NULL, NULL);
bsocket_ntoh2((byte_t*)&value, src);
// value = 45321

dest 16-bit destination buffer (variable).
src Buffer received by socket.

bsocket_ntoh4
Same as bsocket_ntoh2, for 4-byte values.
void
bsocket_ntoh4(byte_t *dest,

const byte_t *src);

dest Buffer (variable) destination 32bits.
src Buffer received by socket.

bsocket_ntoh8
Same as bsocket_ntoh2, for 8-byte values.
void
bsocket_ntoh8(byte_t *dest,

const byte_t *src);

756 Chapter 36 - Osbs library

dest Buffer (variable) destination 64bits.
src Buffer received by socket.

btime_now
Gets the number of micro-seconds elapsed since January 1, 1970 until this precise moment.
Use the difference between instants to know the time consumed by a process.

uint64_t
btime_now(void);

Return:

The number of micro-seconds elapsed, that is, the number of intervals of 1/1000000
seconds.

Remarks:

The initial instant is January 1, 1970 in Unix/Linux systems and January 1, 1601
in Windows since it is the first year of the Gregorian cycle in which Windows NT was
activated. This function equates both starts, always returning the Unix time.

btime_date
Gets the current system date.

void
btime_date(Date *date);

date Current date.

btime_to_micro
Convert a date to Unix Time.

uint64_t
btime_to_micro(const Date *date);

date The date to convert.

Return:

The number of micro-seconds since January 1, 1970 UTC.

36.2 - Functions 757

btime_to_date
Transform Unix Time into a date.

void
btime_to_date(const uint64_t micro,

Date *date);

micro Number of micro-seconds since January 1, 1970 UTC.
date Result date.

log_printf
Write a message in the log, with the printf format.

uint32_t
log_printf(const char_t *format,

...);

log_printf("Leaks of object '%s' (%d bytes)", object>name, object>size);
[12:34:23] Leaks of object 'String' (96 bytes)

format String with the printf-like format with a variable number of parameters.
... Arguments or variables of printf.

Return:

The number of bytes written.

log_output
It establishes whether the content of the log will be redirected or not to the standard
output.

void
log_output(const bool_t std,

const bool_t err);

std If TRUE the lines will be sent to the standard output stdout. Default,
TRUE.

err If TRUE the lines will be sent to the error output stderr. Default,
FALSE.

758 Chapter 36 - Osbs library

log_file
Set a destination file, where the log lines will be written.
void
log_file(const char_t *pathname);

pathname File name including its absolute or relative path. If the file does not
exist it will be created and if it already exists, future lines will be added
at the end of it. If NULL writing to log file will be disabled.

log_get_file
Gets the current file associated with the log.
const char_t*
log_get_file(void);

Return:

The absolute pathname of the file.

37C
ha

pt
er

Core library

37.1. Types and Constants

DeclSt
Given a struct, enable macros for compile-time type checking in “Arrays” (page 208)
and “Binary search trees” (page 217). Usage: DeclSt(Product) immediately after the
struct definition. See “Registers or pointersRegisters or pointers” (page 209).

DeclPt
Same as DeclSt for pointer containers.

kSTDIN
Stream connected to the standard input stdin.
Stream* kSTDIN;

kSTDOUT
Stream connected to standard output stdout.
Stream* kSTDOUT;

kSTDERR
Stream connected to error output stderr.
Stream* kSTDERR;

759

760 Chapter 37 - Core library

kDEVNULL
Null write stream. All content sent through this channel will be ignored.
Stream* kDEVNULL;

kDATE_NULL
Represents an invalid date.
Date kDATE_NULL;

enum core_event_t
Event types in core library.

ekEASSERT Redirection of “Asserts” (page 153).
ekEFILE A file detected while browsing a directory. hfile_dir_loop

.
ekEENTRY Entry in a sub-directory while we go through a directory.

hfile_dir_loop.
ekEEXIT Exit of a sub-directory.

enum sstate_t
“Streams” (page 193) state.

ekSTOK All ok, no errors.
ekSTEND No more data on the channel.

ekSTCORRUPT The data in the channel is invalid or has not been read cor-
rectly.

ekSTBROKEN Error in the communication channel.

enum vkey_t
Keyboard codes. See “Using the keyboardUsing the keyboard” (page 316).

ekKEY_UNDEF

ekKEY_A

37.1 - Types and Constants 761

ekKEY_S

ekKEY_D

ekKEY_F

ekKEY_H

ekKEY_G

ekKEY_Z

ekKEY_X

ekKEY_C

ekKEY_V

ekKEY_BSLASH

ekKEY_B

ekKEY_Q

ekKEY_W

ekKEY_E

ekKEY_R

ekKEY_Y

ekKEY_T

ekKEY_1

ekKEY_2

ekKEY_3

ekKEY_4

ekKEY_6

ekKEY_5

ekKEY_9

ekKEY_7

ekKEY_8

ekKEY_0

ekKEY_RCURLY

762 Chapter 37 - Core library

ekKEY_O

ekKEY_U

ekKEY_LCURLY

ekKEY_I

ekKEY_P

ekKEY_RETURN

ekKEY_L

ekKEY_J

ekKEY_SEMICOLON

ekKEY_K

ekKEY_QUEST

ekKEY_COMMA

ekKEY_MINUS

ekKEY_N

ekKEY_M

ekKEY_PERIOD

ekKEY_TAB

ekKEY_SPACE

ekKEY_GTLT

ekKEY_BACK

ekKEY_ESCAPE

ekKEY_F17

ekKEY_NUMDECIMAL

ekKEY_NUMMULT

ekKEY_NUMADD

ekKEY_NUMLOCK

ekKEY_NUMDIV

ekKEY_NUMRET

37.1 - Types and Constants 763

ekKEY_NUMMINUS

ekKEY_F18

ekKEY_F19

ekKEY_NUMEQUAL

ekKEY_NUM0

ekKEY_NUM1

ekKEY_NUM2

ekKEY_NUM3

ekKEY_NUM4

ekKEY_NUM5

ekKEY_NUM6

ekKEY_NUM7

ekKEY_NUM8

ekKEY_NUM9

ekKEY_F5

ekKEY_F6

ekKEY_F7

ekKEY_F3

ekKEY_F8

ekKEY_F9

ekKEY_F11

ekKEY_F13

ekKEY_F16

ekKEY_F14

ekKEY_F10

ekKEY_F12

ekKEY_F15

ekKEY_PAGEUP

764 Chapter 37 - Core library

ekKEY_HOME

ekKEY_SUPR

ekKEY_F4

ekKEY_PAGEDOWN

ekKEY_F2

ekKEY_END

ekKEY_F1

ekKEY_LEFT

ekKEY_RIGHT

ekKEY_DOWN

ekKEY_UP

ekKEY_LSHIFT

ekKEY_RSHIFT

ekKEY_LCTRL

ekKEY_RCTRL

ekKEY_LALT

ekKEY_RALT

ekKEY_INSERT

ekKEY_EXCLAM

ekKEY_MENU

ekKEY_LWIN

ekKEY_RWIN

ekKEY_CAPS

ekKEY_TILDE

ekKEY_GRAVE

ekKEY_PLUS

enum mkey_t
Modifier keys.

37.1 - Types and Constants 765

ekMKEY_NONE

ekMKEY_SHIFT

ekMKEY_CONTROL

ekMKEY_ALT

ekMKEY_COMMAND

enum token_t
Token types on stm_read_token.

ekTSLCOM One-line comment, which begins with //.
ekTMLCOM Multi-line commentary, enclosed between /* and */.
ekTSPACE Represents a series of blanks (' ', '\t', '\v', '\f', '\r').
ekTEOL Represents the new line character ('\n').
ekTLESS Less than sign '<'.

ekTGREAT Greater than sign '>'.
ekTCOMMA Comma sign ','.
ekTPERIOD Point sign '.'.
ekTSCOLON Semicolon sign ';'.
ekTCOLON Colon sign ':'.

ekTOPENPAR Opening parenthesis '('.
ekTCLOSPAR Closing parenthesis ')'.
ekTOPENBRAC Opening bracket '['.
ekTCLOSBRAC Closing bracket ']'.
ekTOPENCURL Opening curly bracket '{'.
ekTCLOSCURL Closing curly bracket '}'.

ekTPLUS Plus sign '+'.
ekTMINUS Minus sign ''.
ekTASTERK Asterisk sign '*'.
ekTEQUALS Equal sign '='.
ekTDOLLAR Dollar sign.

766 Chapter 37 - Core library

ekTPERCEN Percentage sign '%'.
ekTPOUND Pound sign '#'.
ekTAMPER Ampersand sign '&'.
ekTAPOST Apostrophe sign '''.
ekTQUOTE Quotation sign '"'.
ekTCIRCUM Circumflex accent sign '^'.
ekTTILDE Tilde sign '~'.
ekTEXCLA Exclamation sign '!'.
ekTQUEST Question mark '?'.
ekTVLINE Vertical bar sign '|'.
ekTSLASH Slash bar sign '/'.
ekTBSLASH Backslash sign '\'.

ekTAT At sign '@'.
ekTINTEGER Integer number. “NumbersNumbers” (page 202).

ekTOCTAL Octal number. “NumbersNumbers” (page 202).
ekTHEX Hexadecimal number. “NumbersNumbers” (page 202).
ekTREAL Real number. “NumbersNumbers” (page 202).

ekTSTRING Unicode character string, enclosed in quotation marks.
“StringsStrings” (page 201).

ekTIDENT Identifier. “IdentifiersIdentifiers” (page 200).
ekTUNDEF Unknown token.
ekTCORRUP Error in the input “Streams” (page 193) or data.

ekTEOF End of the “Streams” (page 193) or data. No more tokens.
ekTRESERVED Keywords. Being of general purpose, the analyzer does not

label any identifier as a reserved word. It must be done in
phases after the analysis.

struct Buffer
Block of memory of general purpose, reserved dynamically. Once created, you can no
longer resize. “Buffers” (page 192).
struct Buffer;

37.1 - Types and Constants 767

struct String
UTF8 character string reserved dynamically. They are “partially mutable” objects. The
reserved memory can not grow, but characters can be substituted as long as the buffer’s
initial capacity does not overflow. “Strings” (page 192).
struct String;

struct Stream
Generic input/output channel, where it is possible to read and write formatted data.
“Streams” (page 193).
struct Stream;

struct ArrSt
Array of records. The type of object is indicated in parentheses. “Arrays” (page 208).
struct ArrSt;

struct ArrPt
Pointers array. The type of object is indicated in parentheses. “Arrays (pointers)”
(page 217).
struct ArrPt;

struct SetSt
Set of records. The type of object is indicated in parentheses. “Binary search trees”
(page 217).
struct SetSt;

struct SetPt
Pointers set. The type of object is indicated in parentheses. “Binary search trees (pointers)
” (page 222).
struct SetPt;

768 Chapter 37 - Core library

struct RegEx
Regular expresion. “Regular expressions” (page 222).
struct RegEx;

struct Event
Contains information regarding an event. “Events” (page 230).
struct Event;

struct KeyBuf
Keyboard buffer with the state of each key (pressed/released). “Keyboard buffer” (page 231).
struct KeyBuf;

struct Listener
Link to the generator and receiver of an event through a callback function “Events”
(page 230).
struct Listener;

struct IListener
C++ interface for use class members as event handlers. “Use of C++” (page 45).
struct IListener;

struct DirEntry
Directory element, obtained by hfile_dir_list.
struct DirEntry
{

String* name;
file_type_t type;
uint64_t size;
Date date;

};

37.1 - Types and Constants 769

name File or subdirectory name, without path.
type Item type.
size Size in bytes.
date Date of last modification.

struct EvFileDir
Parameters of the event ekEFILE and ekEENTRY during automatic directory browsing.
hfile_dir_loop.
struct EvFileDir
{

const char_t* pathname;
uint32_t level;

};

pathname The partial path from the parameter pathname of
hfile_dir_loop.

level The depth of the directory from pathname.

struct ResPack
Package of resources that will be loaded together. Use ResId to access a specific resource.
“Resources” (page 129).
struct ResPack;

struct ResId
Identifier of a resource. They are generated automatically by nrc NAppGUI Resource
Compiler. “Resources” (page 129).
struct ResId;

struct Clock
It measures the time elapsed between two instants within the application, with micro-
seconds precision. It is also useful for launching events at regular intervals of time.
struct Clock;

770 Chapter 37 - Core library

37.2. Functions

FPtr_remove
Releases the memory of an object’s fields, but not the object itself. “Registers or pointer-
sRegisters or pointers” (page 209).
void
(*FPtr_remove)(type *obj);

obj Pointer to the object whose fields must be released.

FPtr_event_handler
Event handler. They are callback functions that will be called by the generator of an event
when it happens. “Events” (page 230).
void
(*FPtr_event_handler)(type *obj,

Event *event);

obj General data passed as the first parameter of the function.
event The event.

FPtr_read
Create an object from data read from a “Streams” (page 193). “SerializationSerialization”
(page 213).
type*
(*FPtr_read)(Stream *stream);

stream The I/O channel where the object is serialized.

Return:

The created object, deserializing the stream data.

FPtr_read_init
Similar to FPtr_read where the memory of the object has already been reserved, but not
initialized. “SerializationSerialization” (page 213).
void
(*FPtr_read_init)(Stream *stream,

type *obj);

37.2 - Functions 771

stream The I/O channel where the object is serialized.
obj The object whose fields must be deserialized.

FPtr_write
Write an object in a “Streams” (page 193). “SerializationSerialization” (page 213).

void
(*FPtr_write)(Stream *stream,

const type *obj);

stream The I/O channel where serialize the object.
obj The object to write.

core_start
Start the core library, reserving space for the global internal structures. Internally calls
osbs_start.

void
core_start(void);

core_finish
Ends the core library, freeing the space of the global internal structures. Internally calls
osbs_finish.

void
core_finish(void);

heap_start_mt
Start a multi-threaded section.

void
heap_start_mt(void);

Remarks:

See “Multi-thread memoryMulti-thread memory” (page 189).

772 Chapter 37 - Core library

heap_end_mt
End a multi-thread section.
void
heap_end_mt(void);

Remarks:

See “Multi-thread memoryMulti-thread memory” (page 189).

heap_verbose
Enable/disable memory auditor ’verbose’ mode.
void
heap_verbose(bool_t verbose);

verbose TRUE to activate.

Remarks:

By default FALSE.

heap_stats
Enable/disable memory auditor statistics.
void
heap_stats(bool_t stats);

stats TRUE to activate.

Remarks:

By default TRUE.

heap_leaks
Returns TRUE if there are memory leaks at the end of execution.
bool_t
heap_leaks(void);

Return:

TRUE if leaks exist.

37.2 - Functions 773

heap_malloc
Reserve a memory block with the default alignment sizeof(void*).
byte_t*
heap_malloc(const uint32_t size,

const char_t *name);

byte_t *mem = heap_malloc(1024 * 768, "PixelBuffer");
...
heap_free(&mem, 1024 * 768, "PixelBuffer");

size Size in bytes of the block.
name Reference text for the auditor.

Return:

Pointer to the new block. Must be released with heap_free when it is no longer
necessary.

Remarks:

Use this function for generic blocks. For types use heap_new.

heap_calloc
Like heap_malloc, but initializing the block with 0s.
byte_t*
heap_calloc(const uint32_t size,

const char_t *name);

byte_t *mem = heap_calloc(256 * 256, "DrawCanvas");
/* mem = {0, 0, 0, 0, ..., 0}; */
...
heap_free(&mem, 256 * 256, "DrawCanvas");

size Size in bytes of the block.
name Reference text for the auditor.

Return:

Pointer to the new block. Must be released with heap_free when it is no longer
necessary.

Remarks:

Use this function for generic blocks. For types use heap_new.

774 Chapter 37 - Core library

heap_realloc
Reallocs an existing memory block due to the expansion or reduction of it. Guarantees
that the previous content of the block is preserved min(size, new_size). Try to do it
without moving memory (in situ), but if it is not possible look for a new zone. It also
guarantees the default alignment sizeof(void*) if you have to reserve a new block.
byte_t*
heap_realloc(byte_t *mem,

const uint32_t size,
const uint32_t new_size,
const char_t *name);

byte_t *mem = heap_malloc(64, "ArrayData");
...
mem = heap_realloc(mem, 64, 128, ArrayData);
...
heap_free(&mem, 128, "ArrayData");

mem Pointer to the original block to relocate.
size Size in bytes of the original block mem.

new_size New required size, in bytes.
name Reference text for the auditor. It must be the same as the one used in

heap_malloc.

Return:

Pointer to the relocated block. It will be the same as the original pointer mem if the
relocation “in-situ” has been successful. Must be released with heap_free when it is no
longer necessary.

Remarks:

Use this function for generic blocks. For types use heap_realloc_n.

heap_aligned_malloc
Reserve a memory block with alignment.
byte_t*
heap_aligned_malloc(const uint32_t size,

const uint32_t align,
const char_t *name);

byte_t *sse_data = heap_aligned_malloc(256 * 16, 16, "Vectors");
...
heap_free(&mem, 256 * 16, "Vectors");

37.2 - Functions 775

size Size in bytes of the block.
align Alignment. It must be power of 2.
name Reference text for the auditor.

Return:

Pointer to the new block. Must be released with heap_free when it is no longer
necessary.

heap_aligned_calloc
Like heap_aligned_malloc , but initializing the block with 0s.
byte_t*
heap_aligned_calloc(const uint32_t size,

const uint32_t align,
const char_t *name);

byte_t *sse_data = heap_aligned_calloc(256 * 16, 16, "Vectors");
/* see_data = {0, 0, 0, 0, ..., 0}; */
...
heap_free(&mem, 256 * 16, "Vectors");

size Size in bytes of the block.
align Alignment. It must be power of 2.
name Reference text for the auditor.

Return:

Pointer to the new block. Must be released with heap_free when it is no longer
necessary.

heap_aligned_realloc
Like heap_realloc, but guaranteeing memory alignment.
byte_t*
heap_aligned_realloc(byte_t *mem,

const uint32_t size,
const uint32_t new_size,
const uint32_t align,
const char_t *name);

byte_t *sse_data = heap_aligned_malloc(256 * 16, 16, "Vectors");
...
sse_data = heap_aligned_realloc(sse_data, 256 * 16, 512 * 16, 16, "Vectors");

776 Chapter 37 - Core library

...
heap_free(&mem, 512 * 16, "Vectors");

mem Pointer to the original block to relocate.
size Size in bytes of the original block mem.

new_size New required size, in bytes.
align Alignment. It must be power of 2.
name Texto reference for the auditor. It must be the same as the one used in

heap_aligned_malloc.

Return:

Pointer to the relocated block. Must be released with heap_free when it is no longer
necessary.

heap_free
Free memory pointed by mem, previously reserved by heap_malloc, heap_realloc or its
equivalents with alignment.

void
heap_free(byte_t **mem,

const uint32_t size,
const char_t *name);

mem Double pointer to the block to be released. It will be set to NULL after
the release.

size Memory block size.
name Reference text for the auditor, must be the same as that used in

heap_malloc.

Remarks:

Use this function for generic memory blocks. For types it uses heap_delete.

heap_new
Reserve memory for an object. The return pointer is converted to type.

type*
heap_new(type);

37.2 - Functions 777

MyAppCtrl *ctrl = heap_new(MyAppCtrl);
...
heap_delete(&ctrl, MyAppCtrl);

type Object type.

Return:

Pointer to the created object. It must be destroyed by heap_delete when it is no
longer necessary.

heap_new0
Like heap_new, but initializing the object with 0s.
type*
heap_new0(type);

MyAppModel *model = heap_new0(MyAppModel);
/* model = {0} */
...
heap_delete(&model, MyAppModel);

type Object type.

Return:

Pointer to the created object. It must be destroyed by heap_delete when it is no
longer necessary.

heap_new_n
Reserve memory for n objects. The return pointer is converted to type.
type*
heap_new_n(const uint32_t n,

type);

Car *cars = heap_new_n(10, Car);
...
heap_delete_n(&cars, 10, Car);

n Number of objects to create.
type Object type.

778 Chapter 37 - Core library

Return:

Pointer to the newly created array. It must be destroyed by heap_delete_n when it
is no longer necessary.

heap_new_n0
Like heap_new_n, but initializing the array with 0s.

type*
heap_new_n0(const uint32_t n,

type);

Car *cars = heap_new_n0(10, Car);
/* cars = {0, 0, 0, ..., 0}; */
...
heap_delete_n(&cars, 10, Car);

n Number of objects to create.
type Object type.

Return:

Pointer to the newly created array. It must be destroyed by heap_delete_n when it
is no longer necessary.

heap_realloc_n
Reallocs an array of objects created dynamically with heap_new_n or heap_new_n0. Guar-
antees that the previous objects remain unchanged min(size,new_size).

type*
heap_realloc_n(type *mem,

const uint32_t size,
const uint32_t new_size,
type);

Car *cars = heap_new_n(10, Car);
...
cars = heap_realloc_n(cars, 10, 20, Car);
/* cars[0][9] remains untouched. */
...
heap_delete_n(&cars, 20, Car);

37.2 - Functions 779

mem Pointer to the array to relocate.
size Number of elements of the original array mem.

new_size New required size (in elements).
type Object type.

Return:

Pointer to the relocated array. It must be destroyed by heap_delete_n when it is no
longer necessary.

heap_delete
Releases the object targeted by obj, previously reserved by heap_new or heap_new0.
void
heap_delete(type **obj,

type);

obj Double pointer to the object to be released. It will be set to NULL after
the release.

type Object type.

heap_delete_n
Free n objects targeted by obj, previously booked by heap_new_n, heap_new_n0.
void
heap_delete_n(type **obj,

const uint32_t n,
type);

obj Double pointer to the array to be released. It will be set to NULL after
the release.

n Number of objects to be released, the same as in the reservation.
type Object type.

heap_auditor_add
Add an opaque object to the memory auditor.
void
heap_auditor_add(const char_t *name);

name Name of the object to add.

780 Chapter 37 - Core library

heap_auditor_delete
Releases an opaque object from the memory auditor.
void
heap_auditor_delete(const char_t *name);

name Name of the object to release.

buffer_create
Create a new buffer.
Buffer*
buffer_create(const uint32_t size);

size Buffer size in bytes.

Return:

The new buffer.

buffer_with_data
Create a new buffer and initialize it.
Buffer*
buffer_with_data(const byte_t *data,

const uint32_t size);

data Data to initialize the buffer.
size Buffer size in bytes.

Return:

The new buffer.

buffer_destroy
Destroy the buffer.
void
buffer_destroy(Buffer **buffer);

buffer The buffer. It will be set to NULL after the destruction.

37.2 - Functions 781

buffer_size
Gets the size of the buffer.
uint32_t
buffer_size(const Buffer *buffer);

buffer Buffer.

Return:

The size of the buffer in bytes.

buffer_data
Gets a pointer to the contents of the buffer.
byte_t*
buffer_data(Buffer *buffer);

buffer Buffer.

Return:

Pointer to the contents of the buffer that can be used to read or write.

buffer_const
Get a const pointer to the contents of the buffer.
const byte_t*
buffer_const(const Buffer *buffer);

buffer Buffer.

Return:

Pointer to the content of the buffer that can be used for reading only.

tc
Returns the inner C string in format “UTF-8UTF-8” (page 158) contained in the String.
const char_t*
tc(const String *str);

str String object.

782 Chapter 37 - Core library

Return:

Pointer to the C-string.

tcc
Returns the inner C (non-const) string in “UTF-8UTF-8” (page 158) format contained in
String.
char_t*
tcc(String *str);

str String object.

Return:

Pointer to the C-string.

str_c
Create a String from a “UTF-8UTF-8” (page 158)-encoded C string.
String*
str_c(const char_t *str);

str C UTF8 string ending in null character '\0'.

Return:

The String object.

str_cn
Create a String by copying the first n bytes of a C string.
String*
str_cn(const char_t *str,

const uint32_t n);

str UTF8 C String.
n The number of bytes to copy.

Return:

The String object.

Remarks:

37.2 - Functions 783

In “UTF-8UTF-8” (page 158) strings, the number of bytes does not correspond to the
number of characters.

str_trim
Create a String from a C string by cutting the blanks, both at the beginning and at the
end.
String*
str_trim(const char_t *str);

str C UTF8 string ending in null character '\0'.

Return:

The String object.

str_trim_n
Create a String from the first n bytes of a C string cutting the blanks, both at the beginning
and at the end.
String*
str_trim_n(const char_t *str,

const uint32_t n);

str UTF8 C string.
n The number of bytes to consider from the original string. The copy can

contain ’n’ or fewer bytes, depending on the number of blanks.

Return:

The String object.

str_copy
Create an exact copy of the String.
String*
str_copy(const String *str);

str The original String object.

Return:

The copy of String object.

784 Chapter 37 - Core library

Remarks:

Strings are a special type of mutable object. Copy involves creating a new object and
not increasing a reference counter.

str_printf
Compose a String from several fields, using the the printf format.
String*
str_printf(const char_t *format,

...);

format String with the printf-like format with a variable number of parameters.
... Arguments or variables of the printf.

Return:

The String object.

Remarks:

The use of this function prevents buffer overflow vulnerabilities, associated with the
classic C functions such as strcpy.

str_path
Like str_printf, but consider the string to be a pathname and therefore use the conve-
nient separator according platform.
String*
str_path(const platform_t platform,

const char_t *format,
...);

String *path = str_path(ekWINDOWS, "/%s/img/%s.png", tc(product>category), tc(
↪→ product>name));

path = "\\camera\\img\\sony_a5000.png"

platform Platform for which the pathname is created.
format String with the printf-like format with a variable number of parameters.

... Arguments or variables of the printf.

Return:

The String object.

37.2 - Functions 785

str_cpath
Like str_path, but considering the platform where the program is running.
String*
str_cpath(const char_t *format,

...);

String *path = str_cpath("/%s/img/%s.png", tc(product>category), tc(product>
↪→ name));

path = "\\camera\\img\\sony_a5000.png" // In Windows
path = "/camera/img/sony_a5000.png" // In Unixlike

format String with the printf-like format with a variable number of parameters.
... Arguments or variables of the printf.

Return:

The String object.

str_relpath
Calculate the relative path to path1 to get to path2.
String*
str_relpath(const platform_t platform,

const char_t *path1,
const char_t *path2);

platform Platform for which the path is calculated (directory separator).
path1 The origin path.
path2 The destination path.

Return:

The string object that contains the relative path.

str_crelpath
Calculate the relative path to path1 to get to path2.
String*
str_crelpath(const char_t *path1,

const char_t *path2);

path1 The origin path.
path2 The destination path.

786 Chapter 37 - Core library

Return:

The string object that contains the relative path.

Remarks:

Same as str_relpath, but using the directory separator of the platform where the
program is running.

str_repl
Create a String by replacing an undetermined number of sub-strings. The first parameter
is the original string. The following pairs indicate the sub-string to be searched and the
sub-string that should replace it. The last parameter must be 0.
String*
str_repl(const char_t *str,

...);

String *str = str_repl("const Product **pr;", "const", "", "*", "", " ", "", 0)
↪→ ;

str = "Productpr;"

str Original C UTF8 string terminated in null character '\0'.
... Variable number of parameters, in pairs. The first element of the pair

indicates the sub-string to look for in str. The second element replaces
it.

Return:

The String object.

str_reserve
Create a String with n+1 bytes, but without assigning any content.
String*
str_reserve(const uint32_t n);

n Number of bytes. Reserve space for one more (the '\n').

Return:

The String object. Its content will be indeterminate (garbage). It must be written
later.

37.2 - Functions 787

str_fill
Create a String by repeating n times the same character.
String*
str_fill(const uint32_t n,

const char_t c);

n Number of characters.
c Pattern character.

Return:

The String object.

str_read
Create a String by reading its contents from a Stream (de-serialization). String must have
been previously written by str_write.
String*
str_read(Stream *stream);

stream A read stream.

Return:

The String object.

Remarks:

It is a binary operation. String size is deserialized first.

str_write
Write a string in a “Streams” (page 193) (serialization).
void
str_write(Stream *stream,

String *str);

stream A write stream.
str The String object.

Remarks:

It is a binary operation. The string size is serialized first. Use str_writef to write
only the text.

788 Chapter 37 - Core library

str_writef
Write in a “Streams” (page 193) the C string contained in the string.
void
str_writef(Stream *stream,

String *str);

stream A write stream.
str The String object.

Remarks:

Write only the string text, without the null final character '0'. It is equivalent
to stm_writef(stream, tc(str)); but more efficient, since you don’t have to calculate
the size of str.

str_copy_c
Copy the C string src in the buffer pointed by dest, including the null character '\0'.
void
str_copy_c(char_t *dest,

const uint32_t size,
const char_t *str);

dest Destination Buffer.
size Size in bytes of dest.
str UTF8 C string terminated in null character '\0'.

Remarks:

It is a safe operation. They will not be written in dest more of size bytes and a
character will never be truncated. dest it will always end the null character '\0'.

str_copy_cn
Copy in dest a maximum of n bytes of the C UTF8 string pointed by src, including the
null character '\0'.
void
str_copy_cn(char_t *dest,

const uint32_t size,
const char_t *str,
const uint32_t n);

37.2 - Functions 789

dest Destination Buffer.
size Size in bytes of dest.
str UTF8 C string.
n Maximum number of bytes to copy in dest.

Remarks:

It is a safe operation. They will not be written in dest more of n bytes and a character
will never be truncated. dest it will always end the null character '\0'.

str_cat
Dynamically concatenates the content of src in dest.
void
str_cat(String **dest,

const char_t *src);

**dest String object of origin and destination.
src UTF8 C string to concatenate.

Remarks:

This operation involves reallocating dynamic memory. To compose long texts it is more
efficient to use Stream.

str_cat_c
Concatenate the content of src in dest. The null character in dest will be overwritten
by the first character of src.
void
str_cat_c(char_t *dest,

const uint32_t size,
const char_t *src);

dest UTF8 C string origin and destination.
size Size in bytes of dest.
src UTF8 C string to concatenate.

Remarks:

It is a safe operation. They will not be written in dest more of size bytes and a
character will never be truncated. dest it will always end the null character '\0'.

790 Chapter 37 - Core library

str_upd
Change the content of a string to another.

void
str_upd(String **str,

const char_t *new_str);

// Equivalent code
String *str = ..original content..
String *temp = str_c(new_str);
str_destroy(&str);
str = temp;
temp = NULL;

str Destination string object. The original content will be deleted.
new_str UTF8 C string that will replace the original.

str_destroy
Destroy a string object.

void
str_destroy(String **str);

str The string object. Will be set to NULL after destruction.

str_destopt
Destroy a string object if its content is not NULL (optional destroyer).

void
str_destopt(String **str);

str The string object. Will be set to NULL after destruction.

str_len
Returns the size in bytes of a string.

uint32_t
str_len(const String *str);

str The String object.

37.2 - Functions 791

Return:

The number of bytes, not including the null character '\0'.

Remarks:

In “UTF-8UTF-8” (page 158) strings the number of bytes is not the same as the char-
acters. str_nchars.

str_len_c
Returns the size in bytes of a UTF8 C string.

uint32_t
str_len_c(const char_t *str);

str UTF8 C string terminated in null character '\0'.

Return:

The number of bytes, not including the null character '\0'.

Remarks:

In “UTF-8UTF-8” (page 158) strings the number of bytes is not the same as the char-
acters. str_nchars.

str_nchars
Returns the number of characters of a string object.

uint32_t
str_nchars(const String *str);

str The String object.

Return:

The number of characters, not including the null character '\0'.

Remarks:

In “UTF-8UTF-8” (page 158) strings the number of bytes is not the same as the char-
acters.

792 Chapter 37 - Core library

str_prefix
Locate the common begin of two strings.

uint32_t
str_prefix(const char_t *str1,

const char_t *str2);

str1 First UTF8 C string terminated in null character '\0'.
str2 Second UTF8 C string terminated in null character '\0'.

Return:

The number of bytes that are identical at the beginning of both strings.

str_is_prefix
Check if one string is prefix of another.

bool_t
str_is_prefix(const char_t *str,

const char_t *prefix);

str UTF8 C string terminated in null character '\0'.
prefix Prefix of str terminated in null character '\0'.

Return:

TRUE if prefix is prefix of str.

str_is_sufix
Check if one string is a suffix of another.

bool_t
str_is_sufix(const char_t *str,

const char_t *sufix);

str Null-terminated UTF8 C string '\0'.
sufix Suffix of str terminated in null character '\0'.

Return:

TRUE si sufix is sufix of str.

37.2 - Functions 793

str_scmp
Compare two strings alphabetically.

int
str_scmp(const String *str1,

const String *str2);

str1 First string.
str2 Second string.

Return:

Comparison result.

str_cmp
Compare alphabetically a string with a UTF8 C string.

int
str_cmp(const String *str1,

const char_t *str2);

str1 String object.
str2 C UTF8 string terminated in null character '\0'.

Return:

Comparison result.

str_cmp_c
Compare alphabetically two UTF8 C strings terminated in a null character '\0'.

int
str_cmp_c(const char_t *str1,

const char_t *str2);

str1 First UTF8 C string.
str2 Second UTF8 C string.

Return:

Comparison result.

794 Chapter 37 - Core library

str_cmp_cn
Compare alphabetically the first n bytes of two UTF8 C strings terminated in a null
character '\0'.
int
str_cmp_cn(const char_t *str1,

const char_t *str2,
const uint32_t n);

str1 First UTF8 C string.
str2 Second UTF8 C string.

n Maximum number of bytes to compare.

Return:

Comparison result.

Remarks:

It is a safe operation. If either of the two chains reaches the end before reaching n bytes,
the comparison ends.

str_empty
Check if a string is empty (str>data[0] == '\0').
bool_t
str_empty(const String *str);

str The String object.

Return:

TRUE if it is empty or is NULL.

str_empty_c
Check if a UTF8 C string is empty (str[0] == '\0').
bool_t
str_empty_c(const char_t *str);

str UTF8 C string.

Return:

TRUE if it is empty or is NULL.

37.2 - Functions 795

str_equ
Check if the content of a string is equal to a C string.
bool_t
str_equ(const String *str1,

const char_t *str2);

str1 String object.
str2 UTF8 C string terminated in null character '\0'.

Return:

TRUE if they are equals.

str_equ_c
Check if two UTF8 C strings are equal.
bool_t
str_equ_c(const char_t *str1,

const char_t *str2);

str1 First UTF8 C string terminated in null character '\0'.
str2 Second UTF8 C string terminated in null character '\0'.

Return:

TRUE if they are equals.

str_equ_cn
Check if the first bytes of two UTF8 C strings are equal.
bool_t
str_equ_cn(const char_t *str1,

const char_t *str2,
const uint32_t n);

str1 First UTF8 C string terminated in null character '\0'.
str2 Second UTF8 C string terminated in null character '\0'.

n First ’n’ bytes to compare.

Return:

TRUE if they are equals.

796 Chapter 37 - Core library

Remarks:

If ’\0’ is reached in either of the two strings, TRUE will be returned.

str_equ_nocase
Check if two UTF8 C strings are equal, ignoring upper or lower case.
bool_t
str_equ_nocase(const char_t *str1,

const char_t *str2);

str1 First UTF8 C string terminated in null character '\0'.
str2 Second UTF8 C string terminated in null character '\0'.

Return:

TRUE if they are equals.

Remarks:

Only US-ASCII characters are considered (0-127).

str_equ_end
Check the termination of a string.
bool_t
str_equ_end(const char_t *str,

const char_t *end);

str UTF8 C string terminated in null character '\0'.
end UTF8 C string with termination.

Return:

TRUE if str ends in end.

str_upper
Change lowercase letters to uppercase.
void
str_upper(String *str);

str The String object.

37.2 - Functions 797

Remarks:

Only US-ASCII characters (0-127) are considered. The original string will change, but
not the memory requirements.

str_lower
Change uppercase letters to lowercase letters.

void
str_lower(String *str);

str The String object.

Remarks:

Only US-ASCII characters (0-127) are considered. The original string will change, but
not the memory requirements.

str_upper_c
Convert a string to uppercase.

void
str_upper_c(char_t *dest,

const uint32_t size,
const char_t *str);

dest Destination buffer.
size Size in bytes of the destination buffer.
str String C UTF8 terminated in null character '\0'.

Remarks:

Only US-ASCII characters are considered (0-127).

str_lower_c
Convert a string to lowercase.

void
str_lower_c(char_t *dest,

const uint32_t size,
const char_t *str);

798 Chapter 37 - Core library

dest Destination buffer.
size Size in bytes of the destination buffer.
str String C UTF8 terminated in null character '\0'.

Remarks:

Only US-ASCII characters are considered (0-127).

str_subs
Change all instances of one character to another.
void
str_subs(String *str,

const char_t replace,
const char_t with);

String *str = str_c("customer.service.company.com");
str_subs(str, '.', '_');
str_uppercase(str);
str="CUSTOMER_SERVICE_COMPANY_COM"

str The String object.
replace Character to replace.

with Replacement character.

Remarks:

Only US-ASCII characters (0-127) are considered. The original string will change, but
not the memory requirements.

str_repl_c
Change all instances of one substring to another.
void
str_repl_c(String *str,

const char_t *replace,
const char_t *with);

str The String object.
replace Substring to replace.

with Replacement substring.

37.2 - Functions 799

Remarks:

The substrings replace and with they must be the same size, otherwise a “Asserts”
(page 153) will be triggered. Use str_repl for the general case.

str_str
Search for a substring within a larger one.
const char_t*
str_str(const char_t *str,

const char_t *substr);

str UTF8 C strings terminated in null character '\0'.
substr Substring to search terminated in null character '\0'.

Return:

Pointer to the first occurrence of substr in str or NULL if there is none.

str_split
Divide a string into two, using the first occurrence of a substring.
bool_t
str_split(const char_t *str,

const char_t *substr,
String **left,
String **right);

const char_t *str = "one::two";
String *str1, *str2, *str3;
bool_t ok1, ok2;
ok1 = str_split(str, "::", &str1, &str2);
ok2 = str_split(tc(str1), "::", NULL, &str3);
str1 = "one"
str2 = "two"
str3 = ""
ok1 = TRUE
ok2 = FALSE

str UTF8 C string terminated in null character '\0'.
substr Substring to search.

left Left substring. It will be equal to str if substr does not exist. The
parameter can be NULL if not necessary.

right Right substring. It will be equal to "" if substr does not exist. The
parameter can be NULL if not necessary.

800 Chapter 37 - Core library

Return:

TRUE if substr exists in str.

str_split_trim
Like str_split but removing all the blanks at the beginning and end of left and right.
bool_t
str_split_trim(const char_t *str,

const char_t *substr,
String **left,
String **right);

str UTF8 C string terminated in null character '\0'.
substr Substring to search.

left Left substring.
right Right substring.

Return:

TRUE if substr exists in str.

str_splits
Splits a string into several, using a substring as a separator.
ArrPt(String)*
str_splits(const char_t *str,

const char_t *substr,
const bool_t trim);

str UTF8 C string terminated in null character '\0'.
substr Substring to search (separator).

trim If TRUE, substrings will remove leading and trailing whitespace.

Return:

Array with the substrings found. It must be destroyed with arrpt_destroy(&array,
str_destroy, String).

Remarks:

Same as str_split or str_split_trim, but considering more than one substring.

37.2 - Functions 801

str_split_pathname
Divide a pathname into path and file “Filename and pathnameFilename and pathname”
(page 178).
void
str_split_pathname(const char_t *pathname,

String **path,
String **file);

String *path, *name, *name2;
str_split_pathname("C:\\Users\\john\\Desktop\\image.png", &path, &name);
str_split_pathname(tc(path), NULL, name2);
path = "C:\\Users\\john\\Desktop"
name = "image.png"
name2 = "Desktop"

pathname Input pathname.
path Directory path. The parameter can be NULL if not necessary.

file File name or final directory. The parameter can be NULL if not necessary.

str_split_pathext
Like str_split_pathname but also extracting the file extension.
void
str_split_pathext(const char_t *pathname,

String **path,
String **file,
String **ext);

String *path, *name, *ext;
str_split_pathext("C:\\Users\\john\\Desktop\\image.png", &path, &name, &ext);
path = "C:\\Users\\john\\Desktop"
name = "image"
ext = "png"

pathname Input pathname.
path Path part.

file File part.
ext File extension.

str_filename
Returns the final part of a pathname. “Filename and pathnameFilename and pathname”
(page 178).

802 Chapter 37 - Core library

const char_t*
str_filename(const char_t *pathname);

const char_t *name = str_filename("C:\\Users\\john\\Desktop\\image.png");
name = "image.png"

pathname Input pathname.

Return:

The last part of a directory path.

str_filext
Returns the file extension, from a pathname. “Filename and pathnameFilename and path-
name” (page 178).

const char_t*
str_filext(const char_t *pathname);

const char_t *ext = str_fileext("C:\\Users\\john\\Desktop\\image.png");
ext = "png"

pathname Input pathname.

Return:

The file extension.

str_find
Search for a string in an array.

uint32_t
str_find(const ArrPt(String) *array,

const char_t *str);

array Array.
str The string to find.

Return:

The position of the string or UINT32_MAX if it does not exist.

37.2 - Functions 803

str_to_i8
Converts a text string into an integer.
int8_t
str_to_i8(const char_t *str,

const uint32_t base,
bool_t *error);

str Text string, ending in null character '\0'.
base Numeric base: 8 (octal), 10 (decimal), 16 (hexadecimal).
error Gets TRUE if there is an error in the conversion. Can be NULL.

Return:

The numerical value.

Remarks:

If the string is wrong or the value is out of range, return 0 with error=TRUE.

str_to_i16
Converts a text string into an integer.
int16_t
str_to_i16(const char_t *str,

const uint32_t base,
bool_t *error);

str Text string, ending in null character '\0'.
base Numeric base: 8 (octal), 10 (decimal), 16 (hexadecimal).
error Gets TRUE if there is an error in the conversion. Can be NULL.

Return:

The numerical value.

Remarks:

If the string is wrong or the value is out of range, return 0 with error=TRUE.

str_to_i32
Converts a text string into an integer.

804 Chapter 37 - Core library

int32_t
str_to_i32(const char_t *str,

const uint32_t base,
bool_t *error);

str Text string, ending in null character '\0'.
base Numeric base: 8 (octal), 10 (decimal), 16 (hexadecimal).
error Gets TRUE if there is an error in the conversion. Can be NULL.

Return:

The numerical value.

Remarks:

If the string is wrong or the value is out of range, return 0 with error=TRUE.

str_to_i64
Converts a text string into an integer.
int64_t
str_to_i64(const char_t *str,

const uint32_t base,
bool_t *error);

str Text string, ending in null character '\0'.
base Numeric base: 8 (octal), 10 (decimal), 16 (hexadecimal).
error Gets TRUE if there is an error in the conversion. Can be NULL.

Return:

The numerical value.

Remarks:

If the string is wrong or the value is out of range, return 0 with error=TRUE.

str_to_u8
Converts a text string into an integer.
uint8_t
str_to_u8(const char_t *str,

const uint32_t base,
bool_t *error);

37.2 - Functions 805

str Text string, ending in null character '\0'.
base Numeric base: 8 (octal), 10 (decimal), 16 (hexadecimal).
error Gets TRUE if there is an error in the conversion. Can be NULL.

Return:

The numerical value.

Remarks:

If the string is wrong or the value is out of range, return 0 with error=TRUE.

str_to_u16
Converts a text string into an integer.
uint16_t
str_to_u16(const char_t *str,

const uint32_t base,
bool_t *error);

str Text string, ending in null character '\0'.
base Numeric base: 8 (octal), 10 (decimal), 16 (hexadecimal).
error Gets TRUE if there is an error in the conversion. Can be NULL.

Return:

The numerical value.

Remarks:

If the string is wrong or the value is out of range, return 0 with error=TRUE.

str_to_u32
Converts a text string into an integer.
uint32_t
str_to_u32(const char_t *str,

const uint32_t base,
bool_t *error);

str Text string, ending in null character '\0'.
base Numeric base: 8 (octal), 10 (decimal), 16 (hexadecimal).
error Gets TRUE if there is an error in the conversion. Can be NULL.

806 Chapter 37 - Core library

Return:

The numerical value.

Remarks:

If the string is wrong or the value is out of range, return 0 with error=TRUE.

str_to_u64
Converts a text string into an integer.
uint64_t
str_to_u64(const char_t *str,

const uint32_t base,
bool_t *error);

str Text string, ending in null character '\0'.
base Numeric base: 8 (octal), 10 (decimal), 16 (hexadecimal).
error Gets TRUE if there is an error in the conversion. Can be NULL.

Return:

The numerical value.

Remarks:

If the string is wrong or the value is out of range, return 0 with error=TRUE.

str_to_r32
Convert a string of text into a real.
real32_t
str_to_r32(const char_t *str,

bool_t *error);

str Text string, ending in null character '\0'.
error Gets TRUE if there is an error in the conversion. Can be NULL.

Return:

The numerical value.

Remarks:

If the string is wrong or the value is out of range, return 0.0 with error=TRUE.

37.2 - Functions 807

str_to_r64
Convert a string of text into a real.
real64_t
str_to_r64(const char_t *str,

bool_t *error);

str Text string, ending in null character '\0'.
error Gets TRUE if there is an error in the conversion. Can be NULL.

Return:

The numerical value.

Remarks:

If the string is wrong or the value is out of range, return 0.0 with error=TRUE.

stm_from_block
Create a read stream from an existing memory block.
Stream*
stm_from_block(const byte_t *data,

const uint32_t size);

data Pointer to the memory block.
size Size in bytes of the memory block.

Return:

The stream.

Remarks:

The original block will not be modified (read only). When the end of the block is
reached stm_state will return ekSTEND. “Block streamBlock stream” (page 195).

stm_memory
Create a read/write memory stream.
Stream*
stm_memory(const uint32_t size);

size Initial buffer size (in bytes). It will grow if necessary.

808 Chapter 37 - Core library

Return:

The stream.

Remarks:

It can be used as an internal pipeline for the information exchange between functions
or threads. It behaves like a FIFO (First In Fist Out) buffer. For multi-threaded access
you must be protected with a Mutex. “Memory streamMemory stream” (page 195).

stm_from_file
Create a stream to read from a file on disk.
Stream*
stm_from_file(const char_t *pathname,

ferror_t *error);

pathname File pathname. “Filename and pathnameFilename and pathname”
(page 178).

error Error code if the function fails. Can be NULL.

Return:

The stream or NULL if the file opening fails.

Remarks:

“File streamFile stream” (page 194).

stm_to_file
Create a stream to write data to a file on disk.
Stream*
stm_to_file(const char_t *pathname,

ferror_t *error);

pathname File pathname. “Filename and pathnameFilename and pathname”
(page 178).

error Error code if the function fails. Can be NULL.

Return:

The stream or NULL if file creation fails.

Remarks:

37.2 - Functions 809

If the file already exists it will be overwritten. “File streamFile stream” (page 194).

stm_append_file
Create a stream to write data to the end of an existing file.
Stream*
stm_append_file(const char_t *pathname,

ferror_t *error);

pathname File pathname. “Filename and pathnameFilename and pathname”
(page 178).

error Error code if the function fails. Can be NULL.

Return:

The stream or NULL if the file opening fails.

Remarks:

It will fail if the file does not exist (do not create it). “File streamFile stream” (page 194).

stm_socket
Create a stream from a socket.
Stream*
stm_socket(Socket *socket);

socket Client or server socket.

Return:

The stream.

Remarks:

It allows to use the streams functionality to read or write in a remote process. The socket
must have been previously created with bsocket_connect (client) or bsocket_accept
(server). See “Socket streamSocket stream” (page 194).

stm_close
Close the stream. All resources such as file descriptors or sockets will be released. Before
to closing, the data will be written to the channel stm_flush.

810 Chapter 37 - Core library

void
stm_close(Stream **stm);

stm The stream. Will be set to NULL after closing.

stm_get_write_endian
Get the current byte order when writing to the stream.
endian_t
stm_get_write_endian(const Stream *stm);

stm The stream.

Return:

The “Byte orderByte order” (page 206).

stm_get_read_endian
Get the current byte order when reading from the stream.
endian_t
stm_get_read_endian(const Stream *stm);

stm The stream.

Return:

The “Byte orderByte order” (page 206).

stm_set_write_endian
Set the order of bytes when writing to the stream, from now on.
void
stm_set_write_endian(Stream *stm,

const endian_t endian);

stm The stream.
endian The “Byte orderByte order” (page 206).

Remarks:

Default is ekLITEND, except in sockets that will be ekBIGEND.

37.2 - Functions 811

stm_set_read_endian
Set the order of bytes when reading from the stream, from now on.
void
stm_set_read_endian(Stream *stm,

const endian_t endian);

stm The stream.
endian The “Byte orderByte order” (page 206).

Remarks:

Default is ekLITEND, except in sockets that will be ekBIGEND.

stm_get_write_utf
Gets the UTF encoding with which the texts are being written in the stream.
unicode_t
stm_get_write_utf(const Stream *stm);

stm The stream.

Return:

“UTF encodingsUTF encodings” (page 157).

Remarks:

See “Text streamText stream” (page 198).

stm_get_read_utf
Get the UTF encoding with which the texts are being read in the stream.
unicode_t
stm_get_read_utf(const Stream *stm);

stm The stream.

Return:

“UTF encodingsUTF encodings” (page 157).

Remarks:

See “Text streamText stream” (page 198).

812 Chapter 37 - Core library

stm_set_write_utf
Set the UTF encoding when writing texts in the stream, from now on.
void
stm_set_write_utf(Stream *stm,

const unicode_t format);

stm The stream.
format “UTF encodingsUTF encodings” (page 157).

Remarks:

See “Text streamText stream” (page 198).

stm_set_read_utf
Set the UTF encoding when reading texts in the stream, from now on.
void
stm_set_read_utf(Stream *stm,

const unicode_t format);

stm The stream.
format “UTF encodingsUTF encodings” (page 157).

Remarks:

See “Text streamText stream” (page 198).

stm_is_memory
Gets if it is a memory-resident stream.
bool_t
stm_is_memory(const Stream *stm);

stm The stream.

Return:

TRUE if it was created by stm_from_block or stm_memory.

stm_bytes_written
Gets the total bytes written in the stream since its creation.

37.2 - Functions 813

uint64_t
stm_bytes_written(const Stream *stm);

stm The stream.

Return:

The total number of bytes written.

stm_bytes_readed
Get the total bytes read from the stream since its creation.
uint64_t
stm_bytes_readed(const Stream *stm);

stm The stream.

Return:

The total number of bytes readed.

stm_col
Get the column in text streams.
uint32_t
stm_col(const Stream *stm);

stm The stream.

Return:

Column number.

Remarks:

When we read characters in text streams with stm_read_char or derivatives, the
columns and rows are counted in a similar way as text editors do. This information
can be useful when displaying warnings or error messages. In mixed streams (binary +
text), the count stops when reading binary data and continues when reading the text is
resumed. View “Text streamText stream” (page 198).

stm_row
Get row in text streams.

814 Chapter 37 - Core library

uint32_t
stm_row(const Stream *stm);

stm The stream.

Return:

Row number.

Remarks:

See stm_col.

stm_token_col
Gets the column of the last token read.
uint32_t
stm_token_col(const Stream *stm);

stm The stream.

Return:

Column number.

Remarks:

It only takes effect after calling stm_read_token or derivatives. See stm_col and
“TokensTokens” (page 199).

stm_token_row
Gets the row of the last token read.
uint32_t
stm_token_row(const Stream *stm);

stm The stream.

Return:

Row number.

Remarks:

It only takes effect after calling stm_read_token or derivatives. See stm_col and
“TokensTokens” (page 199).

37.2 - Functions 815

stm_token_lexeme
Gets the lexeme of the last token read.

const char_t*
stm_token_lexeme(const Stream *stm);

stm The stream.

Return:

The lexeme. It is stored in a temporary buffer and will be lost when reading the next
token. If you need it, make a copy with str_c.

Remarks:

It only takes effect after calling stm_read_token or derivatives. See stm_col and
“TokensTokens” (page 199).

stm_token_escapes
Escape sequences option when reading tokens.

void
stm_token_escapes(const Stream *stm,

const bool_t active_escapes);

stm The stream.
active_escapes TRUE the escape sequences will be processed when reading ekTSTRING

tokens. For example, the sequence "\n" will become the character 0x0A
(10). FALSE will ignore escape sequences, reading strings literally. By

default FALSE.

Remarks:

It will take effect on the next call to stm_read_token. See “TokensTokens” (page 199).

stm_token_spaces
Blanks option when reading tokens.

void
stm_token_spaces(const Stream *stm,

const bool_t active_spaces);

816 Chapter 37 - Core library

stm The stream.
active_spaces TRUE ekTSPACE tokens will be returned when finding sequences of

whitespace. FALSE will ignore whitespace. By default FALSE.

Remarks:

It will take effect on the next call to stm_read_token. See “TokensTokens” (page 199).

stm_token_comments
Comments option when reading tokens.
void
stm_token_comments(const Stream *stm,

const bool_t active_comments);

stm The stream.
active_comments TRUE an ekTMLCOM token will be returned every time it encounters

C comments / * Comment */ and ekTSLCOM for comments C++ //
Comment. FALSE comments will be ignored. By default FALSE.

Remarks:

It will take effect on the next call to stm_read_token. See “TokensTokens” (page 199).

stm_state
Get the current state of the stream.
sstate_t
stm_state(const Stream *stm);

stm The stream.

Return:

The “Stream stateStream state” (page 207).

stm_file_err
Get additional information about the error, in disk streams.
ferror_t
stm_file_err(const Stream *stm);

37.2 - Functions 817

stm The stream.

Return:

File error.

Remarks:

It is only relevant in “File streamFile stream” (page 194) with the state ekSTBROKEN.

stm_sock_err
Get additional information about the error, in network streams.
serror_t
stm_sock_err(const Stream *stm);

stm The stream.

Return:

Socket error.

Remarks:

It is only relevant in “Socket streamSocket stream” (page 194) with the state ekSTBROKEN
.

stm_corrupt
Set the stream status to ekSTCORRUPT.
void
stm_corrupt(Stream *stm);

stm The stream.

Remarks:

Sometimes, it is the application that detects that the data is corrupted since the data
semantics wasn’t expected.

stm_str
Create a string with the current content of the internal buffer. It is only valid for stream
in memory. stm_memory.

818 Chapter 37 - Core library

String*
stm_str(const Stream *stm);

stm The stream.

Return:

The string with the buffer content.

stm_buffer
Gets a pointer to the current content of the internal buffer. Only valid for stream in
memory. stm_memory.
const byte_t*
stm_buffer(const Stream *stm);

stm The stream.

Return:

Internal buffer pointer.

Remarks:

This pointer is read only. Writing here will have unexpected consequences.

stm_buffer_size
Get the current size of the internal buffer. Only valid for stream in memory. stm_memory.
uint32_t
stm_buffer_size(const Stream *stm);

stm The stream.

Return:

The size of the internal buffer (in bytes).

stm_write
Write bytes in the stream.
void
stm_write(Stream *stm,

const byte_t *data,
const uint32_t size);

37.2 - Functions 819

stm The stream.
data Pointer to the data block to write.
size Number of bytes to write.

Remarks:

The block is written as is, regardless of the “Byte orderByte order” (page 206) neither
the “UTF encodingsUTF encodings” (page 157).

stm_write_char
Write a Unicode character in the stream.
void
stm_write_char(Stream *stm,

const uint32_t codepoint);

stm The stream.
codepoint The “Unicode” (page 155) value of character.

Remarks:

The encoding can be changed with stm_set_write_utf.

stm_printf
Write text in the stream, using the printf format .
uint32_t
stm_printf(Stream *stm,

const char_t *format,
...);

stm_printf(stream, Code: %10s Price %5.2f\n", code, price);

stm The stream.
format String with the printf-like format with a variable number of parameters.

... Arguments or variables of the printf.

Return:

The number of bytes written.

Remarks:

820 Chapter 37 - Core library

The final null character ('\0') will not be written. The encoding can be changed with
stm_set_write_utf.

stm_writef
Writes a UTF8 C string in the stream.
uint32_t
stm_writef(Stream *stm,

const char_t *str);

stm The stream.
str C UTF8 string terminated in null character '\0'.

Return:

The number of bytes written.

Remarks:

The final null character ('\0') will not be written. This function is faster than
stm_printf when the string is constant and does not need formatting. For String
objects use str_writef. The encoding can be changed with stm_set_write_utf.

stm_write_bool
Write a bool_t variable in the stream.
void
stm_write_bool(Stream *stm,

const bool_t value);

stm The stream.
value Value to write.

Remarks:

It is a binary write. Do not use in “pure” text streams.

stm_write_i8
Write a int8_t variable in the stream.
void
stm_write_i8(Stream *stm,

const int8_t value);

37.2 - Functions 821

stm The stream.
value Value to write.

Remarks:

It is a binary write. Do not use in “pure” text streams.

stm_write_i16
Write a int16_t variable in the stream.
void
stm_write_i16(Stream *stm,

const int16_t value);

stm The stream.
value Value to write.

Remarks:

It is a binary write. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_write_i32
Write a int32_t variable in the stream.
void
stm_write_i32(Stream *stm,

const int32_t value);

stm The stream.
value Value to write.

Remarks:

It is a binary write. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_write_i64
Write a int64_t variable in the stream.
void
stm_write_i64(Stream *stm,

const int64_t value);

822 Chapter 37 - Core library

stm The stream.
value Value to write.

Remarks:

It is a binary write. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_write_u8
Write a uint8_t variable in the stream.
void
stm_write_u8(Stream *stm,

const uint8_t value);

stm The stream.
value Value to write.

Remarks:

It is a binary write. Do not use in “pure” text streams.

stm_write_u16
Write a uint16_t variable in the stream.
void
stm_write_u16(Stream *stm,

const uint16_t value);

stm The stream.
value Value to write.

Remarks:

It is a binary write. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_write_u32
Write a uint32_t variable in the stream.
void
stm_write_u32(Stream *stm,

const uint32_t value);

37.2 - Functions 823

stm The stream.
value Value to write.

Remarks:

It is a binary write. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_write_u64
Write a uint64_t variable in the stream.
void
stm_write_u64(Stream *stm,

const uint64_t value);

stm The stream.
value Value to write.

Remarks:

It is a binary write. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_write_r32
Write a real32_t variable in the stream.
void
stm_write_r32(Stream *stm,

const real32_t value);

stm The stream.
value Value to write.

Remarks:

It is a binary write. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_write_r64
Write a real64_t variable in the stream.
void
stm_write_r64(Stream *stm,

const real64_t value);

824 Chapter 37 - Core library

stm The stream.
value Value to write.

Remarks:

It is a binary write. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_write_enum
Write a enum variable in the stream.

void
stm_write_enum(Stream *stm,

const type value,
type);

stm The stream.
value Value to write.
type The enum type.

Remarks:

It is a binary write. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_read
Read bytes from the stream.

uint32_t
stm_read(Stream *stm,

byte_t *data,
const uint32_t size);

stm The stream.
data Pointer to the buffer where the read data will be written.
size The number of bytes to read (buffer size).

Return:

The number of bytes actually read.

37.2 - Functions 825

stm_read_char
Read a text character from the stream.
uint32_t
stm_read_char(Stream *stm);

stm The stream.

Return:

The Unicode character code.

Remarks:

The encoding of the input text can be changed with stm_set_read_utf.

stm_read_chars
Read several characters from the stream.
const char_t*
stm_read_chars(Stream *stm,

const uint32_t n);

stm The stream.
n The number of characters to read.

Return:

Pointer to the UTF8 C string read. It will end with the null character '\0'.

Remarks:

The returned pointer is temporary and will be overwritten in the next reading. If
necessary, make a copy with str_c. The encoding of the input text can be changed with
stm_set_read_utf.

stm_read_line
Read stream characters until an end of line is reached '\n'.
const char_t*
stm_read_line(Stream *stm);

stm The stream.

826 Chapter 37 - Core library

Return:

Pointer to the UTF8 C string, terminated with the null character '\0'. The characters
'\n' or '\r\n' will not be included in the result. NULL will be returned when the end of
the stream is reached.

Remarks:

The returned pointer is temporary and will be overwritten in the next reading. If
necessary, make a copy with str_c. The encoding of the input text can be changed with
stm_set_read_utf.

stm_read_trim
Read the following sequence of characters removing the blank spaces.
const char_t*
stm_read_trim(Stream *stm);

stm The stream.

Return:

Pointer to the C UTF8 string read. It will end with the null character '\0'.

Remarks:

Useful for reading strings from text streams. It will ignore all leading blanks and read
characters until the first blank is found (' ', '\\t', '\\n', '\\v', '\\f', '\\r'
). If you need more control over tokens use stm_read_token. The pointer returned is
temporary and will be overwritten on the next read. If necessary, make a copy with str_c.
The input text encoding can be adjusted with stm_set_read_utf. It will update the row
and column counter. See stm_col.

stm_read_token
Get the following token in “Text streamText stream” (page 198).
token_t
stm_read_token(Stream *stm);

stm The stream.

Return:

The type of token obtained.

37.2 - Functions 827

Remarks:

To get the text string associated with the token, use stm_token_lexeme. See “Token-
sTokens” (page 199).

stm_read_i8_tok
Read the following token with stm_read_token and, if it is an integer, convert it to
int8_t.
int8_t
stm_read_i8_tok(Stream *stm);

stm The stream.

Return:

The numeric value of the token.

Remarks:

In case a token of type ekTINTEGER cannot be read (with or without ekTMINUS) or the
numeric value is out of range, 0 will be returned and the stream will be marked as corrupt
with stm_corrupt.

stm_read_i16_tok
Read the next token and convert it to int16_t.
int16_t
stm_read_i16_tok(Stream *stm);

stm The stream.

Return:

The numeric value of the token.

Remarks:

See stm_read_i8_tok.

stm_read_i32_tok
Read the next token and convert it to int32_t.
int32_t
stm_read_i32_tok(Stream *stm);

828 Chapter 37 - Core library

stm The stream.

Return:

The numeric value of the token.

Remarks:

See stm_read_i8_tok.

stm_read_i64_tok
Read the next token and convert it to int64_t.

int64_t
stm_read_i64_tok(Stream *stm);

stm The stream.

Return:

The numeric value of the token.

Remarks:

See stm_read_i8_tok.

stm_read_u8_tok
Read the following token with stm_read_token and, if it is an integer, convert it to
uint8_t.

uint8_t
stm_read_u8_tok(Stream *stm);

stm The stream.

Return:

The numeric value of the token.

Remarks:

In case a token of type ekTINTEGER cannot be read or the numeric value is out of range,
0 will be returned and the stream will be marked as corrupt with stm_corrupt.

37.2 - Functions 829

stm_read_u16_tok
Read the next token and convert it to uint16_t.
uint16_t
stm_read_u16_tok(Stream *stm);

stm The stream.

Return:

The numeric value of the token.

Remarks:

See stm_read_u8_tok.

stm_read_u32_tok
Read the next token and convert it to uint32_t.
uint32_t
stm_read_u32_tok(Stream *stm);

stm The stream.

Return:

The numeric value of the token.

Remarks:

See stm_read_u8_tok.

stm_read_u64_tok
Read the next token and convert it to uint64_t.
uint64_t
stm_read_u64_tok(Stream *stm);

stm The stream.

Return:

The numeric value of the token.

Remarks:

See stm_read_u8_tok.

830 Chapter 37 - Core library

stm_read_r32_tok
Read the following token with stm_read_token and, if it is a real number, convert it to
real32_t.
real32_t
stm_read_r32_tok(Stream *stm);

stm The stream.

Return:

The numeric value of the token.

Remarks:

In case a token of type ekTINTEGER or ekTREAL cannot be read (with or without
ekTMINUS), 0 will be returned and the stream will be marked as corrupt with stm_corrupt
.

stm_read_r64_tok
Read the next token and convert it to real64_t.
real64_t
stm_read_r64_tok(Stream *stm);

stm The stream.

Return:

The numeric value of the token.

Remarks:

See stm_read_r32_tok.

stm_read_bool
Read a bool_t value from the stream.
bool_t
stm_read_bool(Stream *stm);

stm The stream.

Return:

Value read.

37.2 - Functions 831

Remarks:

It is a binary reading. Do not use in “pure” text streams.

stm_read_i8
Read a int8_t value from the stream.
int8_t
stm_read_i8(Stream *stm);

stm The stream.

Return:

Value read.

Remarks:

It is a binary reading. Do not use in “pure” text streams.

stm_read_i16
Read a int16_t value from the stream.
int16_t
stm_read_i16(Stream *stm);

stm The stream.

Return:

Value read.

Remarks:

It is a binary reading. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_read_i32
Read a int32_t value from the stream.
int32_t
stm_read_i32(Stream *stm);

stm The stream.

832 Chapter 37 - Core library

Return:

Value read.

Remarks:

It is a binary reading. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_read_i64
Read a int64_t value from the stream.
int64_t
stm_read_i64(Stream *stm);

stm The stream.

Return:

Value read.

Remarks:

It is a binary reading. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_read_u8
Read a uint8_t value from the stream.
uint8_t
stm_read_u8(Stream *stm);

stm The stream.

Return:

Value read.

Remarks:

It is a binary reading. Do not use in “pure” text streams.

stm_read_u16
Read a uint16_t value from the stream.

37.2 - Functions 833

uint16_t
stm_read_u16(Stream *stm);

stm The stream.

Return:

Value read.

Remarks:

It is a binary reading. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_read_u32
Read a uint32_t value from the stream.
uint32_t
stm_read_u32(Stream *stm);

stm The stream.

Return:

Value read.

Remarks:

It is a binary reading. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_read_u64
Read a uint64_t value from the stream.
uint64_t
stm_read_u64(Stream *stm);

stm The stream.

Return:

Value read.

Remarks:

834 Chapter 37 - Core library

It is a binary reading. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_read_r32
Read a real32_t value from the stream.
real32_t
stm_read_r32(Stream *stm);

stm The stream.

Return:

Value read.

Remarks:

It is a binary reading. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_read_r64
Read a real64_t value from the stream.
real64_t
stm_read_r64(Stream *stm);

stm The stream.

Return:

Value read.

Remarks:

It is a binary reading. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_read_enum
Read a enum value from the stream.
type
stm_read_enum(Stream *stm,

type);

37.2 - Functions 835

stm The stream.
type The enum type.

Return:

Value read.

Remarks:

It is a binary reading. Do not use in “pure” text streams. “Byte orderByte order”
(page 206).

stm_skip
Skip and ignore the next bytes of the stream.
void
stm_skip(Stream *stm,

const uint32_t size);

stm The stream.
size The number of bytes to skip.

stm_skip_bom
Skip the possible Byte Order Mark sequence "ï»?`" found at the beginning of some text
streams.
void
stm_skip_bom(Stream *stm);

stm The stream.

Remarks:

This function will have no effect if there is no such sequence at the beginning of the
stream. The BOM is common in streams coming from some web servers.

stm_skip_token
Skip the next token in the stream. If the token does not correspond to the one indicated,
the stream will be marked as corrupt.
void
stm_skip_token(Stream *stm,

const token_t token);

836 Chapter 37 - Core library

void stm_skip_token(Stream *stm, const token_t token)
{

token_t tok = stm_read_token(stm);
if (tok != token)

stm_corrupt(stm);
}

stm The stream.
token Expected token.

stm_flush
Write in the channel the existing information in the cache.

void
stm_flush(Stream *stm);

stm The stream.

Remarks:

To improve performance, write operations on disk streams or standard I/O are stored
in an internal cache. This function forces writing on the channel and cleans the buffer. It
will be useful with full-duplex protocols where the receiver awaits reply to continue.

stm_pipe
Connect two streams, reading data from one and writing it to another.

void
stm_pipe(Stream *from,

Stream *to,
const uint32_t n);

from The input stream (to read).
to The output stream (to write).
n The number of bytes to be transferred.

Remarks:

The transfer will be made on raw data, regardless of “Byte orderByte order” (page 206)
or “UTF encodingsUTF encodings” (page 157). If you are clear that this does not affect,
it is much faster than using atomic read/write operations.

37.2 - Functions 837

stm_lines
Iterate over all lines in a “Text streamText stream” (page 198). You should use stm_next
to close the loop.

void
stm_lines(const char_t *line,

Stream *stm);

uint32_t i = 1;
Stream *stm = stm_from_file("/home/john/friends.txt", NULL);
stm_lines(line, stm)

bstd_printf("Friend %d, name %s\n", i++, line);
stm_next(line, stm);
stm_close(&stm);

line Name of the variable that will temporarily host the line. Use an internal
stream cache, so you should make a copy with str_c if you need to keep
it.

stm The stream.

stm_next
Close a loop open by stm_lines.

void
stm_next(const char_t *line,

Stream *stm);

line Name of the line variable.
stm The stream.

arrst_create
Create an empty array.

ArrSt(type)*
arrst_create(type);

type Object type.

Return:

The new array.

838 Chapter 37 - Core library

arrst_copy
Create a copy of an array.
ArrSt(type)*
arrst_copy(const ArrSt(type) *array,

FPtr_scopy func_copy,
type);

array The original array.
func_copy Function that must copy the fields of each object.

type Object type.

Return:

The copy of the original array.

Remarks:

The copy function must allocate memory to the fields that require it, but NOT to the
object itself. If we pass NULL, a byte-by-byte copy of the original object will be made,
which may pose an integrity risk if the array elements contain String or other objects
that need dynamic memory.

arrst_read
Create an array by reading its contents from a “Streams” (page 193) (de-serialization).
ArrSt(type)*
arrst_read(Stream *stream,

FPtr_read_init func_read,
type);

stream A read stream.
func_read Function to initialize an object from the data obtained from a stream.

This function should not reserve memory for the object itself (the con-
tainer already does). “SerializationSerialization” (page 213).

type Object type.

Return:

The array readed.

arrst_destroy
Destroy an array and all its elements.

37.2 - Functions 839

void
arrst_destroy(ArrSt(type) **array,

FPtr_remove func_remove,
type);

array The array. It will be set to NULL after destruction.
func_remove Function that must free the memory associated with the object’s fields,

but not the object itself “DestructorsDestructors” (page 214). If NULL
only the array will be destroyed and not the internal content of the

elements.
type Object type.

arrst_destopt
Destroy an array and all its elements, as long as the array object is not NULL.
void
arrst_destopt(ArrSt(type) **array,

FPtr_remove func_remove,
type);

array The array.
func_remove See arrst_destroy.

type Object type.

arrst_clear
Delete the contents of the array, without destroying the container that will be left with
zero elements.
void
arrst_clear(ArrSt(type) *array,

FPtr_remove func_remove,
type);

array The array.
func_remove Remove function. See arrst_destroy.

type Object type.

arrst_write
Write an array in a “Streams” (page 193) (serialization).

840 Chapter 37 - Core library

void
arrst_write(Stream *stream,

const ArrSt(type) *array,
FPtr_write func_write,
type);

stream A write stream.
array The array.

func_write Function that writes the content of an element in a stream “Serializa-
tionSerialization” (page 213).

type Object type.

arrst_size
Get the number of elements in an array.
uint32_t
arrst_size(const ArrSt(type) *array,

type);

array The array.
type Object type.

Return:

Number of elements.

arrst_get
Get a pointer to the item in pos position.
type*
arrst_get(ArrSt(type) *array,

const uint32_t pos,
type);

array The array.
pos Item position or index.

type Object type.

Return:

Item Pointer.

37.2 - Functions 841

arrst_get_const
Get a const pointer to the item in pos position.
const type*
arrst_get_const(const ArrSt(type) *array,

const uint32_t pos,
type);

array The array.
pos Item position or index.

type Object type.

Return:

Item Pointer.

arrst_first
Gets a pointer to the first element of the array.
type*
arrst_first(ArrSt(type) *array,

type);

array The array.
type Object type.

Return:

Item pointer.

arrst_first_const
Gets a const pointer to the first element of the array.
const type*
arrst_first_const(const ArrSt(type) *array,

type);

array The array.
type Object type.

Return:

Item pointer.

842 Chapter 37 - Core library

arrst_last
Get a pointer to the last element of the array.
type*
arrst_last(ArrSt(type) *array,

type);

array The array.
type Object type.

Return:

Item Pointer.

arrst_last_const
Get a const pointer to the last element of the array.
const type*
arrst_last_const(const ArrSt(type) *array,

type);

array The array.
type Object type.

Return:

Item Pointer.

arrst_all
Get a pointer to the internal memory of the array, which gives direct access to all the
elements.
type*
arrst_all(ArrSt(type) *array,

type);

array The array.
type Object type.

Return:

Base pointer. Increasing it one by one we will iterate over the elements.

Remarks:

37.2 - Functions 843

Use arrst_foreach to iterate over all elements in a more secure and elegant way.

arrst_all_const
Get a const pointer to the internal memory of the array, which gives direct access to all
the elements.
const type*
arrst_all_const(const ArrSt(type) *array,

type);

array The array.
type Object type.

Return:

Base pointer. Increasing it one by one we will iterate over the elements.

Remarks:

Use arrst_foreach_const to iterate over all elements in a more secure and elegant
way.

arrst_grow
Add n elements, not initialized, at the end of the array.
void
arrst_grow(ArrSt(type) *array,

const uint32_t n,
type);

array The array.
n Number of items to add.

type Object type.

arrst_new
Reserve space for an element at the end of the array.
type*
arrst_new(ArrSt(type) *array,

type);

844 Chapter 37 - Core library

// arrst_append copies 'product'
Product product;
i_init_product(&product, ...);
arrst_append(array, product, Product);

// arrst_new avoids the copy
Product *product = arrst_new(array, Product);
i_init_product(product, ...);

array The array.
type Object type.

Return:

Pointer to added element.

Remarks:

It is slightly faster than arrst_append, especially in large structures, since it avoids
copying the contents of the object. Initial memory content is indeterminate.

arrst_new0
Reserve space for an element at the end of the array and initialize it to 0.
type*
arrst_new0(ArrSt(type) *array,

type);

array The array.
type Object type.

Return:

Pointer to added element.

Remarks:

Same as arrst_new but initializing all memory to 0.

arrst_new_n
Reserve space for multiple elements at the end of the array.
type*
arrst_new_n(ArrSt(type) *array,

const uint32_t n,

37.2 - Functions 845

type);

array The array.
n Number of elements to add.

type Object type.

Return:

Pointer to the first element added.

Remarks:

Same as arrst_new but reserving multiple elements in the same call. Initial memory
content is indeterminate.

arrst_new_n0
Reserve space for several elements at the end of the array and initialize them to 0.
type*
arrst_new_n0(ArrSt(type) *array,

const uint32_t n,
type);

array The array.
n Number of elements to add.

type Object type.

Return:

Pointer to the first element added.

Remarks:

Same as arrst_new_n but initializing all memory to 0.

arrst_prepend_n
Reserve space for several elements at the beginning of the array. The rest of the elements
will be shifted to the right.
type*
arrst_prepend_n(ArrSt(type) *array,

const uint32_t n,
type);

846 Chapter 37 - Core library

array The array.
n Number of elements to insert.

type Object type.

Return:

Pointer to the first inserted element.

Remarks:

Initial memory content is indeterminate.

arrst_insert_n
Reserve space for several elements in an arbitrary position of the array.
type*
arrst_insert_n(ArrSt(type) *array,

const uint32_t pos,
const uint32_t n,
type);

array The array.
pos Position where it will be inserted. The current element in pos and

following will be shifted to the right.
n Number of elements to insert.

type Object type.

Return:

Pointer to the first inserted element.

Remarks:

Initial memory content is indeterminate.

arrst_append
Append an element to the end of the array.
void
arrst_append(ArrSt(type) *array,

type value,
type);

37.2 - Functions 847

array The array.
value Item to add.
type Object type.

arrst_prepend
Insert an element at the beginning of the array. The rest of the elements will be shifted
to the right.
void
arrst_prepend(ArrSt(type) *array,

type value,
type);

array The array.
value Item to insert.
type Object type.

arrst_insert
Insert an element in an arbitrary array position.
void
arrst_insert(ArrSt(type) *array,

const uint32_t pos,
type value,
type);

array The array.
pos Position where it will be inserted. The current item in pos and following

will be shifted to the right.
value Item to insert.
type Object type.

arrst_join
Join two vectors. Add all the elements of src to the end of dest.
void
arrst_join(ArrSt(type) *dest,

const ArrSt(type) *src,
FPtr_scopy func_copy,
type);

848 Chapter 37 - Core library

ArrSt(Product) *products = create_products(...);
ArrSt(Product) *new_products = new_products(...);

// Join without 'copy' func. Dynamic 'Product' fields will be reused.
arrst_join(products, new_products, NULL, Product);
arrst_destroy(&new_products, NULL, Product);
...
arrst_destroy(&products, i_remove, Product);

// Join with 'copy' func. Dynamic 'Product' fields will be duplicate.
arrst_join(products, new_products, i_copy_data, Product);
arrst_destroy(&new_products, i_remove, Product);
...
arrst_destroy(&products, i_remove, Product);

dest The destination array.
src The array whose elements will be added to dest.

func_copy Object copy function.
type Object type.

Remarks:

The copy function must create dynamic memory for the fields that require it, but NOT
for the object itself. See arrst_copy. If it is NULL, a byte-by-byte copy of the element
will be made.

arrst_delete
Remove an element from the array.

void
arrst_delete(ArrSt(type) *array,

const uint32_t pos,
FPtr_remove func_remove,
type);

array The array.
pos Position of the item to be deleted. The current item in pos+1 and

following will be shifted to the left.
func_remove ’Remove’ function. See arrst_destroy.

type Object type.

37.2 - Functions 849

arrst_pop
Remove the last element from the array.
void
arrst_pop(ArrSt(type) *array,

FPtr_remove func_remove,
type);

array The array.
func_remove ’Remove’ function. See arrst_destroy.

type Object type.

arrst_sort
Sort array elements using Quicksort.
void
arrst_sort(ArrSt(type) *array,

FPtr_compare func_compare,
type);

array The array.
func_compare Function to compare two elements. “Sort and searchSort and search”

(page 216).
type Object type.

arrst_sort_ex
Sort array elements using Quicksort and additional data.
void
arrst_sort_ex(ArrSt(type) *array,

FPtr_compare_ex func_compare,
type,
dtype);

array The array.
func_compare Function to compare two elements using an additional data.

type Object type.
dtype Type of data in the comparison function.

850 Chapter 37 - Core library

arrst_search
Search for an element in the array linearly O(n).

type*
arrst_search(ArrSt(type) *array,

FPtr_compare func_compare,
const ktype *key,
uint32_t *pos,
type,
ktype);

uint32_t pos;
uint32_t key = 345;
Product *product = arrst_search(arrst, i_compare_key, &key, &pos, Product,

↪→ uint32_t);

array The array.
func_compare Comparison function. The first parameter is the element, the second

the search key. “Sort and searchSort and search” (page 216).
key Search key. Pointer to a data type that may be different from the type

of array element.
pos Position of the element in the array (if it exists), or UINT32_MAX if it

does not exist. Can be NULL.
type Object type.

ktype Key type.

Return:

Pointer to the first element that matches the search criteria or NULL if none exists.

arrst_search_const
Const version of arrst_search.

const type*
arrst_search_const(const ArrSt(type) *array,

FPtr_compare func_compare,
const ktype *key,
uint32_t *pos,
type,
ktype);

37.2 - Functions 851

array The array.
func_compare Comparison function.

key Search key.
pos Position of the element in the array.

type Object type.
ktype Key type.

Return:

Pointer to element.

arrst_bsearch
Search for an element in the array logarithmically O(logn).

type*
arrst_bsearch(ArrSt(type) *array,

FPtr_compare func_compare,
const ktype *key,
uint32_t *pos,
type,
ktype);

array The array.
func_compare Comparison function. The first parameter is the element, the second

the search key. “Sort and searchSort and search” (page 216).
key Search key. Pointer to a data type that may be different from the type

of array element.
pos Position of the element in the array (if it exists), or UINT32_MAX if it

does not exist. Can be NULL.
type Object type.

ktype Key type.

Return:

Pointer to the first element that matches the search criteria or NULL if none exists.

Remarks:

852 Chapter 37 - Core library

The array must be sorted according to the same criteria as the search. If not, the result
is unpredictable.

arrst_bsearch_const
Const version of arrst_bsearch.
const type*
arrst_bsearch_const(const ArrSt(type) *array,

FPtr_compare func_compare,
const ktype *key,
uint32_t *pos,
type,
ktype);

array The array.
func_compare Comparison function.

key Seach key.
pos Element position in array.

type Object type.
ktype Key type.

Return:

Pointer to element.

arrst_foreach
Iterate on all array elements. Uses arrst_end to close the loop.
void
arrst_foreach(type *elem,

ArrSt(type) *array,
type);

arrst_foreach(product, array, Product)
bstd_printf("Index:%d, Id:%d\n", product_i, product>id);

arrst_end()

elem Name of the ’element’ variable within the loop. Adding the suffix '_i'
we get the index.

array The array.
type Object type.

37.2 - Functions 853

arrst_foreach_const
Const version of arrst_foreach.
void
arrst_foreach_const(const type *elem,

const ArrSt(type) *array,
type);

elem Element.
array The array.
type Object type.

arrst_forback
Iterate on all array elements backward, from the last to the first. Uses arrst_end to close
the loop.
void
arrst_forback(type *elem,

ArrSt(type) *array,
type);

// Now in reverse order
arrst_forback(product, array, Product)

bstd_printf("Index:%d, Id:%d\n", product_i, product>id);
arrst_end()

elem Name of the ’element’ variable within the loop. Adding the suffix '_i'
we get the index.

array The array.
type Object type.

arrst_forback_const
Const version of arrst_forback.
void
arrst_forback_const(const type *elem,

const ArrSt(type) *array,
type);

elem Element.
array The array.
type Object type.

854 Chapter 37 - Core library

arrst_end
Close the loop opened by arrst_foreach, arrst_foreach_const, arrst_forback or
arrst_forback_const.

void
arrst_end(void);

arrpt_create
Create an empty array of pointers.

ArrPt(type)*
arrpt_create(type);

type Object type.

Return:

The new array.

arrpt_copy
Create a copy of an array of pointers.

ArrPt(type)*
arrpt_copy(const ArrPt(type) *array,

FPtr_copy func_copy,
type);

array The original array.
func_copy Object copy function.

type Object type.

Return:

The copy of the original array.

Remarks:

The copy function must create a dynamic object and allocate memory for internal fields
that require it. If we pass NULL, a copy of the original pointers will be made, which can
pose an integrity risk since the same object can be destroyed twice if we are not careful.
See “Copy objectsCopy objects” (page 213).

37.2 - Functions 855

arrpt_read
Create an array by reading its contents from a “Streams” (page 193) (de-serialization).
ArrPt(type)*
arrpt_read(Stream *stream,

FPtr_read func_read,
type);

stream A read stream.
func_read Constructor to create an object from the data obtained from a stream.

“SerializationSerialization” (page 213).
type Object type.

Return:

The array readed.

arrpt_destroy
Destroy an array and all its elements.
void
arrpt_destroy(ArrPt(type) **array,

FPtr_destroy func_destroy,
type);

array The array. It will be set to NULL after destruction.
func_destroy Function to destroy an element “DestructorsDestructors” (page 214). If

NULL only the array will be destroyed, but not its elements.
type Object type.

arrpt_destopt
Destroy an array and all its elements, as long as the array object is not NULL.
void
arrpt_destopt(ArrSt(type) **array,

FPtr_destroy func_destroy,
type);

array The array.
func_destroy See arrpt_destroy.

type Object type.

856 Chapter 37 - Core library

arrpt_clear
Delete the contents of the array, without destroying the container that will be left with
zero elements.
void
arrpt_clear(ArrPt(type) *array,

FPtr_destroy func_destroy,
type);

array The array.
func_destroy Destructor function. See arrpt_destroy.

type Object type.

arrpt_write
Write an array in a “Streams” (page 193) (serialization).
void
arrpt_write(Stream *stream,

const ArrPt(type) *array,
FPtr_write func_write,
type);

stream A write stream.
array The array.

func_write Function that writes the content of an element in a stream “Serializa-
tionSerialization” (page 213).

type Object type.

arrpt_size
Get the number of elements in an array.
uint32_t
arrpt_size(const ArrPt(type) *array,

type);

array The array.
type Object type.

Return:

Number of elements.

37.2 - Functions 857

arrpt_get
Get a pointer to the item in pos position.
type*
arrpt_get(ArrPt(type) *array,

const uint32_t pos,
type);

array The array.
pos Item position or index.

type Object type.

Return:

Item Pointer.

arrpt_get_const
Get a const pointer to the item in pos position.
const type*
arrpt_get_const(const ArrPt(type) *array,

const uint32_t pos,
type);

array The array.
pos Item position or index.

type Object type.

Return:

Item Pointer.

arrpt_first
Get a pointer to the first element of the array.
type*
arrpt_first(ArrPt(type) *array,

type);

array The array.
type Object type.

858 Chapter 37 - Core library

Return:

Item Pointer.

arrpt_first_const
Get a const pointer to the first element of the array.
const type*
arrpt_first_const(const ArrPt(type) *array,

type);

array The array.
type Object type.

Return:

Item Pointer.

arrpt_last
Get a pointer to the last element of the array.
type*
arrpt_last(ArrPt(type) *array,

type);

array The array.
type Object type.

Return:

Item Pointer.

arrpt_last_const
Get a const pointer to the last element of the array.
const type*
arrpt_last_const(const ArrPt(type) *array,

type);

array The array.
type Object type.

Return:

Item Pointer.

37.2 - Functions 859

arrpt_all
Get a pointer to the internal memory of the array, which gives access to all the elements.
type**
arrpt_all(ArrPt(type) *array,

type);

array The array.
type Object type.

Return:

Base pointer. Increasing it one by one we will iterate over the elements.

Remarks:

Use arrpt_foreach to iterate over all elements in a more secure and elegant way.

arrpt_all_const
Get a const pointer to the internal memory of the array, which gives access to all the
elements.
const type**
arrpt_all_const(const ArrPt(type) *array,

type);

array The array.
type Object type.

Return:

Base pointer. Increasing it one by one we will iterate over the elements.

Remarks:

Use arrpt_foreach_const to iterate over all elements in a more secure and elegant
way.

arrpt_grow
Append n elements, not initialized, at the end of the array.
type**
arrpt_grow(ArrPt(type) *array,

const uint32_t n,
type);

860 Chapter 37 - Core library

array The array.
n Number of items to add.

type Object type.

Return:

Pointer to the first item added.

arrpt_append
Adds a pointer to the end of the array.
void
arrpt_append(ArrPt(type) *array,

type *value,
type);

array The array.
value Pointer to the item to append.
type Object type.

arrpt_prepend
Insert a pointer at the beginning of the array. The rest of the elements will be shifted to
the right.
void
arrpt_prepend(ArrPt(type) *array,

type *value,
type);

array The array.
value Pointer to the element to insert.
type Object type.

arrpt_insert
Insert a pointer in an arbitrary array position.
void
arrpt_insert(ArrPt(type) *array,

const uint32_t pos,
type *value,
type);

37.2 - Functions 861

array The array.
pos Position where it will be inserted. The current item in pos and following

will be shifted to the right.
value Pointer to the element to insert.
type Object type.

arrpt_join
Join two vectors. Add all the elements of src to the end of dest.
void
arrpt_join(ArrPt(type) *dest,

const ArrPt(type) *src,
FPtr_copy func_copy,
type);

ArrPt(Product) *products = create_products(...);
ArrPt(Product) *new_products = new_products(...);

// Join without 'copy' func. Dynamic 'Product' objects will be reused.
arrpt_join(products, new_products, NULL, Product);
arrpt_destroy(&new_products, NULL, Product);
...
arrpt_destroy(&products, i_destroy, Product);

// Join with 'copy' func. Dynamic 'Product' objects will be duplicate.
arrpt_join(products, new_products, i_copy, Product);
arrpt_destroy(&new_products, i_destroy, Product);
...
arrpt_destroy(&products, i_destroy, Product);

dest The destination array.
src The array whose elements will be added to dest.

func_copy Object copy function.
type Object type.

Remarks:

The copy function must create dynamic memory for both the object and the fields that
require it. If it is NULL it will only add a copy of the original pointer to dest.

arrpt_delete
Remove a pointer from the array.

862 Chapter 37 - Core library

void
arrpt_delete(ArrPt(type) *array,

const uint32_t pos,
FPtr_destroy func_destroy,
type);

array The array.
pos Position of the item to be deleted. The current item in pos+1 and

following will be shifted to the left.
func_destroy Element destructor. See arrpt_destroy.

type Object type.

arrpt_pop
Remove the last pointer from the array.

void
arrpt_pop(ArrPt(type) *array,

FPtr_destroy func_destroy,
type);

array The array.
func_destroy Element destructor. See arrpt_destroy.

type Object type.

arrpt_sort
Sort the array elements using Quicksort.

void
arrpt_sort(ArrPt(type) *array,

FPtr_compare func_compare,
type);

array The array.
func_compare Function to compare two elements. “Sort and searchSort and search”

(page 216).
type Object type.

37.2 - Functions 863

arrpt_sort_ex
Sort array elements using Quicksort and additional data.

void
arrpt_sort_ex(ArrPt(type) *array,

FPtr_compare_ex func_compare,
type,
dtype);

array The array.
func_compare Function to compare two elements using an additional data.

type Object type.
dtype Type of data in the comparison function.

arrpt_find
Search for a specific pointer in the array.

uint32_t
arrpt_find(const ArrPt(type) *array,

type *elem,
type);

array The array.
elem Pointer to find.
type Object type.

Return:

The position of the pointer if it exists, or UINT32_MAX if not.

arrpt_search
Search for an element in the array linearly O(n).

type*
arrpt_search(ArrPt(type) *array,

FPtr_compare func_compare,
ktype key,
uint32_t *pos,
type,
ktype);

864 Chapter 37 - Core library

array The array.
func_compare Comparison function. The first parameter is the element, the second

the search key. “Sort and searchSort and search” (page 216).
key Search key. Pointer to a data type that may be different from the type

of array element.
pos Position of the element in the array (if it exists), or UINT32_MAX if it

does not exist. Can be NULL.
type Object type.

ktype Key type.

Return:

Pointer to the first element that matches the search criteria or NULL if none exists.

arrpt_search_const
Const version of arrpt_search.
const type*
arrpt_search_const(const ArrPt(type) *array,

FPtr_compare func_compare,
const ktype *key,
uint32_t *pos,
type,
ktype);

array The array.
func_compare Comparison function.

key Search key.
pos Position of the element in the array.

type Object type.
ktype Key type.

Return:

Element.

arrpt_bsearch
Search for an element in the array logarithmically O(logn).

37.2 - Functions 865

type*
arrpt_bsearch(ArrPt(type) *array,

FPtr_compare func_compare,
ktype key,
uint32_t *pos,
type,
ktype);

array The array.
func_compare Comparison function. The first parameter is the element, the second

the search key. “Sort and searchSort and search” (page 216).
key Key to search. Pointer to a data type that can be different from the

element type of the array.
pos Position of the element in the array (if it exists), or UINT32_MAX if it

does not exist. Can be NULL.
type Object type.

ktype Key type.

Return:

Pointer to the first element that matches the search criteria or NULL if none exists.

Remarks:

The array must be sorted according to the same criteria as the search. If not, the result
is unpredictable.

arrpt_bsearch_const
Const version of arrpt_bsearch.

const type*
arrpt_bsearch_const(const ArrPt(type) *array,

FPtr_compare func_compare,
const ktype *key,
uint32_t *pos,
type,
ktype);

866 Chapter 37 - Core library

array The array.
func_compare Comparison function.

key Search key.
pos Position of the element in the array.

type Object type.
ktype Key type.

Return:

Element.

arrpt_foreach
Iterate on all array elements. Uses arrpt_end to close the loop.
void
arrpt_foreach(type *elem,

ArrPt(type) *array,
type);

arrpt_foreach(product, array, Product)
bstd_printf("Index:%d, Id:%d\n", product_i, product>id);

arrpt_end()

elem Name of the ’element’ variable within the loop. Adding the suffix '_i'
we get the index.

array The array.
type Object type.

arrpt_foreach_const
Const version of arrpt_foreach.
void
arrpt_foreach_const(const type *elem,

const ArrPt(type) *array,
type);

elem Element.
array The array.
type Object type.

37.2 - Functions 867

arrpt_forback
Iterate on all array elements backward, from the last to the first. Uses arrpt_end to close
the loop.
void
arrpt_forback(type *elem,

ArrPt(type) *array,
type);

// Now in reverse order
arrpt_forback(product, array, Product)

bstd_printf("Index:%d, Id:%d\n", product_i, product>id);
arrpt_end()

elem Name of the ’element’ variable within the loop. Adding the suffix '_i'
we get the index.

array The array.
type Object type.

arrpt_forback_const
Const version of arrpt_forback.
void
arrpt_forback_const(const type *elem,

const ArrPt(type) *array,
type);

elem Element.
array The array.
type Object type.

arrpt_end
Close the loop opened by arrpt_foreach, arrpt_foreach_const, arrpt_forback or
arrpt_forback_const.
void
arrpt_end(void);

setst_create
Create an empty set of registers.

868 Chapter 37 - Core library

SetSt(type)*
setst_create(FPtr_compare func_compare,

type);

func_compare Function to compare two elements. “Sort and searchSort and search”
(page 216).

type Object type.

Return:

The new set.

setst_destroy
Destroy a set and all its elements.
void
setst_destroy(SetSt(type) **set,

FPtr_remove func_remove,
type);

set The set. Will be set to NULL after destruction.
func_remove Function that must free the memory associated with the object’s fields,

but not the object itself “DestructorsDestructors” (page 214). If it is
NULL only the set will be released and not the internal content of the
elements.

type Object type.

setst_size
Get the number of set elements.
uint32_t
setst_size(const SetSt(type) *set,

type);

set The set.
type Object type.

Return:

Number of items.

37.2 - Functions 869

setst_get
Search for an item in O(logn). It is equivalent to arrst_bsearch. If exists, the internal
structure iterator will be fixed in it.

type*
setst_get(SetSt(type) *set,

const type *key,
type);

Product key;
Product *pr;
key.id = 453;
pr = setst_get(setst, &key, Product);

set The set.
key Search key. It is a pointer to an object where only the relevant search

fields must be initialized.
type Object type.

Return:

Pointer to the item if it exists, or NULL if not.

Remarks:

“IteratorsIterators” (page 220).

setst_get_const
Const version of setst_get.

const type*
setst_get_const(const SetSt(type) *set,

const type *key,
type);

set The set.
key Search key.

type Object type.

Return:

Element.

870 Chapter 37 - Core library

setst_insert
Insert a new item in the set.
type*
setst_insert(SetSt(type) *set,

type *key,
type);

Product *pr;
Product key;
key.id = 345;
pr = setst_insert(setst, &key, Product);
if (pr != NULL)

i_init(pr, 345, 100.45f);
else

error("Already exists");

set The set.
key Key to insert. It is a pointer to an object where only the relevant search

fields must be initialized.
type Object type.

Return:

Pointer to the inserted element, which should be used to initialize the object. If an item
with the same key already exists, it returns NULL.

Remarks:

Inserting or deleting elements invalidates the internal set iterator “IteratorsIterators”
(page 220). You must re-initialize it with setst_first.

setst_delete
Remove an item from the set.
bool_t
setst_delete(SetSt(type) *set,

type *key,
FPtr_remove func_remove,
type);

Product key;
key.id = 345;
if (setst_delete(setst, &key, product_remove, Product) == FALSE)

error("Doesn't exists");

37.2 - Functions 871

set The set.
key Key to delete. It is a pointer to an object where only the relevant search

fields must be initialized.
func_remove Remove function. See setst_destroy.

type Object type.

Return:

TRUE if the item has been deleted, or FALSE if there is no item with that key.

Remarks:

Inserting or deleting elements invalidates the internal set iterator “IteratorsIterators”
(page 220). You must re-initialize it with setst_first.

setst_first
Get the first set element and initialize the internal iterator.
type*
setst_first(SetSt(type) *set,

type);

set The set.
type Object type.

Return:

Pointer to the first element or NULL if the set is empty.

Remarks:

“IteratorsIterators” (page 220).

setst_first_const
Const version of setst_first.
const type*
setst_first_const(const SetSt(type) *set,

type);

set The set.
type Object type.

872 Chapter 37 - Core library

Return:

Element.

setst_last
Get the last element of the set and initialize the internal iterator.
type*
setst_last(SetSt(type) *set,

type);

set The set.
type Object type.

Return:

Pointer to the last item or NULL if the set is empty.

Remarks:

“IteratorsIterators” (page 220).

setst_last_const
Const version of setst_last.
const type*
setst_last_const(const SetSt(type) *set,

type);

set The set.
type Object type.

Return:

Element.

setst_next
Get the next set item, after increasing the internal iterator.
type*
setst_next(SetSt(type) *set,

type);

37.2 - Functions 873

set The set.
type Object type.

Return:

Pointer to the next item or NULL if the iterator has reached the last.

Remarks:

Use setst_first to initialize the internal iterator “IteratorsIterators” (page 220).

setst_next_const
Const version of setst_next.
const type*
setst_next_const(const SetSt(type) *set,

type);

set The set.
type Object type.

Return:

Element.

setst_prev
Gets the previous element of the set, after decrementing the internal iterator.
type*
setst_prev(SetSt(type) *set,

type);

set The set.
type Object type.

Return:

Pointer to the previous item or NULL if the iterator has reached the first.

Remarks:

Use setst_last to initialize the internal iterator on reversed loops “IteratorsIterators”
(page 220).

874 Chapter 37 - Core library

setst_prev_const
Const version of setst_prev.
const type*
setst_prev_const(const SetSt(type) *set,

type);

set The set.
type Object type.

Return:

Element.

setst_foreach
Go through all the elements of the set. Use setst_fornext to close the loop.
void
setst_foreach(type *elem,

SetSt(type) *set,
type);

setst_foreach(product, set, Product)
bstd_printf("Position:%d, Id:%d\n", product_i, product>id);

setst_fornext(product, set, Product)

elem Name of the variable ’element’ within the loop. Adding the suffix '_i'
we get the index.

set The set.
type Object type.

setst_foreach_const
Const version of setst_foreach.
void
setst_foreach_const(const type *elem,

const SetSt(type) *set,
type);

elem Element.
set The set.

type Object type.

37.2 - Functions 875

setst_fornext
Close the loop opened by setst_foreach, increasing the internal iterator.
void
setst_fornext(type *elem,

SetSt(type) *set,
type);

elem Name of the variable ’element’. It must be the same as setst_foreach.
set The set.

type Object type.

setst_fornext_const
Const version of setst_fornext.
void
setst_fornext_const(const type *elem,

const SetSt(type) *set,
type);

elem Element.
set The set.

type Object type.

setst_forback
Go through all the elements of the set in reverse order. Use setst_forprev to close the
loop.
void
setst_forback(type *elem,

SetSt(type) *set,
type);

// Now in reverse order
setst_forback(product, set, Product)

bstd_printf("Position:%d, Id:%d\n", product_i, product>id);
setst_forprev(product, set, Product)

elem Name of the variable ’element’ within the loop. Adding the suffix '_i'
we get the index.

set The set.
type Object type.

876 Chapter 37 - Core library

setst_forback_const
Const version of setst_forback.
void
setst_forback_const(const type *elem,

const SetSt(type) *set,
type);

elem Element.
set The set.

type Object type.

setst_forprev
Close the loop opened by setst_forback, decreasing the internal iterator.
void
setst_forprev(type *elem,

SetSt(type) *set,
type);

elem Name of the variable ’element’. It must be the same as
setst_foreach_rev.

set The set.
type Object type.

setst_forprev_const
Const version of setst_forprev.
void
setst_forprev_const(const type *elem,

const SetSt(type) *set,
type);

elem Element.
set The set.

type Object type.

setpt_create
Create an empty pointer set.

37.2 - Functions 877

SetPt(type)*
setpt_create(FPtr_compare func_compare,

type);

func_compare Function to compare two elements. “Sort and searchSort and search”
(page 216).

type Object type.

Return:

The new set.

setpt_destroy
Destroy a set and all its elements.

void
setpt_destroy(SetPt(type) **set,

FPtr_destroy func_destroy,
type);

set The set. Will be set to NULL after destruction.
func_destroy Function to destroy an element of the set “DestructorsDestructors”

(page 214). If it is NULL only the set will be destroyed, but not its
elements.

type Object type.

setpt_size
Get the number of set elements.

uint32_t
setpt_size(const SetPt(type) *set,

type);

set The set.
type Object type.

Return:

Number of items.

878 Chapter 37 - Core library

setpt_get
Search for an item in O(logn). It is equivalent to arrpt_bsearch. The internal set
iterator will be fixed in it.

type*
setpt_get(SetPt(type) *set,

type *key,
type);

Product key;
Product *pr;
key.id = 453;
pr = setpt_get(setpt, &key, Product);

set The set.
key Search key. It is a pointer to an object where only the relevant fields of

the search must be initialized.
type Object type.

Return:

Pointer to the searched item if it exists, or NULL if not.

Remarks:

“IteratorsIterators” (page 220).

setpt_get_const
Const version of setpt_get.

const type*
setpt_get_const(const SetPt(type) *set,

const type *key,
type);

set The set.
key Search key.

type Object type.

Return:

Element.

37.2 - Functions 879

setpt_insert
Insert a new item in the set.

bool_t
setpt_insert(SetPt(type) *set,

type *value,
type);

Product *pr = product_create(...);
if (setpt_insert(setpt, pr, Product) == FALSE)
{

error("Already exists");
product_destroy(&pr);

}

set The set.
value Pointer to the element to insert.
type Object type.

Return:

TRUE if the item has been inserted. FALSE if another element with the same key already
exists.

Remarks:

Inserting or deleting elements invalidates the internal set iterator “IteratorsIterators”
(page 220). You must initialize it with setpt_first.

setpt_delete
Remove an item from the set.

bool_t
setpt_delete(SetPt(type) *set,

type *key,
FPtr_destroy func_destroy,
type);

Product key;
key.id = 345;
if (setpt_delete(setpt, &key, product_destroy, Product) == FALSE)

error("Doesn't exists");

880 Chapter 37 - Core library

set The set.
key Key to delete. It is a pointer to an object where only the relevant fields

of the search must be initialized.
func_destroy Element destructor. Can be NULL. See setpt_destroy.

type Object type.

Return:

TRUE if the item has been deleted, or FALSE if there is no item with that key.

Remarks:

Inserting or deleting elements invalidates the internal set iterator “IteratorsIterators”
(page 220). You must initialize it with setpt_first.

setpt_first
Get the first element of the set and initialize the internal iterator.
type*
setpt_first(SetPt(type) *set,

type);

set The set.
type Object type.

Return:

Pointer to the first element or NULL if the set is empty.

Remarks:

“IteratorsIterators” (page 220).

setpt_first_const
Const version of setpt_first.
const type*
setpt_first_const(const SetPt(type) *set,

type);

set The set.
type Object type.

37.2 - Functions 881

Return:

Element.

setpt_last
Get the last element of the set and initialize the internal iterator.
type*
setpt_last(SetPt(type) *set,

type);

set The set.
type Object type.

Return:

Pointer to the last item or NULL if the set is empty.

Remarks:

“IteratorsIterators” (page 220).

setpt_last_const
Const version of setpt_last.
const type*
setpt_last_const(const SetPt(type) *set,

type);

set The set.
type Object type.

Return:

Element.

setpt_next
Get the next set item, after increasing the internal iterator.
type*
setpt_next(SetPt(type) *set,

type);

882 Chapter 37 - Core library

set The set.
type Object type.

Return:

Pointer to the next item or NULL if the iterator has reached the last.

Remarks:

Use setpt_first to initialize the internal iterator “IteratorsIterators” (page 220).

setpt_next_const
Const version of setpt_next.
const type*
setpt_next_const(const SetPt(type) *set,

type);

set The set.
type Object type.

Return:

Element.

setpt_prev
Gets the previous element of the set, after decrementing the internal iterator.
type*
setpt_prev(SetPt(type) *set,

type);

set The set.
type Object type.

Return:

Pointer to the previous item or NULL if the iterator has reached the first.

Remarks:

Use setpt_last to initialize the internal iterator on reversed loops “IteratorsIterators”
(page 220).

37.2 - Functions 883

setpt_prev_const
Const version of setpt_prev.
const type*
setpt_prev_const(const SetPt(type) *set,

type);

set The set.
type Object type.

Return:

Element.

setpt_foreach
Loop over all the elements of the set. Use setpt_fornext to close the loop.
void
setpt_foreach(type *elem,

SetPt(type) *set,
type);

setpt_foreach(product, set, Product)
bstd_printf("Position:%d, Id:%d\n", product_i, product>id);

setpt_fornext(product, set, Product)

elem Name of the variable ’element’ within the loop. Adding the suffix '_i'
we get the index.

set The set.
type Object type.

setpt_foreach_const
Const version of setpt_foreach.
void
setpt_foreach_const(const type *elem,

const SetPt(type) *set,
type);

elem Element.
set The set.

type Object type.

884 Chapter 37 - Core library

setpt_fornext
Close the loop opened by setpt_foreach, increasing the internal iterator.
void
setpt_fornext(type *elem,

SetPt(type) *set,
type);

elem Name of the variable ’element’. It must be the same as setpt_foreach.
set The set.

type Object type.

setpt_fornext_const
Const version of setpt_fornext.
void
setpt_fornext_const(const type *elem,

const SetPt(type) *set,
type);

elem Element.
set The set.

type Object type.

setpt_forback
Loop over all the elements of the set in reverse order. Use setpt_forprev to close the
loop.
void
setpt_forback(type *elem,

SetPt(type) *set,
type);

// Now in reverse order
setpt_forback(product, set, Product)

bstd_printf("Position:%d, Id:%d\n", product_i, product>id);
setpt_forprev(product, set, Product)

elem Name of the variable ’element’ within the loop. Adding the suffix '_i'
we get the index.

set The set.
type Object type.

37.2 - Functions 885

setpt_forback_const
Const version of setpt_forback.
void
setpt_forback_const(const type *elem,

const SetPt(type) *set,
type);

elem Element.
set The set.

type Object type.

setpt_forprev
Close the loop opened by setpt_forback, decreasing the internal iterator.
void
setpt_forprev(type *elem,

SetPt(type) *set,
type);

elem Name of the variable ’element’. It must be the same as
setpt_foreach_rev.

set The set.
type Object type.

setpt_forprev_const
Const version of setpt_forprev.
void
setpt_forprev_const(const type *elem,

const SetPt(type) *set,
type);

elem Element.
set The set.

type Object type.

regex_create
Create a regular expression from a pattern.

886 Chapter 37 - Core library

RegEx*
regex_create(const char_t *pattern);

pattern Search pattern.

Return:

Regular expression (automata).

Remarks:

See “Define patternsDefine patterns” (page 223).

regex_destroy
Destroy a regular expression.
void
regex_destroy(RegEx **regex);

regex Regular expresion. Will be set to NULL after destruction.

regex_match
Check if a string matches the search pattern.
bool_t
regex_match(const RegEx *regex,

const char_t *str);

regex Regular expresion.
str String to evaluate.

Return:

TRUE if the string is accepted by the regular expression.

dbind
Adds a structure/class field to its internal table within dbind.
void
dbind(type,

mtype,
name);

37.2 - Functions 887

type Type of structure or class.
mtype Type of field to register.
name Name of the field within the structure.

Remarks:

Errors will be generated at compile time if the indicated field does not belong to the
structure. The method also works for classes in C++.

dbind_enum
Register an enum type value.
void
dbind_enum(type,

value,
const char_t *alias);

type Enum type.
value Value.
alias Alias para el valor.

Remarks:

dbind_enum(mode_t, ekIMAGE_ANALISYS, "Image Analisys"); it will use the string
“Image Analisys” instead of “ekIMAGE_ANALISYS” for those I/O or interface operations
that require displaying the literals of the enumeration. For example, to populate the fields
of a PopUp linked with a data field.

dbind_create
Create an object of registered type, initializing its fields with the default values.
type*
dbind_create(type);

type Object type.

Return:

Newly created object or NULL if dbind does not recognize the data type.

dbind_init
Initializes the fields of an object of a registered type with the default values.

888 Chapter 37 - Core library

void
dbind_init(type *obj,

type);

obj Object whose memory has been reserved, but not initialized.
type Object type.

dbind_remove
Destroys the memory reserved by the fields of an object of registered type, but does not
destroy the object itself.

void
dbind_remove(type *obj,

type);

obj Object.
type Object type.

dbind_destroy
Destroy an object of registered type. The memory allocated to the fields and sub-objects
will also be released recursively.

void
dbind_destroy(type **obj,

type);

obj Object. Will be set to NULL after destruction.
type Object type.

dbind_destopt
Destructor optional. Like dbind_destroy, but accepting NULL values for the object.

void
dbind_destopt(type **obj,

type);

obj Object to destroy.
type Object type.

37.2 - Functions 889

dbind_read
Creates an object of a registered type from the data read from a stream.

type*
dbind_read(Stream *stm,

type);

stm Reading stream.
type Object type to read.

Return:

Newly created object or NULL if there has been an error.

dbind_write
Write the content of an object of registered type in a write stream.

void
dbind_write(Stream *stm,

const type *data,
type);

stm Writing stream.
data Object to write.
type Type of object to write.

dbind_default
Set the default value of a field.

void
dbind_default(type,

mtype,
name,
mtype value);

type Type of structure or class.
mtype Field type.
name Name of the field within the structure.
value Default value as of now.

890 Chapter 37 - Core library

dbind_range
Set the maximum and minimum value in numeric fields.

void
dbind_range(type,

mtype,
name,
mtype min,
mtype max);

type Type of structure or class.
mtype Field type.
name Name of the field within the structure.

min Minimum value.
max Maximum value.

Remarks:

It will fail if used in non-numeric fields.

dbind_precision
Set the jump between two consecutive numerical values.

void
dbind_precision(type,

mtype,
name,
mtype prec);

type Type of structure or class.
mtype Field type.
name Name of the field within the structure.
prec Accuracy (eg .05f in real32_t values).

Remarks:

It will fail if used in non-numeric fields.

dbind_increment
Sets the increment of a numerical value when clicking on a “UpDown” (page 310) control.

37.2 - Functions 891

void
dbind_increment(type,

mtype,
name,
mtype incr);

type Type of structure or class.
mtype Field type.
name Name of the field within the structure.
incr Increase.

Remarks:

It will fail if used in non-numeric fields.

dbind_suffix
Set a suffix that will be added to the numerical value when converted to text.
void
dbind_suffix(type,

mtype,
name,
const char_t *suffix);

type Type of structure or class.
mtype Field type.
name Name of the field within the structure.
suffix Suffix.

Remarks:

It will fail if used in non-numeric fields.

listener
Create a listener. This function will link an event sender with the receiver, usually the
application controller. The sender object is responsible for destroying the listener.
Listener*
listener(type *obj,

FPtr_event_handler func_event_handler,
type);

892 Chapter 37 - Core library

obj Receiver object that will be passed as the first parameter to
func_event_handler.

func_event_handler Callback function that will be called when the event occurs. Also known
as event handler.

type The type of receiver object.

Return:

Listener object.

listen
Like listener, but used in C++ to define class callbacks. “Use of C++” (page 45).
void
listen(void);

listener_destroy
Destroy a listener.
void
listener_destroy(Listener **listener);

listener Listener. Will be set to NULL after destruction.

Remarks:

The sender is responsible for destroying the listener.

listener_update
Update the receiver and event handler. It is equivalent to destroying it, and creating it
again.
void
listener_update(Listener **listener,

Listener *new_listener);

listener The current listener.
new_listener The new listener.

Remarks:

This method must be used within the sender.

37.2 - Functions 893

listener_event
Launches an event from the sender to the receiver.
void
listener_event(Listener *listener,

const uint32_t type,
sender_type *sender,
params_type *params,
result_type *result,
sender_type,
params_type,
result_type);

listener List through which the event will be sent.
type Event code.

sender Event sender.
params Event parameters, or NULL if it doesn’t have.

result Event result, or NULL if not expected.
sender_type Type of sender object.

params_type Type of params object, or void if it does not have.
result_type Type of result object, or void if it does not have.

Remarks:

This method must be invoked within the event sender.

listener_pass_event
Pass the received event to another object, changing only the sender. Useful for not gener-
ating a new Event object.
void
listener_pass_event(Listener *list,

Event *event,
sender_type *sender,
sender_type);

list List through which the event will be resent.
event Incoming event.

sender The new event sender.
sender_type Sender object type.

894 Chapter 37 - Core library

Remarks:

This method must be invoked within the event sender.

event_type
Get the event type.
uint32_t
event_type(const Event *event);

event Event.

Return:

The event type. Normally associated with a enum. Examples in core_event_t,
gui_event_t.

event_sender
Get the event sender.
type*
event_sender(Event *event,

type);

event Event.
type Sender type.

Return:

Sender.

event_params
Get the event parameters, encapsulated in a structure, which will be different depending
on the event type.
type*
event_params(Event *event,

type);

event Event.
type Parameters type.

Return:

Event parameters.

37.2 - Functions 895

event_result
Gets an object to write the results of the event. Some events require the return of data by
the receiver. The type of result object will depend on the type of event.
type*
event_result(Event *event,

type);

event Event.
type Result type.

Return:

Event results.

keybuf_create
Create a buffer with keyboard status.
KeyBuf*
keybuf_create(void);

Return:

The buffer.

keybuf_destroy
Destroy the buffer.
void
keybuf_destroy(KeyBuf **bufer);

bufer The buffer. It will be set to NULL after the destruction.

keybuf_OnUp
Set the state of a key as released.
void
keybuf_OnUp(KeyBuf *bufer,

const vkey_t key);

bufer The buffer.
key The key code.

896 Chapter 37 - Core library

Remarks:

Normally it will not be necessary to call this function. It will be done by View or the
module that captures keyboard events.

keybuf_OnDown
Sets the state of a key as pressed.
void
keybuf_OnDown(KeyBuf *bufer,

const vkey_t key);

bufer The buffer.
key The key code.

Remarks:

Normally it will not be necessary to call this function. It will be done by View or the
module that captures keyboard events.

keybuf_clear
Clear the buffer. Set all keys as released.
void
keybuf_clear(KeyBuf *bufer);

bufer The buffer.

Remarks:

Normally it will not be necessary to call this function. It will be done by View or the
module that captures keyboard events.

keybuf_pressed
Returns the state of a key.
bool_t
keybuf_pressed(const KeyBuf *bufer,

const vkey_t key);

bufer The buffer.
key The key code.

37.2 - Functions 897

Return:

Pulsed (TRUE) or released (FALSE).

keybuf_str
Returns a text string associated with a key.
void
keybuf_str(const vkey_t key);

key The key code.

keybuf_dump
Dump the buffer status into the “Log” (page 184).
void
keybuf_dump(const KeyBuf *bufer);

bufer The buffer.

hfile_dir
Check if the path is a directory.
bool_t
hfile_dir(const char_t *pathname);

pathname Name of the path to check. “Filename and pathnameFilename and
pathname” (page 178).

Return:

TRUE if pathname is a directory. If it does not exist or is a file FALSE.

hfile_dir_create
Create all intermediate subdirectories of a path.
bool_t
hfile_dir_create(const char_t *pathname,

ferror_t *error);

// C:\dir1 doesn't exist.
bool_t ok = hfile_dir_create("C:\dir1\dir2\dir3\dir4\dir5");
ok = TRUE

898 Chapter 37 - Core library

pathname Name of the path to create. “Filename and pathnameFilename and
pathname” (page 178).

error Error code if the function fails. Can be NULL.

Return:

TRUE if the entire path has been created, otherwise FALSE.

hfile_dir_destroy
Recursive destroy a directory and all its contents.
bool_t
hfile_dir_destroy(const char_t *pathname,

ferror_t *error);

pathname Directory path to destroy. “Filename and pathnameFilename and path-
name” (page 178).

error Error code if the function fails. Can be NULL.

Return:

TRUE if the directory has been destroyed, or FALSE if there has been an error.

hfile_dir_list
Get a list of the contents of a directory.
ArrSt(DirEntry)*
hfile_dir_list(const char_t *pathname,

ferror_t *error);

pathname Directory path to list. “Filename and pathnameFilename and path-
name” (page 178).

error Error code if the function fails. Can be NULL.

Return:

Array of DirEntry with the content. It must be destroyed with arrst_destroy(&
array, hfile_dir_entry_remove, DirEntry) when it is no longer necessary.

hfile_dir_entry_remove
Free the memory of an item in the directory listing.

37.2 - Functions 899

void
hfile_dir_entry_remove(DirEntry *entry);

entry Element.

Remarks:

See hfile_dir_list.

hfile_date
Gets the most recent modification date of a file or directory.

Date
hfile_date(const char_t *pathname,

const bool_t recursive);

pathname Path to file or directory. “Filename and pathnameFilename and path-
name” (page 178).

recursive If pathname is a directory, it indicates whether to do a deep scan through
subdirectories.

Return:

The modification date. If pathname does not exist kDATE_NULL.

Remarks:

If pathname is a directory, the modification dates of the files will be considered as well,
not just the directory itself.

hfile_dir_sync
Synchronize the contents of two directories.

bool_t
hfile_dir_sync(const char_t *src,

const char_t *dest,
const bool_t recursive,
const bool_t remove_in_dest,
const char_t **except,
const uint32_t except_size,
ferror_t *error);

900 Chapter 37 - Core library

src Source directory.
dest Destination directory.

recursive If TRUE recursive process the subdirectories.
remove_in_dest If TRUE removes in dest those files/directories that are not in src.

except List of file/directory names that will remain intact in dest.
except_size Array except size.

error Error code if the function fails. Can be NULL.

Return:

TRUE if everything went well, FALSE if there has been an error.

Remarks:

If a file is in src and not in dest, is copied to dest. If a file is newer in src it is
also copied in dest. If a file exists in dest but not in src and remove_in_dest is TRUE,
will be removed from dest. If the file exists in except array it will not be taken into
account to copy or delete. If recursive is TRUE subdirectories will be processed in this
way: If both subdirs exist in src and dest the same logic described here will be executed
in both subdirs. If the subdir exists in src but not in dest, will be copied in its entirety to
dest. If it exists in dest and not in src and remove_in_dest is TRUE will be completely
removed from dest.

hfile_exists
Check if pathname exists in the file system.
bool_t
hfile_exists(const char_t *pathname,

file_type_t *file_type);

pathname Path of the directory or file to check. “Filename and pathnameFilename
and pathname” (page 178).

file_type Type of file. It can be NULL.

Return:

TRUE if pathname exists, FALSE if not.

hfile_is_uptodate
Check if a file is up to date. Consider that dest is a copy or depends on src.

37.2 - Functions 901

bool_t
hfile_is_uptodate(const char_t *src,

const char_t *dest);

src Source file pathname.
dest Destiny file pathname.

Return:

TRUE if dest exists and is more recent than src, otherwise FALSE.

hfile_copy
Copy a file from one location to another.
bool_t
hfile_copy(const char_t *src,

const char_t *dest,
ferror_t *error);

hfile_copy("/home/john/image.png", "/home/john/images", NULL); // image.png
hfile_copy("/home/john/image.png", "/home/john/images/party.png", NULL); //

↪→ party.png

src Pathname of the file to copy. “Filename and pathnameFilename and
pathname” (page 178).

dest Copy destination. If it is a directory it will have the same filename as
the source. Otherwise, the copy will be made with another file name.

error Error code if the function fails. It can be NULL.

Return:

TRUE if the copy was successful. Otherwise FALSE.

hfile_buffer
Create a buffer with the contents of a file on disk.
Buffer*
hfile_buffer(const char_t *pathname,

ferror_t *error);

pathname File path to load.
error Error code if the function fails. It can be NULL.

902 Chapter 37 - Core library

Return:

The buffer with the file data or NULL if the function fails.

Remarks:

It does not work with files larger than 4Gb (32-bit).

hfile_string
Create a string with the contents of a file on disk.
String*
hfile_string(const char_t *pathname,

ferror_t *error);

pathname File path to load.
error Error code if the function fails. It can be NULL.

Return:

The string object with the text file data or NULL if the function fails.

Remarks:

It does not work with files larger than 4Gb (32-bit).

hfile_stream
Create a “Memory streamMemory stream” (page 195) and initializes it with the contents
of a file.
Stream*
hfile_stream(const char_t *pathname,

ferror_t *error);

pathname File path to load.
error Error code if the function fails. It can be NULL.

Return:

The stream initialized with the file data or NULL if the function fails.

Remarks:

It does not work with files larger than 4Gb (32-bit).

37.2 - Functions 903

hfile_from_string
Create a file on disk with the contents of a “Strings” (page 192).
bool_t
hfile_from_string(const char_t *pathname,

const String *str,
ferror_t *error);

pathname File path to save.
str String to save to file.

error Error code if the function fails. It can be NULL.

Return:

TRUE if the file has been created successfully. Otherwise FALSE.

hfile_from_data
Create a file on disk with the contents of a generic block of memory.
bool_t
hfile_from_data(const char_t *pathname,

const byte_t *data,
const uint32_t size,
ferror_t *error);

pathname File path to save.
data Block to save in the file.
size Block size in bytes.

error Error code if the function fails. It can be NULL.

Return:

TRUE if the file has been created successfully. Otherwise FALSE.

hfile_dir_loop
Browse all the files in a directory.
bool_t
hfile_dir_loop(const char_t *pathname,

Listener *listener,
const bool_t subdirs,
const bool_t hiddens,
ferror_t *error);

904 Chapter 37 - Core library

static void i_OnEntry(App *app, Event *event)
{

uint32_t type = event_type(event);
const EvFileDir *p = event_params(event, EvFileDir);
if (type == ekEFILE)
{

bstd_printf("File: %s\n", p>pathname);
// Abort the directory loop
if (app>more == FALSE)
{

bool_t *more = event_result(event, bool_t);
*more = FALSE;

}
}
else if (type == ekEENTRY)
{

if (app>direntry == TRUE)
{

bstd_printf("Entering: %s\n", params>pathname);
}
else
{

bool_t *entry = event_result(event, bool_t);
*entry = FALSE;

}
}
else if (type == ekEEXIT)
{

bstd_printf("Exiting: %s\n", params>pathname);
}

}

hfile_dir_loop("/home/john/personal", listener(app, i_OnEntry, App), TRUE,
↪→ FALSE, NULL);

pathname Directory Path. “Filename and pathnameFilename and pathname”
(page 178).

listener Callback function to be called for each directory file.
subdirs If TRUE the loop will process the subdirectories.
hiddens If TRUE hidden files will be processed.

error Error code if the function fails. It can be NULL.

Return:

TRUE tf the loop has been successfully completed. FALSE if an error has occurred.

Remarks:

37.2 - Functions 905

For each file, an event will be sent to listener. Will be of type ekEFILE for regular
files, ekEENTRY when enters a subdirectory and ekEEXIT when leaves it. The file attributes
are sent in the event parameter as a EvFileDir object. The tour will continue until
all files/subdirectories have been processed or returned FALSE in event_result . This
controlled output will not be considered an error and this function will return TRUE.

hfile_appdata
Get the full path of a data file or application settings.

String*
hfile_appdata(const char_t *pathname);

String *fname = hfile_appdata("gui/preferences.cfg");
fname = "C:\Users\USER\AppData\Roaming\MyApp\gui\preferences.cfg"
(in Windows operating system)
...
Stream *out = stm_to_file(tc(fname), NULL);

pathname Relative file path.

Return:

The full path to the configuration file.

Remarks:

In many cases, applications need to create configuration files to remember user prefer-
ences or other data between sessions “Home and AppDataHome and AppData” (page 179).
This function adds a relative path and file name and ensures that all intermediate direc-
tories will exist.

hfile_home_dir
Get the full path to a file in the user’s (home) directory.

String*
hfile_home_dir(const char_t *path);

path Relative path from the home directory.

Return:

Absolute file path.

906 Chapter 37 - Core library

respack_destroy
Destroy a resource package.
void
respack_destroy(ResPack **pack);

pack Resource Package. Will be set to NULL after destruction.

respack_text
Get a text from a resource package.
const char_t*
respack_text(const ResPack *pack,

const ResId id);

pack Resource package.
id Resource identifier.

Return:

UTF8 C string terminated in null character '\0'.

respack_file
Get a pointer to the contents of a file, included in a resource package.
const byte_t*
respack_file(const ResPack *pack,

const ResId id,
uint32_t *size);

pack Resource package.
id Resource identifier.

size Get the file size in bytes.

Return:

Pointer to file content (raw bytes).

date_system
Get the system date.
Date
date_system(void);

37.2 - Functions 907

Return:

The current date.

date_add_seconds
Calculate the date resulting from adding an amount of seconds to another date.
Date
date_add_seconds(const Date *date,

int32_t seconds);

date The base date.
seconds The number of seconds. If it is positive we will obtain a future date. If

negative, a past date.

Return:

The result date.

date_add_minutes
Calculate the date resulting from adding an amount of minutes to another date.
Date
date_add_minutes(const Date *date,

int32_t minutes);

date The base date.
minutes The number of minutes. If it is positive we will obtain a future date. If

negative, a past date.

Return:

The result date.

date_add_hours
Calculate the date resulting from adding an amount of hours to another date.
Date
date_add_hours(const Date *date,

int32_t hours);

date The base date.
hours The number of hours. If it is positive we will obtain a future date. If

negative, a past date.

908 Chapter 37 - Core library

Return:

The result date.

date_add_days
Calculate the date resulting from adding an amount of days to another date.
Date
date_add_days(const Date *date,

int32_t days);

date The base date.
days The number of days. If it is positive we will obtain a future date. If

negative, a past date.

Return:

The result date.

date_year
Obtiene el año actual.
int16_t
date_year(void);

Return:

El año actual.

date_cmp
Compare two dates. The most recent date is considered greater.
int
date_cmp(const Date *date1,

const Date *date2);

date1 First date to compare.
date2 Second date to compare.

Return:

Comparison result.

37.2 - Functions 909

date_between
Check if a date is within a range.
bool_t
date_between(const Date *date,

const Date *from,
const Date *to);

date Date to check.
from Start date.

to Final date.

Return:

TRUE if date is between from and to.

date_is_null
Checks if a date is null.
bool_t
date_is_null(const Date *date);

date Date to check.

Return:

TRUE if date is null.

date_DD_MM_YYYY_HH_MM_SS
Convert a date to string, with the format DD/MM/YYYYHH:MM:SS.
String*
date_DD_MM_YYYY_HH_MM_SS(const Date *date);

date Date.

Return:

String object with conversion.

date_YYYY_MM_DD_HH_MM_SS
Convert a date to string, with the format YYYY/MM/DDHH:MM:SS.

910 Chapter 37 - Core library

String*
date_YYYY_MM_DD_HH_MM_SS(const Date *date);

date Date.

Return:

String object with conversion.

date_month_en
Get the name of the month, in English.
const char_t*
date_month_en(const month_t month);

month The month, usually obtained with btime_date.

Return:

UTF8 string with the name (January, February, ...).

date_month_es
Get the name of the month, in Spanish.
const char_t*
date_month_es(const month_t month);

month The month, usually obtained with btime_date.

Return:

UTF8 string with the name (Enero, Febrero, ...).

clock_create
Create a clock.
Clock*
clock_create(const real64_t interval);

interval Time interval for animation control (in seconds).

Return:

The new clock.

37.2 - Functions 911

clock_destroy
Destroy the clock.
void
clock_destroy(Clock **clk);

clk Clock. Will be set to NULL after destruction.

clock_frame
Detect if a new sequence in an animation has expired.
bool_t
clock_frame(Clock *clk,

real64_t *prev_frame,
real64_t *curr_frame);

clk Clock.
prev_frame Time mark of the previous instant. Only relevant if returns TRUE.
curr_frame Time mark of the current instant. Only relevant if returns TRUE.

Return:

TRUE if the time has come to launch a new sequence. FALSE if we have to wait.

clock_reset
Set the clock to 0.0.
void
clock_reset(Clock *clk);

clk Clock.

clock_elapsed
Gets the time elapsed since the object was created or since the last call to clock_reset.
real64_t
clock_elapsed(Clock *clk);

clk Clock.

Return:

The number of seconds (with precision of micro-seconds 0.000001).

912 Chapter 37 - Core library

38C
ha

pt
er

Geom2D library

38.1. Types and Constants

kZERO
The (0,0) vector.

const V2Df kV2D_ZEROf;
const V2Dd kV2D_ZEROd;
const V2D V2D::kZERO;

kX
The (1,0) vector.

const V2Df kV2D_Xf;
const V2Dd kV2D_Xd;
const V2D V2D::kX;

kY
The (,1) vector.

const V2Df kV2D_Yf;
const V2Dd kV2D_Yd;
const V2D V2D::kY;

kZERO
[0,0] value.

913

914 Chapter 38 - Geom2D library

const S2Df kS2D_ZEROf;
const S2Dd kS2D_ZEROd;
const S2D S2D::kZERO;

kZERO
Value [0,0,0,0].
const R2Df kR2D_ZEROf;
const R2Dd kR2D_ZEROd;
const R2D R2D::kZERO;

kIDENT
Represents the identity transformation.
const T2Df kT2D_IDENTf;
const T2Dd kT2D_IDENTd;
const T2D T2D::kIDENT;

kNULL
Represents a null circle (no geometry).
const Cir2Df kCIR2D_NULLf;
const Cir2Dd kCIR2D_NULLd;
const Cir2D Cir2D::kNULL;

kNULL
Represents a null box (without geometry).
const Box2Df kBOX2D_NULLf;
const Box2Dd kBOX2D_NULLd;
const Box2D Box2D::kNULL;

struct V2D
Represents a 2d vector or point. “2D Vectors” (page 237).
struct V2Df
{

real32_t x;
real32_t y;

38.1 - Types and Constants 915

};

struct V2Dd
{

real64_t x;
real64_t y;

};

struct V2D
{

real x;
real y;

};

x Coordinate x.
y Coordinate y.

struct S2D
Represents a 2d size. “2D Size” (page 240).
struct S2Df
{

real32_t width;
real32_t height;

};

struct S2Dd
{

real64_t width;
real64_t height;

};

struct S2D
{

real width;
real height;

};

width Width.
height Height.

struct R2D
2d rectangle. “2D Rectangles” (page 240).
struct R2Df
{

916 Chapter 38 - Geom2D library

V2Df pos;
S2Df size;

};

struct R2Dd
{

V2Dd pos;
S2Dd size;

};

struct R2D
{

V2D pos;
S2D size;

};

pos Origin.
size Size.

struct T2D
2d affine transformation. “2D Transformations” (page 241).
struct T2Df
{

V2Df i;
V2Df j;
V2Df p;

};

struct T2Dd
{

V2Dd i;
V2Dd j;
V2Dd p;

};

struct T2D
{

V2D i;
V2D j;
V2D p;

};

i Component i of the linear transformation.
j Component j of the linear transformation.

38.1 - Types and Constants 917

p Position.

struct Seg2D
2d line segment. “2D Segments” (page 246).
struct Seg2Df
{

V2Df p0;
V2Df p1;

};

struct Seg2Dd
{

V2Dd p0;
V2Dd p1;

};

struct Seg2D
{

V2D p0;
V2D p1;

};

p0 Coordinate of the first point of the segment.
p1 Coordinate of the second point of the segment.

struct Cir2D
2d circle. “2D Circles” (page 247).
struct Cir2Df
{

V2Df c;
real32_t r;

};

struct Cir2Dd
{

V2Dd c;
real64_t r;

};

struct Cir2D
{

V2D c;
real r;

};

918 Chapter 38 - Geom2D library

38.1 - Types and Constants 919

c Center.
r Radix.

struct Box2D
2d bounding box. “2D Boxes” (page 247).
struct Box2Df
{

V2Df min;
V2Df max;

};

struct Box2Dd
{

V2Dd min;
V2Dd max;

};

struct Box2D
{

V2D min;
V2D max;

};

min Minimum bounding coordinate.
max Maximum bounding coordinate.

struct OBB2D
2d Oriented Bounding Box. “2D Oriented Boxes” (page 247).
struct OBB2Df;

struct OBB2Dd;

struct OBB2D;

struct Tri2D
2d triangle. “2D Triangles” (page 249).
struct Tri2Df
{

V2Df p0;
V2Df p1;
V2Df p2;

920 Chapter 38 - Geom2D library

};

struct Tri2Dd
{

V2Dd p0;
V2Dd p1;
V2Dd p2;

};

struct Tri2D
{

V2D p0;
V2D p1;
V2D p2;

};

p0 Coordinate of the first point of the triangle.
p1 Coordinate of the second point of the triangle.
p2 Coordinate of the third point of the triangle.

struct Pol2D
2d convex polygon. “2D Polygons” (page 250).
struct Pol2Df;

struct Pol2Dd;

struct Pol2D;

struct Col2D
Collision data in 2d. “2D Collisions” (page 253).
struct Col2Df;

struct Col2Dd;

struct Col2D;

38.2. Functions

v2d
Create a 2d vector from its components.

38.2 - Functions 921

V2Df
v2df(const real32_t x,

const real32_t y);

V2Dd
v2dd(const real64_t x,

const real64_t y);

V2D
V2D(const real x,

const real y);

x X coordinate.
y Y coordinate.

Return:

2d vector.

v2d_tof
Convert a vector from double to float.

V2Df
v2d_tof(const V2Dd *v);

v Vector.

Return:

The 2d vector in simple precision.

v2d_tod
Convert a vector from float to double.

V2Dd
v2d_tod(const V2Df *v);

v Vector.

Return:

The 2d vector in double precision.

922 Chapter 38 - Geom2D library

v2d_tofn
Converts a vector array from double to float.

void
v2d_tofn(V2Df *vf,

const V2Dd *vd,
const uint32_t n);

vf The destination array.
vd The source array.
n Number of elements.

v2d_todn
Converts a vector array from float to double.

void
v2d_todn(V2Dd *vd,

const V2Df *vf,
const uint32_t n);

vd The destination array.
vf The source array.
n Number of elements.

v2d_add
Add two vectors.

V2Df
v2d_addf(const V2Df *v1,

const V2Df *v2);

V2Dd
v2d_addd(const V2Dd *v1,

const V2Dd *v2);

V2D
V2D::add(const V2D *v1,

const V2D *v2);

v1 Vector 1.
v2 Vector 2.

38.2 - Functions 923

Return:

The result vector.

v2d_sub
Subtract two vectors.
V2Df
v2d_subf(const V2Df *v1,

const V2Df *v2);

V2Dd
v2d_subd(const V2Dd *v1,

const V2Dd *v2);

V2D
V2D::sub(const V2D *v1,

const V2D *v2);

v1 Vector 1.
v2 Vector 2.

Return:

The result vector.

v2d_mul
Multiply a vector by a scalar.
V2Df
v2d_mulf(const V2Df *v,

const real32_t s);

V2Dd
v2d_muld(const V2Dd *v,

const real64_t s);

V2D
V2D::mul(const V2D *v,

const real s);

v Vector.
s Scalar.

Return:

The result vector.

924 Chapter 38 - Geom2D library

v2d_from
Create a vector from a point and a direction.

V2Df
v2d_fromf(const V2Df *v,

const V2Df *dir,
const real32_t length);

V2Dd
v2d_fromd(const V2Dd *v,

const V2Dd *dir,
const real64_t length);

V2D
V2D::from(const V2D *v,

const V2D *dir,
const real length);

v Initial vector.
dir Direction.

length Length.

Return:

The result vector.

Remarks:

It will perform the operation r = v + length * dir. dir does not need to be unitary,
in which case length will behave as a scale factor.

v2d_mid
Returns the midpoint of two points.

V2Df
v2d_midf(const V2Df *v1,

const V2Df *v2);

V2Dd
v2d_midd(const V2Dd *v1,

const V2Dd *v2);

V2D
V2D::mid(const V2D *v1,

const V2D *v2);

38.2 - Functions 925

v1 First point.
v2 Second point.

Return:

The middle point.

v2d_unit
Unit vector (direction) from 1 to 2.
V2Df
v2d_unitf(const V2Df *v1,

const V2Df *v2,
real32_t *dist);

V2Dd
v2d_unitd(const V2Dd *v1,

const V2Dd *v2,
real64_t *dist);

V2D
V2D::unit(const V2D *v1,

const V2D *v2,
real *dist);

v1 Point 1 (origin).
v2 Point 2 (destination).

dist Distance between points. Can be NULL.

Return:

The unit vector.

v2d_unit_xy
Unit vector (direction) from 1 to 2.
V2Df
v2d_unit_xyf(const real32_t x1,

const real32_t y1,
const real32_t x2,
const real32_t y2,
real32_t *dist);

V2Dd
v2d_unit_xyd(const real64_t x1,

const real64_t y1,

926 Chapter 38 - Geom2D library

const real64_t x2,
const real64_t y2,
real64_t *dist);

V2D
V2D::unit_xy(const real x1,

const real y1,
const real x2,
const real y2,
real *dist);

x1 X coordinate of point 1 (origin).
y1 Y coordinate of point 1 (origin).
x2 X coordinate of point 2 (destination).
y2 Y coordinate of point 2 (destination).

dist Distance between points. Can be NULL.

Return:

The unit vector.

v2d_perp_pos
Gets the positive perpendicular vector.
V2Df
v2d_perp_posf(const V2Df *v);

V2Dd
v2d_perp_posd(const V2Dd *v);

V2D
V2D::perp_pos(const V2D *v);

v Initial vector.

Return:

The perpendicular vector.

Remarks:

It is the perpendicular obtained by positive angle (+�/2).

v2d_perp_neg
Gets the negative perpendicular vector.

38.2 - Functions 927

V2Df
v2d_perp_negf(const V2Df *v);

V2Dd
v2d_perp_negd(const V2Dd *v);

V2D
V2D::perp_neg(const V2D *v);

v Initial vector.

Return:

The perpendicular vector.

Remarks:

It is the perpendicular obtained by negative angle (-�/2).

v2d_from_angle
Gets the vector resulting from applying a rotation to the vector [1,0].
V2Df
v2d_from_anglef(const real32_t a);

V2Dd
v2d_from_angled(const real64_t a);

V2D
V2D::from_angle(const real a);

a Angle.

Return:

The vector.

Remarks:

For a=0 we get [1,0]. For aπ=/2 [0,1].

v2d_norm
Normalize a vector, that is, make it a vector of length = 1.
bool_t
v2d_normf(V2Df *v);

928 Chapter 38 - Geom2D library

bool_t
v2d_normd(V2Dd *v);

bool_t
V2D::norm(V2D *v);

v Vector that will be normalized.

Return:

FALSE if the vector cannot be normalized (vector 0).

v2d_length
Calculate the length of a vector.
real32_t
v2d_lengthf(const V2Df *v);

real64_t
v2d_lengthd(const V2Dd *v);

real
V2D::length(const V2D *v);

v Vector.

Return:

The vector module.

v2d_sqlength
Calculate the square of the length of a vector.
real32_t
v2d_sqlengthf(const V2Df *v);

real64_t
v2d_sqlengthd(const V2Dd *v);

real
V2D::sqlength(const V2D *v);

v Vector.

Return:

The square of the vector modulus.

38.2 - Functions 929

Remarks:

Avoid using the square root, so it is more efficient than v2d_lengthf. Often used to
compare distances.

v2d_dot
Product of two vectors.
real32_t
v2d_dotf(const V2Df *v1,

const V2Df *v2);

real64_t
v2d_dotd(const V2Dd *v1,

const V2Dd *v2);

real
V2D::dot(const V2D *v1,

const V2D *v2);

v1 Vector 1.
v2 Vector 2.

Return:

Scalar product.

v2d_dist
Calculate the distance between two points.
real32_t
v2d_distf(const V2Df *v1,

const V2Df *v2);

real64_t
v2d_distd(const V2Dd *v1,

const V2Dd *v2);

real
V2D::dist(const V2D *v1,

const V2D *v2);

v1 The first point.
v2 The second point.

Return:

930 Chapter 38 - Geom2D library

Distance.

v2d_sqdist
Calculate the square of the distance between two points.
real32_t
v2d_sqdistf(const V2Df *v1,

const V2Df *v2);

real64_t
v2d_sqdistd(const V2Dd *v1,

const V2Dd *v2);

real
V2D::sqdist(const V2D *v1,

const V2D *v2);

v1 The first point.
v2 The second point.

Return:

The distance squared.

Remarks:

It avoids using the square root, so it is more efficient than v2d_distf. Often used to
compare distances.

v2d_angle
Calculate the angle formed by two vectors.
real32_t
v2d_anglef(const V2Df *v1,

const V2Df *v2);

real64_t
v2d_angled(const V2Dd *v1,

const V2Dd *v2);

real
V2D::angle(const V2D *v1,

const V2D *v2);

v1 Vector 1.
v2 Vector 2.

38.2 - Functions 931

Return:

The angle in radians (-Pi, Pi)

Remarks:

Positive angles go from v1 to v2 counterclockwise. For angles greater than Pi radians
(180°) it will return negative (clockwise).

v2d_rotate
Apply a rotation to a vector.
void
v2d_rotatef(V2Df *v,

const real32_t a);

void
v2d_rotated(V2Dd *v,

const real64_t a);

void
V2D::rotate(V2D *v,

const real a);

v Vector to be rotated (origin/destination.
a Angle in radians.

Remarks:

This function involves calculating the sine and cosine. Use t2d_vmultnf if you have
to apply the same rotation to multiple vectors.

s2d
Create a 2d size from two values.
S2Df
s2df(const real32_t width,

const real32_t height);

S2Dd
s2dd(const real64_t width,

const real64_t height);

S2D
S2D(const real width,

const real height);

932 Chapter 38 - Geom2D library

width Width.
height Height.

Return:

The size.

r2d
Create a rectangle from its components.
R2Df
r2df(const real32_t x,

const real32_t y,
const real32_t width,
const real32_t height);

R2Dd
r2dd(const real64_t x,

const real64_t y,
const real64_t width,
const real64_t height);

R2D
R2D(const real x,

const real y,
const real width,
const real height);

x Origin x coordinate.
y Coordinate and origin.

width Width.
height Height.

Return:

The rectangle.

r2d_center
Gets the center point of the rectangle.
V2Df
r2d_centerf(const R2Df *r2d);

V2Dd
r2d_centerd(const R2Dd *r2d);

38.2 - Functions 933

V2D
R2D::center(const R2D *r2d);

r2d Rectangle.

Return:

The center.

r2d_collide
Check if two rectangles collide.
bool_t
r2d_collidef(const R2Df *r2d1,

const R2Df *r2d2);

bool_t
r2d_collided(const R2Dd *r2d1,

const R2Dd *r2d2);

bool_t
R2D::collide(const R2D *r2d1,

const R2D *r2d2);

r2d1 Rectangle 1.
r2d2 Rectangle 2.

Return:

TRUE if there is collision, FALSE if they are separated.

r2d_contains
Check if a point is inside the rectangle.
bool_t
r2d_containsf(const R2Df *r2d,

const real32_t x,
const real32_t y);

bool_t
r2d_containsd(const R2Dd *r2d,

const real64_t x,
const real64_t y);

bool_t
R2D::contains(const R2D *r2d,

934 Chapter 38 - Geom2D library

const real x,
const real y);

r2d Rectangle.
x X coordinate of the point.
y Coordinate and point.

Return:

TRUE if the point is inside.

r2d_clip
Check if a rectangle, or part of it, is contained in another rectangle.
bool_t
r2d_clipf(const R2Df *viewport,

const R2Df *r2d);

bool_t
r2d_clipd(const R2Dd *viewport,

const R2Dd *r2d);

bool_t
R2D::clip(const R2D *viewport,

const R2D *r2d);

viewport Container rectangle.
r2d Rectangle to check.

Return:

TRUE if the r2d rectangle is completely outside of viewport.

Remarks:

Useful to avoid processing or drawing objects that are totally outside the viewing area.

r2d_join
Join two rectangles into one.
void
r2d_joinf(R2Df *r2d,

const R2Df *src);

void

38.2 - Functions 935

r2d_joind(R2Dd *r2d,
const R2Dd *src);

void
R2D::join(R2D *r2d,

const R2D *src);

r2d Destination rectangle. Its position and size will be modified to contain
src.

src Rectangle to be added to r2d.

t2d_tof
Converts a transformation from double to float.
void
t2d_tof(T2Df *dest,

const T2Dd *src);

dest Destination transformation.
src Origin transformation.

t2d_tod
Converts a transform from float to double.
void
t2d_tod(T2Dd *dest,

const T2Df *src);

dest Destination transformation.
src Origin transformation.

t2d_move
Multiply a transformation by a translation t2d = src * move(x,y).
void
t2d_movef(T2Df *dest,

const T2Df *src,
const real32_t x,
const real32_t y);

void
t2d_moved(T2Dd *dest,

const T2Dd *src,

936 Chapter 38 - Geom2D library

const real64_t x,
const real64_t y);

void
T2D::move(T2D *dest,

const T2D *src,
const real x,
const real y);

dest Result transformation.
src Initial transformation.

x X coordinate of displacement.
y Y coordinate of displacement.

Remarks:

dest and src can point to the same matrix.

t2d_rotate
Multiply a transformation by a rotation dest = src * rotate(a).

void
t2d_rotatef(T2Df *dest,

const T2Df *src,
const real32_t a);

void
t2d_rotated(T2Dd *dest,

const T2Dd *src,
const real64_t a);

void
T2D::rotate(T2D *dest,

const T2D *src,
const real a);

dest Result transformation.
src Initial transformation.

a Rotation angle in radians. Positive angles are those that rotate from the
X axis to the Y axis.

Remarks:

dest and src can point to the same matrix.

38.2 - Functions 937

t2d_scale
Multiply a transformation by an scale dest = src * scale(sx,sy).

void
t2d_scalef(T2Df *dest,

const T2Df *src,
const real32_t sx,
const real32_t sy);

void
t2d_scaled(T2Dd *dest,

const T2Dd *src,
const real64_t sx,
const real64_t sy);

void
T2D::scale(T2D *dest,

const T2D *src,
const real sx,
const real sy);

dest Result transformation.
src Initial transformation.
sx Scaling on the x axis.
sy Scaling on the y axis.

Remarks:

dest and src can point to the same matrix.

t2d_invfast
Calculate the inverse transformation, assuming the input is orthogonal.

void
t2d_invfastf(T2Df *dest,

const T2Df *src);

void
t2d_invfastd(T2Dd *dest,

const T2Dd *src);

void
T2D::invfast(T2D *dest,

const T2D *src);

938 Chapter 38 - Geom2D library

dest Inverse transformation.
src Initial transformation.

Remarks:

The transformation will be orthogonal only if it contains rotations and translations,
otherwise the result of applying it will be unpredictable. dest and src can point to the
same matrix.

t2d_inverse
Calculate the inverse transformation.
void
t2d_inversef(T2Df *dest,

const T2Df *src);

void
t2d_inversed(T2Dd *dest,

const T2Dd *src);

void
T2D::inverse(T2D *dest,

const T2D *src);

dest Inverse transformation.
src Initial transformation.

Remarks:

dest and src can point to the same matrix.

t2d_mult
Multiply two transformations dest = src1 * src2.
void
t2d_multf(T2Df *dest,

const T2Df *src1,
const T2Df *src2);

void
t2d_multd(T2Dd *dest,

const T2Dd *src1,
const T2Dd *src2);

void
T2D::mult(T2D *dest,

38.2 - Functions 939

const T2D *src1,
const T2D *src2);

dest Result transformation.
src1 First operating.
src2 Second operating.

Remarks:

dest, src1 and src2 can point to the same matrix.

t2d_vmult
Transform a vector dest = t2d * src.
void
t2d_vmultf(V2Df *dest,

const T2Df *t2d,
const V2Df *src);

void
t2d_vmultd(V2Dd *dest,

const T2Dd *t2d,
const V2Dd *src);

void
T2D::vmult(V2D *dest,

const T2D *t2d,
const V2D *src);

dest Transformed vector.
t2d Transformation.
src Original vector.

Remarks:

dest and src can point to the same vector.

t2d_vmultn
Transform a vector list dest[i] = t2d * src[i].
void
t2d_vmultnf(V2Df *dest,

const T2Df *t2d,
const V2Df *src,
const uint32_t n);

940 Chapter 38 - Geom2D library

void
t2d_vmultnd(V2Dd *dest,

const T2Dd *t2d,
const V2Dd *src,
const uint32_t n);

void
T2D::vmultn(V2D *dest,

const T2D *t2d,
const V2D *src,
const uint32_t n);

dest Transformed vector array.
t2d Transformation.
src Original vector array.

n Number of vectors in src.

Remarks:

dest and src can point to the same array.

t2d_decompose
Gets the position, rotation, and scaling of a transformation.

void
t2d_decomposef(const T2Df *t2d,

V2Df *pos,
real32_t *a,
V2Df *sc);

void
t2d_decomposed(const T2Dd *t2d,

V2Dd *pos,
real64_t *a,
V2Dd *sc);

void
T2D::decompose(const T2D *t2d,

V2D *pos,
real *a,
V2D *sc);

38.2 - Functions 941

t2d Transformation.
pos Position. Can be NULL.

a Angle in radians (-�/2, �/2). Can be NULL.
sc Scaled. Can be NULL.

Remarks:

If the transformation is not made up of a sequence of translations, rotations, and scales,
the result will not be valid.

seg2d
Create a 2d segment from its components.
Seg2Df
seg2df(const real32_t x0,

const real32_t y0,
const real32_t x1,
const real32_t y1);

Seg2Dd
seg2dd(const real64_t x0,

const real64_t y0,
const real64_t x1,
const real64_t y1);

Seg2D
Seg2D(const real x0,

const real y0,
const real x1,
const real y1);

x0 X coordinate of the first point.
y0 Y coordinate of the first point.
x1 X coordinate of the second point.
y1 Y coordinate of the second point.

Return:

The 2d segment.

seg2d_v
Create a 2d segment from two points.

942 Chapter 38 - Geom2D library

Seg2Df
seg2d_vf(const V2Df *p0,

const V2Df *p1);

Seg2Dd
seg2d_vd(const V2Dd *p0,

const V2Dd *p1);

Seg2D
Seg2D::v(const V2D *p0,

const V2D *p1);

p0 First point.
p1 Second point.

Return:

The 2d segment.

seg2d_length
Gets the length of the segment.
real32_t
seg2d_lengthf(const Seg2Df *seg);

real64_t
seg2d_lengthd(const Seg2Dd *seg);

real
Seg2D::length(const Seg2D *seg);

seg Segment.

Return:

Length.

seg2d_sqlength
Gets the square of the segment length.
real32_t
seg2d_sqlengthf(const Seg2Df *seg);

real64_t
seg2d_sqlengthd(const Seg2Dd *seg);

38.2 - Functions 943

real
Seg2D::sqlength(const Seg2D *seg);

seg Segment.

Return:

Length square.

Remarks:

Avoid calculating square roots if we are only interested in comparing measurements.

seg2d_eval
Gets the point in the segment based on the parameter.
V2Df
seg2d_evalf(const Seg2Df *seg,

const real32_t t);

V2Dd
seg2d_evald(const Seg2Dd *seg,

const real64_t t);

V2D
Seg2D::eval(const Seg2D *seg,

const real t);

seg Segment.
t Parameter.

Return:

Point on the segment (or on the line that contains it).

Remarks:

If t=0 it returns p0. If t=1 it returns p1. Values between (0,1) points within the
segment. Other values, points on the line that contains the segment.

seg2d_close_param
Gets the parameter of the segment closest to a given point.
real32_t
seg2d_close_paramf(const Seg2Df *seg,

const V2Df *pnt);

944 Chapter 38 - Geom2D library

real64_t
seg2d_close_paramd(const Seg2Dd *seg,

const V2Dd *pnt);

real
Seg2D::close_param(const Seg2D *seg,

const V2D *pnt);

seg Segment.
pnt Point.

Return:

Parameter. See seg2d_evalf.

seg2d_point_sqdist
Gets the squared distance from a point to the segment.
real32_t
seg2d_point_sqdistf(const Seg2Df *seg,

const V2Df *pnt,
real32_t *t);

real64_t
seg2d_point_sqdistd(const Seg2Dd *seg,

const V2Dd *pnt,
real64_t *t);

real
Seg2D::point_sqdist(const Seg2D *seg,

const V2D *pnt,
real *t);

seg Segment.
pnt Point.

t Parameter on the line that contains the segment. See
seg2d_close_paramf. It can be NULL if we don’t need this value.

Return:

Distance square.

seg2d_sqdist
Gets the squared distance between two segments.

38.2 - Functions 945

real32_t
seg2d_sqdistf(const Seg2Df *seg1,

const Seg2Df *seg2,
real32_t *t1,
real32_t *t2);

real64_t
seg2d_sqdistd(const Seg2Dd *seg1,

const Seg2Dd *seg2,
real64_t *t1,
real64_t *t2);

real
Seg2D::sqdist(const Seg2D *seg1,

const Seg2D *seg2,
real *t1,
real *t2);

seg1 First segment.
seg2 Second segment.

t1 Nearest parameter in seg1. It can be NULL if we don’t need this value.
t2 Nearest parameter in seg2. It can be NULL if we don’t need this value.

Return:

Distance square.

cir2d
Create a 2d circle from its components.

Cir2Df
cir2df(const real32_t x,

const real32_t y,
const real32_t r);

Cir2Dd
cir2dd(const real64_t x,

const real64_t y,
const real64_t r);

Cir2D
Cir2D(const real x,

const real y,
const real r);

946 Chapter 38 - Geom2D library

x Center x coordinate.
y Center y coordinate.
r Radius.

Return:

The 2d circle.

cir2d_from_box
Create a circle containing a 2D box.
Cir2Df
cir2d_from_boxf(const B2D *box);

Cir2Dd
cir2d_from_boxd(const B2D *box);

Cir2D
Cir2D::from_box(const B2D *box);

box The box.

Return:

The circle.

cir2d_from_points
Create a circle containing a set of points.
Cir2Df
cir2d_from_pointsf(const V2Df *p,

const uint32_t n);

Cir2Dd
cir2d_from_pointsd(const V2Dd *p,

const uint32_t n);

Cir2D
Cir2D::from_points(const V2D *p,

const uint32_t n);

p The points vector.
n The number of points.

Return:

38.2 - Functions 947

The circle.

Remarks:

The center will be the midpoint of the set. The radius will be the distance to the
farthest point from that center. Provides a good fit with linear cost.

cir2d_minimum
Calculate the circle of minimum radius that contains a set of points.
Cir2Df
cir2d_minimumf(const V2Df *p,

const uint32_t n);

Cir2Dd
cir2d_minimumd(const V2Dd *p,

const uint32_t n);

Cir2D
Cir2D::minimum(const V2D *p,

const uint32_t n);

p The points vector.
n The number of points.

Return:

The circle.

Remarks:

Provides optimal adjustment in linear time. However, it is slower than cir2d_from_pointsf
.

cir2d_area
Gets the area of the circle.
real32_t
cir2d_areaf(const Cir2Df *cir);

real64_t
cir2d_aread(const Cir2Dd *cir);

real
Cir2D::area(const Cir2D *cir);

948 Chapter 38 - Geom2D library

cir The circle.

Return:

The area π(r²).

cir2d_is_null
Check if a circle is null (dimensionless).
bool_t
cir2d_is_nullf(const Cir2Df *cir);

bool_t
cir2d_is_nulld(const Cir2Dd *cir);

bool_t
Cir2D::is_null(const Cir2D *cir);

cir The circle.

Return:

TRUE if it is null, FALSE if it contains any point.

Remarks:

A single point is a valid circle with radius = 0.

box2d
Create a new box with the indicated limits.
Box2Df
box2df(const real32_t minX,

const real32_t minY,
const real32_t maxX,
const real32_t maxY);

Box2Dd
box2dd(const real64_t minX,

const real64_t minY,
const real64_t maxX,
const real64_t maxY);

Box2D
Box2D(const real minX,

const real minY,
const real maxX,
const real maxY);

38.2 - Functions 949

minX The lower limit on X.
minY The lower limit on Y.
maxX The upper limit on X.
maxY The upper limit on Y.

Return:

The newly created box.

box2d_from_points
Create a new box containing a set of points.
Box2Df
box2d_from_pointsf(const V2Df *p,

const uint32_t n);

Box2Dd
box2d_from_pointsd(const V2Dd *p,

const uint32_t n);

Box2D
Box2D::from_points(const V2D *p,

const uint32_t n);

p 2d point vector.
n Number of points in vector.

Return:

The newly created box.

box2d_center
Returns the center point.
V2Df
box2d_centerf(const Box2Df *box);

V2Dd
box2d_centerd(const Box2Dd *box);

V2D
Box2D::center(const Box2D *box);

box The container.

950 Chapter 38 - Geom2D library

Return:

Center coordinates.

box2d_add
Expand the dimensions of the box to contain the entry point. If the point is already within
its area, the box is not modified.
void
box2d_addf(Box2Df *box,

const V2Df *p);

void
box2d_addd(Box2Dd *box,

const V2Dd *p);

void
Box2D::add(Box2D *box,

const V2D *p);

box The container.
p The point to include.

box2d_addn
Expand the dimensions of the box to contain several points. It is equivalent to calling the
method box2d_addf successively.
void
box2d_addnf(Box2Df *box,

const V2Df *p,
const uint32_t n);

void
box2d_addnd(Box2Dd *box,

const V2Dd *p,
const uint32_t n);

void
Box2D::addn(Box2D *box,

const V2D *p,
const uint32_t n);

box The container.
p Vector points to include.
n Number of points.

38.2 - Functions 951

box2d_add_circle
Expand the dimensions of the container to accommodate a circle.
void
box2d_add_circlef(Box2Df *box,

const Cir2Df *cir);

void
box2d_add_circled(Box2Dd *box,

const Cir2Dd *cir);

void
Box2D::add_circle(Box2D *box,

const Cir2D *cir);

box The container.
cir Circle.

box2d_merge
Expand the dimensions of dest to contain src.
void
box2d_mergef(Box2Df *dest,

const Box2Df *src);

void
box2d_merged(Box2Dd *dest,

const Box2Dd *src);

void
Box2D::merge(Box2D *dest,

const Box2D *src);

dest The container that will be expanded.
src The container that must be added.

box2d_segments
Gets the four segments that make up the box.
void
box2d_segmentsf(const Box2Df *box,

Seg2Df *segs);

void
box2d_segmentsd(const Box2Dd *box,

952 Chapter 38 - Geom2D library

Seg2Dd *segs);

void
Box2D::segments(const Box2D *box,

Seg2D *segs);

box The container.
segs Array of at least four segments.

box2d_area
Gets the area of the box.

real32_t
box2d_areaf(const Box2Df *box);

real64_t
box2d_aread(const Box2Dd *box);

real
Box2D::area(const Box2D *box);

box The container.

Return:

The area (width * height).

box2d_is_null
Check if a container is null (without any geometry inside).

bool_t
box2d_is_nullf(const Box2Df *box);

bool_t
box2d_is_nulld(const Box2Dd *box);

bool_t
Box2D::is_null(const Box2D *box);

box The container.

Return:

TRUE if is null, FALSE if contains any geometry.

38.2 - Functions 953

obb2d_create
Create a new oriented box.
OBB2Df*
obb2d_createf(const V2Df *center,

const real32_t width,
const real32_t height,
const real32_t angle);

OBB2Dd*
obb2d_created(const V2Dd *center,

const real64_t width,
const real64_t height,
const real64_t angle);

OBB2D*
OBB2D::create(const V2D *center,

const real width,
const real height,
const real angle);

center The central point.
width The width of the box.
height The height of the box.
angle The angle with respect to the X axis, in radians.

Return:

The newly created box.

Remarks:

Positive angles are those that rotate from the X axis to the Y axis.

obb2d_from_line
Create a box from a segment.
OBB2Df*
obb2d_from_linef(const V2Df *p0,

const V2Df *p1,
const real32_t thickness);

OBB2Dd*
obb2d_from_lined(const V2Dd *p0,

const V2Dd *p1,
const real64_t thickness);

954 Chapter 38 - Geom2D library

OBB2D*
OBB2D::from_line(const V2D *p0,

const V2D *p1,
const real thickness);

p0 The first point of the segment.
p1 The second point of the segment.

thickness The “thickness” of the segment.

Return:

The newly created box.

Remarks:

The width of the box will correspond to the length of the segment. The height will be
thickness and the center will be the midpoint of the segment.

obb2d_from_points
Create an oriented box from a set of points.
OBB2Df*
obb2d_from_pointsf(const V2Df *p,

const uint32_t n);

OBB2Dd*
obb2d_from_pointsd(const V2Dd *p,

const uint32_t n);

OBB2D*
OBB2D::from_points(const V2D *p,

const uint32_t n);

p Points array.
n Number of points.

Return:

The newly created box.

Remarks:

A good fit will be produced in “elongated” point distributions by calculating the covari-
ance matrix and projecting points onto the director vector of that distribution. However,
it does not provide the minimum volume box.

38.2 - Functions 955

obb2d_copy
Create a copy of the box.
OBB2Df*
obb2d_copyf(const OBB2Df obb);

OBB2Dd*
obb2d_copyd(const OBB2Dd obb);

OBB2D*
OBB2D::copy(const OBB2D obb);

obb Original box.

Return:

The copy.

obb2d_destroy
Destroy the box.
void
obb2d_destroyf(OBB2Df **obb);

void
obb2d_destroyd(OBB2Dd **obb);

void
OBB2D::destroy(OBB2D **obb);

obb The box. Will be set to NULL after destruction.

obb2d_update
Update the box parameters.
void
obb2d_updatef(OBB2Df *obb,

const V2Df *center,
const real32_t width,
const real32_t height,
const real32_t angle);

void
obb2d_updated(OBB2Dd *obb,

const V2Dd *center,
const real64_t width,
const real64_t height,

956 Chapter 38 - Geom2D library

const real64_t angle);

void
OBB2D::update(OBB2D *obb,

const V2D *center,
const real width,
const real height,
const real angle);

obb The box to update.
center The central point.
width The width.
height The height.
angle The angle.

Remarks:

See obb2d_createf.

obb2d_move
Move the box on the plane.
void
obb2d_movef(OBB2Df *obb,

const real32_t offset_x,
const real32_t offset_y);

void
obb2d_moved(OBB2Dd *obb,

const real64_t offset_x,
const real64_t offset_y);

void
OBB2D::move(OBB2D *obb,

const real offset_x,
const real offset_y);

obb The box.
offset_x X displacement.
offset_y Y displacement.

obb2d_transform
Apply a transformation to the box.

38.2 - Functions 957

void
obb2d_transformf(OBB2Df *obb,

const T2Df *t2d);

void
obb2d_transformd(OBB2Dd *obb,

const T2Dd *t2d);

void
OBB2D::transform(OBB2D *obb,

const T2D *t2d);

obb The box.
t2d Affine transformation.

obb2d_corners
Gets the vertices bounding the box.
const V2Df*
obb2d_cornersf(const OBB2Df *obb);

const V2Dd*
obb2d_cornersd(const OBB2Dd *obb);

const V2D*
OBB2D::corners(const OBB2D *obb);

obb The box.

Return:

Pointer to an array of 4 vertices.

Remarks:

Do not modify the returned array. Copy if necessary.

obb2d_center
Gets the center point of the box.
V2Df
obb2d_centerf(const OBB2Df *obb);

V2Dd
obb2d_centerd(const OBB2Dd *obb);

958 Chapter 38 - Geom2D library

V2D
OBB2D::center(const OBB2D *obb);

obb The box.

Return:

Center.

obb2d_width
Get the width of the box.

real32_t
obb2d_widthf(const OBB2Df *obb);

real64_t
obb2d_widthd(const OBB2Dd *obb);

real
OBB2D::width(const OBB2D *obb);

obb The box.

Return:

The width.

obb2d_height
Get the height of the box.

real32_t
obb2d_heightf(const OBB2Df *obb);

real64_t
obb2d_heightd(const OBB2Dd *obb);

real
OBB2D::height(const OBB2D *obb);

obb The box.

Return:

The height.

38.2 - Functions 959

obb2d_angle
Get the angle of the box.
real32_t
obb2d_anglef(const OBB2Df *obb);

real64_t
obb2d_angled(const OBB2Dd *obb);

real
OBB2D::angle(const OBB2D *obb);

obb The box.

Return:

The angle in radians with respect to the X axis.

obb2d_area
Gets the box area.
real32_t
obb2d_areaf(const OBB2Df *obb);

real64_t
obb2d_aread(const OBB2Dd *obb);

real
OBB2D::area(const OBB2D *obb);

obb The box.

Return:

The area (width * height).

obb2d_box
Get the box limits.
Box2Df
obb2d_boxf(const OBB2Df *obb);

Box2Dd
obb2d_boxd(const OBB2Dd *obb);

Box2D
OBB2D::box(const OBB2D *obb);

960 Chapter 38 - Geom2D library

obb The box.

Return:

Box aligned with the axes, defined by the minimum and maximum vectors.

tri2d
Triangle from its coordinates.

Tri2Df
tri2df(const real32_t x0,

const real32_t y0,
const real32_t x1,
const real32_t y1,
const real32_t x2,
const real32_t y2);

Tri2Dd
tri2dd(const real64_t x0,

const real64_t y0,
const real64_t x1,
const real64_t y1,
const real64_t x2,
const real64_t y2);

Tri2D
Tri2D(const real x0,

const real y0,
const real x1,
const real y1,
const real x2,
const real y2);

x0 X coordinate of the first point.
y0 Y coordinate of the first point.
x1 X coordinate of the second point.
y1 Y coordinate of the second point.
x2 X coordinate of the third point.
y2 Y coordinate of the third point.

Return:

The triangle.

38.2 - Functions 961

tri2d_v
Triangle from three points.

Tri2Df
tri2d_vf(const V2Df *p0,

const V2Df *p1,
const V2Df *p2);

Tri2Dd
tri2d_vd(const V2Dd *p0,

const V2Dd *p1,
const V2Dd *p2);

Tri2D
Tri2D::v(const V2D *p0,

const V2D *p1,
const V2D *p2);

p0 First point.
p1 Second point.
p2 Third point.

Return:

The triangle.

tri2d_transform
Apply a transformation to the triangle.

void
tri2d_transformf(Tri2Df *tri,

const T2Df *t2d);

void
tri2d_transformd(Tri2Dd *tri,

const T2Dd *t2d);

void
Tri2D::transform(Tri2D *tri,

const T2D *t2d);

tri The triangle.
t2d Affine transformation.

962 Chapter 38 - Geom2D library

tri2d_area
Gets the area of the triangle.
real32_t
tri2d_areaf(const Tri2Df *tri);

real64_t
tri2d_aread(const Tri2Dd *tri);

real
Tri2D::area(const Tri2D *tri);

tri The triangle.

Return:

The area.

tri2d_ccw
Obtains the order of the travel of the points of the triangle.
bool_t
tri2d_ccwf(const Tri2Df *tri);

bool_t
tri2d_ccwd(const Tri2Dd *tri);

bool_t
Tri2D::ccw(const Tri2D *tri);

tri The triangle.

Return:

TRUE counter-clockwise sense. FALSE clockwise.

Remarks:

See “CW and CCW anglesCW and CCW angles” (page 238).

tri2d_centroid
Gets the centroid (center of mass) of the triangle.
V2Df
tri2d_centroidf(const Tri2Df *tri);

V2Dd

38.2 - Functions 963

tri2d_centroidd(const Tri2Dd *tri);

V2D
Tri2D::centroid(const Tri2D *tri);

tri The triangle.

Return:

Center of mass.

pol2d_create
Create a new polygon.
Pol2Df*
pol2d_createf(const V2Df *points,

const uint32_t n);

Pol2Dd*
pol2d_created(const V2Dd *points,

const uint32_t n);

Pol2D*
Pol2D::create(const V2D *points,

const uint32_t n);

points List of points that make up the polygon.
n Number of points.

Return:

The polygon created.

pol2d_convex_hull
Creates the minimum convex polygon that surrounds a set of points (Convex Hull).
Pol2Df*
pol2d_convex_hullf(const V2Df *points,

const uint32_t n);

Pol2Dd*
pol2d_convex_hulld(const V2Dd *points,

const uint32_t n);

Pol2D*
Pol2D::convex_hull(const V2D *points,

const uint32_t n);

964 Chapter 38 - Geom2D library

points Points list.
n Number of points.

Return:

The polygon.

pol2d_copy
Create a copy of the polygon.
Pol2Df*
pol2d_copyf(const Pol2Df *pol);

Pol2Dd*
pol2d_copyd(const Pol2Dd *pol);

Pol2D*
Pol2D::copy(const Pol2D *pol);

pol The original polygon.

Return:

The copy.

pol2d_destroy
Destroy the polygon.
void
pol2d_destroyf(Pol2Df **pol);

void
pol2d_destroyd(Pol2Dd **pol);

void
Pol2D::destroy(Pol2D **pol);

pol The polygon. Will be set to NULL after destruction.

pol2d_transform
Apply a 2D transformation.
void
pol2d_transformf(Pol2Df *pol,

const T2Df *t2d);

38.2 - Functions 965

void
pol2d_transformd(Pol2Dd *pol,

const T2Dd *t2d);

void
Pol2D::transform(Pol2D *pol,

const T2D *t2d);

pol The polygon.
t2d 2D transformation.

Remarks:

The polygon does not save the original coordinates. Successive transformations will
accumulate.

pol2d_points
Gets the vertices that make up the polygon.
const V2Df*
pol2d_pointsf(const Pol2Df *pol);

const V2Dd*
pol2d_pointsd(const Pol2Dd *pol);

const V2D*
Pol2D::points(const Pol2D *pol);

pol The polygon.

Return:

Pointer to an array of vertices.

Remarks:

Do not modify the returned array. Copy if necessary.

pol2d_n
Gets the number of vertices that make up the polygon.
uint32_t
pol2d_nf(const Pol2Df *pol);

uint32_t

966 Chapter 38 - Geom2D library

pol2d_nd(const Pol2Dd *pol);

uint32_t
Pol2D::n(const Pol2D *pol);

pol The polygon.

Return:

The number of vertices.

Remarks:

It is the same value as the one used in the constructor pol2d_createf.

pol2d_area
Gets the area of the polygon.
real32_t
pol2d_areaf(const Pol2Df *pol);

real64_t
pol2d_aread(const Pol2Dd *pol);

real
Pol2D::area(const Pol2D *pol);

pol The polygon.

Return:

The area.

pol2d_box
Gets the geometric limits of the polygon.
Box2Df
pol2d_boxf(const Pol2Df *pol);

Box2Dd
pol2d_boxd(const Pol2Dd *pol);

Box2D
Pol2D::box(const Pol2D *pol);

pol The polygon.

38.2 - Functions 967

Return:

Box aligned with the axes, defined by the minimum and maximum vectors.

pol2d_ccw
Gets the winding order of the polygon points.
bool_t
pol2d_ccwf(const Pol2Df *pol);

bool_t
pol2d_ccwd(const Pol2Dd *pol);

bool_t
Pol2D::ccw(const Pol2D *pol);

pol The polygon.

Return:

TRUE counter-clockwise. FALSE clockwise.

pol2d_convex
Gets whether or not the polygon is convex.
bool_t
pol2d_convexf(const Pol2Df *pol);

bool_t
pol2d_convexd(const Pol2Dd *pol);

bool_t
Pol2D::convex(const Pol2D *pol);

pol The polygon.

Return:

TRUE if is convex. FALSE if no.

pol2d_centroid
Gets the centroid (center of mass) of the polygon.
V2Df
pol2d_centroidf(const Pol2Df *pol);

968 Chapter 38 - Geom2D library

V2Dd
pol2d_centroidd(const Pol2Dd *pol);

V2D
Pol2D::centroid(const Pol2D *pol);

pol The polygon.

Return:

Center of mass.

pol2d_visual_center
Gets the visual center or label point.
V2Df
pol2d_visual_centerf(const Pol2Df *pol);

V2Dd
pol2d_visual_centerd(const Pol2Dd *pol);

V2D
Pol2D::visual_center(const Pol2D *pol);

pol The polygon.

Return:

The labeling center.

Remarks:

It corresponds to a point within the polygon located at a maximum distance from any
edge. In convex polygons it will coincide with the centroid. It implements an adaptation
of the polylabel algorithm of the project MapBox1.

pol2d_triangles
Gets a list of triangles that make up the polygon.
ArrSt(Tri2Df)*
pol2d_trianglesf(const Pol2Df *pol);

ArrSt(Tri2Df)*
pol2d_trianglesd(const Pol2Dd *pol);

1https://github.com/mapbox/polylabel

https://github.com/mapbox/polylabel

38.2 - Functions 969

ArrSt(Tri2Df)*
Pol2D::triangles(const Pol2D *pol);

pol The polygon.

Return:

Triangle array. Must be destroyed with arrst_destroy(&triangles, NULL, Tri2Df
).

Remarks:

The union of all the triangles corresponds to the original polygon.

pol2d_convex_partition
Gets a list of the convex polygons that make up the polygon.
ArrSt(Pol2Df)*
pol2d_convex_partitionf(const Pol2Df *pol);

ArrSt(Pol2Df)*
pol2d_convex_partitiond(const Pol2Dd *pol);

ArrSt(Pol2Df)*
Pol2D::convex_partition(const Pol2D *pol);

pol The polygon.

Return:

Array of convex polygons. It must be destroyed with arrst_destroy(&polys,
pol2d_destroyf, Pol2Df).

Remarks:

The union of all polygons corresponds to the original polygon.

col2d_point_point
Point-point collision.
bool_t
col2d_point_pointf(const V2Df *pnt1,

const V2Df *pnt2,
const real32_t tol,
Col2Df *col);

bool_t

970 Chapter 38 - Geom2D library

col2d_point_pointd(const V2Dd *pnt1,
const V2Dd *pnt2,
const real64_t tol,
Col2Dd *col);

bool_t
Col2D::point_point(const V2D *pnt1,

const V2D *pnt2,
const real tol,
Col2D *col);

pnt1 First point.
pnt2 Second point.

tol Tolerance. Minimum distance to be considered a collision.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_segment_point
Segment-point collision.

bool_t
col2d_segment_pointf(const Seg2Df *seg,

const V2Df *pnt,
const real32_t tol,
Col2Df *col);

bool_t
col2d_segment_pointd(const Seg2Dd *seg,

const V2Dd *pnt,
const real64_t tol,
Col2Dd *col);

bool_t
Col2D::segment_point(const Seg2D *seg,

const V2D *pnt,
const real tol,
Col2D *col);

38.2 - Functions 971

seg Segment.
pnt Point.
tol Tolerance. Minimum distance to be considered a collision.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_segment_segment
Segment-segment collision.
bool_t
col2d_segment_segmentf(const Seg2Df *seg1,

const Seg2Df *seg2,
Col2Df *col);

bool_t
col2d_segment_segmentd(const Seg2Dd *seg1,

const Seg2Dd *seg2,
Col2Dd *col);

bool_t
Col2D::segment_segment(const Seg2D *seg1,

const Seg2D *seg2,
Col2D *col);

seg1 First segment.
seg2 Second segment.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_circle_point
Circle-point collision.
bool_t
col2d_circle_pointf(const Cir2Df *cir,

const V2Df *pnt,
Col2Df *col);

972 Chapter 38 - Geom2D library

bool_t
col2d_circle_pointd(const Cir2Dd *cir,

const V2Dd *pnt,
Col2Dd *col);

bool_t
Col2D::circle_point(const Cir2D *cir,

const V2D *pnt,
Col2D *col);

cir Circle.
pnt Point.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_circle_segment
Circle-segment collision.
bool_t
col2d_circle_segmentf(const Cir2Df *cir,

const Seg2Df *seg,
Col2Df *col);

bool_t
col2d_circle_segmentd(const Cir2Dd *cir,

const Seg2Dd *seg,
Col2Dd *col);

bool_t
Col2D::circle_segment(const Cir2D *cir,

const Seg2D *seg,
Col2D *col);

cir Circle.
seg Segment.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

38.2 - Functions 973

col2d_circle_circle
Circle-circle collision.

bool_t
col2d_circle_circlef(const Cir2Df *cir1,

const Cir2Df *cir2,
Col2Df *col);

bool_t
col2d_circle_circled(const Cir2Dd *cir1,

const Cir2Dd *cir2,
Col2Dd *col);

bool_t
Col2D::circle_circle(const Cir2D *cir1,

const Cir2D *cir2,
Col2D *col);

cir1 First circle.
cir2 Second circle.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_box_point
Box-point collision.

bool_t
col2d_box_pointf(const Box2Df *box,

const V2Df *pnt,
Col2Df *col);

bool_t
col2d_box_pointd(const Box2Dd *box,

const V2Dd *pnt,
Col2Dd *col);

bool_t
Col2D::box_point(const Box2D *box,

const V2D *pnt,
Col2D *col);

974 Chapter 38 - Geom2D library

box Box.
pnt Point.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_box_segment
Box-segment collision.
bool_t
col2d_box_segmentf(const Box2Df *box,

const Seg2Df *seg,
Col2Df *col);

bool_t
col2d_box_segmentd(const Box2Dd *box,

const Seg2Dd *seg,
Col2Dd *col);

bool_t
Col2D::box_segment(const Box2D *box,

const Seg2D *seg,
Col2D *col);

box Box.
seg Segment.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_box_circle
Box-circle collision.
bool_t
col2d_box_circlef(const Box2Df *box,

const Cir2Df *cir,
Col2Df *col);

bool_t

38.2 - Functions 975

col2d_box_circled(const Box2Dd *box,
const Cir2Dd *cir,
Col2Dd *col);

bool_t
Col2D::box_circle(const Box2D *box,

const Cir2D *cir,
Col2D *col);

box Box.
cir Circle.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_box_box
Box-box collision.

bool_t
col2d_box_boxf(const Box2Df *box1,

const Box2Df *box2,
Col2Df *col);

bool_t
col2d_box_boxd(const Box2Dd *box1,

const Box2Dd *box2,
Col2Dd *col);

bool_t
Col2D::box_box(const Box2D *box1,

const Box2D *box2,
Col2D *col);

box1 First box.
box2 Second box.

col Detailed data of the collision. It can be NULL if we don’t need additional
information.

Return:

TRUE if the objects intersect, FALSE otherwise.

976 Chapter 38 - Geom2D library

col2d_obb_point
Point-oriented box collision.

bool_t
col2d_obb_pointf(const OBB2Df *obb,

const V2Df *pnt,
Col2Df *col);

bool_t
col2d_obb_pointd(const OBB2Dd *obb,

const V2Dd *pnt,
Col2Dd *col);

bool_t
Col2D::obb_point(const OBB2D *obb,

const V2D *pnt,
Col2D *col);

obb Oriented box.
pnt Point.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_obb_segment
Segment-oriented box collision.

bool_t
col2d_obb_segmentf(const OBB2Df *obb,

const Seg2Df *seg,
Col2Df *col);

bool_t
col2d_obb_segmentd(const OBB2Dd *obb,

const Seg2Dd *seg,
Col2Dd *col);

bool_t
Col2D::obb_segment(const OBB2D *obb,

const Seg2D *seg,
Col2D *col);

38.2 - Functions 977

obb Oriented box.
seg Segment.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_obb_circle
Collision-oriented box-circle.
bool_t
col2d_obb_circlef(const OBB2Df *obb,

const Cir2Df *cir,
Col2Df *col);

bool_t
col2d_obb_circled(const OBB2Dd *obb,

const Cir2Dd *cir,
Col2Dd *col);

bool_t
Col2D::obb_circle(const OBB2D *obb,

const Cir2D *cir,
Col2D *col);

obb Oriented box.
cir Circle.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_obb_box
Box-oriented box collision.
bool_t
col2d_obb_boxf(const OBB2Df *obb,

const Box2Df *box,
Col2Df *col);

bool_t

978 Chapter 38 - Geom2D library

col2d_obb_boxd(const OBB2Dd *obb,
const Box2Dd *box,
Col2Dd *col);

bool_t
Col2D::obb_box(const OBB2D *obb,

const Box2D *box,
Col2D *col);

obb Oriented box.
box Aligned box.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_obb_obb
Oriented Box-Oriented Box collision.

bool_t
col2d_obb_obbf(const OBB2Df *obb1,

const OBB2Df *obb2,
Col2Df *col);

bool_t
col2d_obb_obbd(const OBB2Dd *obb1,

const OBB2Dd *obb2,
Col2Dd *col);

bool_t
Col2D::obb_obb(const OBB2D *obb1,

const OBB2D *obb2,
Col2D *col);

obb1 First oriented box.
obb2 Second oriented box.

col Detailed data of the collision. It can be NULL if we don’t need additional
information.

Return:

TRUE if the objects intersect, FALSE otherwise.

38.2 - Functions 979

col2d_tri_point
Triangle-point collision.

bool_t
col2d_tri_pointf(const Tri2Df *tri,

const V2Df *pnt,
Col2Df *col);

bool_t
col2d_tri_pointd(const Tri2Dd *tri,

const V2Dd *pnt,
Col2Dd *col);

bool_t
Col2D::tri_point(const Tri2D *tri,

const V2D *pnt,
Col2D *col);

tri Triangle.
pnt Point.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_tri_segment
Triangle-segment collision.

bool_t
col2d_tri_segmentf(const Tri2Df *tri,

const Seg2Df *seg,
Col2Df *col);

bool_t
col2d_tri_segmentd(const Tri2Dd *tri,

const Seg2Dd *seg,
Col2Dd *col);

bool_t
Col2D::tri_segment(const Tri2D *tri,

const Seg2D *seg,
Col2D *col);

980 Chapter 38 - Geom2D library

tri Triangle.
seg Segment.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_tri_circle
Triangle-circle collision.
bool_t
col2d_tri_circlef(const Tri2Df *tri,

const Cir2Df *cir,
Col2Df *col);

bool_t
col2d_tri_circled(const Tri2Dd *tri,

const Cir2Dd *cir,
Col2Dd *col);

bool_t
Col2D::tri_circle(const Tri2D *tri,

const Cir2D *cir,
Col2D *col);

tri Triangle.
cir Circle.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_tri_box
Triangle-box collision.
bool_t
col2d_tri_boxf(const Tri2Df *tri,

const Box2Df *box,
Col2Df *col);

bool_t

38.2 - Functions 981

col2d_tri_boxd(const Tri2Dd *tri,
const Box2Dd *box,
Col2Dd *col);

bool_t
Col2D::tri_box(const Tri2D *tri,

const Box2D *box,
Col2D *col);

tri Triangle.
box Aligned box.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_tri_obb
Triangle-oriented box collision.

bool_t
col2d_tri_obbf(const Tri2Df *tri,

const OBB2Df *obb,
Col2Df *col);

bool_t
col2d_tri_obbd(const Tri2Dd *tri,

const OBB2Dd *obb,
Col2Dd *col);

bool_t
Col2D::tri_obb(const Tri2D *tri,

const OBB2D *obb,
Col2D *col);

tri Triangle.
obb Oriented box.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

982 Chapter 38 - Geom2D library

col2d_tri_tri
Triangle-triangle collision.

bool_t
col2d_tri_trif(const Tri2Df *tri1,

const Tri2Df *tri2,
Col2Df *col);

bool_t
col2d_tri_trid(const Tri2Dd *tri1,

const Tri2Dd *tri2,
Col2Dd *col);

bool_t
Col2D::tri_tri(const Tri2D *tri1,

const Tri2D *tri2,
Col2D *col);

tri1 First triangle.
tri2 Second triangle.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_poly_point
Polygon-point collision.

bool_t
col2d_poly_pointf(const Pol2Df *pol,

const V2Df *pnt,
Col2Df *col);

bool_t
col2d_poly_pointd(const Pol2Dd *pol,

const V2Dd *pnt,
Col2Dd *col);

bool_t
Col2D::poly_point(const Pol2D *pol,

const V2D *pnt,
Col2D *col);

38.2 - Functions 983

pol Polygon.
pnt Point.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_poly_segment
Polygon-segment collision.
bool_t
col2d_poly_segmentf(const Pol2Df *pol,

const Seg2Df *seg,
Col2Df *col);

bool_t
col2d_poly_segmentd(const Pol2Dd *pol,

const Seg2Dd *seg,
Col2Dd *col);

bool_t
Col2D::poly_segment(const Pol2D *pol,

const Seg2D *seg,
Col2D *col);

pol Polygon.
seg Segment.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_poly_circle
Polygon-circle collision.
bool_t
col2d_poly_circlef(const Pol2Df *pol,

const Cir2Df *cir,
Col2Df *col);

bool_t

984 Chapter 38 - Geom2D library

col2d_poly_circled(const Pol2Dd *pol,
const Cir2Dd *cir,
Col2Dd *col);

bool_t
Col2D::poly_circle(const Pol2D *pol,

const Cir2D *cir,
Col2D *col);

pol Polygon.
cir Circle.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_poly_box
Polygon-box collision.

bool_t
col2d_poly_boxf(const Pol2Df *pol,

const Box2Df *cir,
Col2Df *col);

bool_t
col2d_poly_boxd(const Pol2Dd *pol,

const Box2Dd *cir,
Col2Dd *col);

bool_t
Col2D::poly_box(const Pol2D *pol,

const Box2D *cir,
Col2D *col);

pol Polygon.
cir Box.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

38.2 - Functions 985

col2d_poly_obb
Polygon-box collision.

bool_t
col2d_poly_obbf(const Pol2Df *pol,

const OBB2Df *cir,
Col2Df *col);

bool_t
col2d_poly_obbd(const Pol2Dd *pol,

const OBB2Dd *cir,
Col2Dd *col);

bool_t
Col2D::poly_obb(const Pol2D *pol,

const OBB2D *cir,
Col2D *col);

pol Polygon.
cir Oriented box.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_poly_tri
Polygon-triangle collision.

bool_t
col2d_poly_trif(const Pol2Df *pol,

const Tri2Df *tri,
Col2Df *col);

bool_t
col2d_poly_trid(const Pol2Dd *pol,

const Tri2Dd *tri,
Col2Dd *col);

bool_t
Col2D::poly_tri(const Pol2D *pol,

const Tri2D *tri,
Col2D *col);

986 Chapter 38 - Geom2D library

pol Polygon.
tri Triangle.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

col2d_poly_poly
Polygon-polygon collision.
bool_t
col2d_poly_polyf(const Pol2Df *pol1,

const Pol2Df *pol2,
Col2Df *col);

bool_t
col2d_poly_polyd(const Pol2Dd *pol1,

const Pol2Dd *pol2,
Col2Dd *col);

bool_t
Col2D::poly_poly(const Pol2D *pol1,

const Pol2D *pol2,
Col2D *col);

pol1 First polygon.
pol2 Second polygon.
col Detailed data of the collision. It can be NULL if we don’t need additional

information.

Return:

TRUE if the objects intersect, FALSE otherwise.

39C
ha

pt
er

Draw2D library

39.1. Types and Constants

kCOLOR_TRANSPARENT
Totally transparent color, absence of color or null color.
const color_t kCOLOR_TRANSPARENT;

kCOLOR_DEFAULT
Default color.
const color_t kCOLOR_DEFAULT;

kCOLOR_BLACK
BLACK color rgb(0,0,0).
const color_t kCOLOR_BLACK;

kCOLOR_WHITE
WHITE color rgb(255,255,255).
const color_t kCOLOR_WHITE;

kCOLOR_RED
RED color rgb(255,0,0).
const color_t kCOLOR_RED;

987

988 Chapter 39 - Draw2D library

kCOLOR_GREEN
GREEN color rgb(0,255,0).
const color_t kCOLOR_GREEN;

kCOLOR_BLUE
BLUE color rgb(0,0,255).
const color_t kCOLOR_BLUE;

kCOLOR_YELLOW
YELLOW color rgb(255,255,0).
const color_t kCOLOR_YELLOW;

kCOLOR_CYAN
CYAN color rgb(0,255,255).
const color_t kCOLOR_CYAN;

kCOLOR_MAGENTA
MAGENTA color rgb(255,0,255).
const color_t kCOLOR_MAGENTA;

enum pixformat_t
Pixel format in an image. Number of bits per pixel and color model.

ekINDEX1 1 bit per pixel. 2 colors, indexed.
ekINDEX2 2 bits per pixel. 4 colors, indexed.
ekINDEX4 4 bits per pixel. 16 colors, indexed.
ekINDEX8 8 bits per pixel. 256 colors, indexed.
ekGRAY8 8 bits per pixel in grayscale. 256 shades of gray.

39.1 - Types and Constants 989

ekRGB24 24 bits per RGB pixel. 8 bits per channel (red, green, blue).
The lowest order byte corresponds to the red one and the
highest one to the blue one.

ekRGBA32 32 bits per pixel RGBA. 8 bits per channel (red, green, blue,
alpha). The lowest order byte corresponds to the red one
and the highest one to alpha (transparency).

ekFIMAGE Represents the original format of the image. Only valid at
image_pixels.

enum codec_t
Image encoding and compression format.

ekJPG Joint Photographic Experts Group.
ekPNG Portable Network Graphics.
ekBMP BitMaP.
ekGIF Graphics Interchange Format.

enum fstyle_t
Style in typographic fonts. Multiple values can be combined with the OR operator ('|').

ekFNORMAL Normal font, no style. Also called Regular.
ekFBOLD Bold font.

ekFITALIC Italic font.
ekFSTRIKEOUT Crossed out font.
ekFUNDERLINE Underlined font.
ekFSUBSCRIPT Subscript. See textview_fstyle.
ekFSUPSCRIPT Superscript. See textview_fstyle

ekFPIXELS Font sizes will be indicated in pixels.
ekFPOINTS Font sizes will be indicated in points. “Size in pointsSize in

points” (page 291).

enum linecap_t
Line end style.

990 Chapter 39 - Draw2D library

ekLCFLAT Flat termination at the last point of the line.
ekLCSQUARE Termination in a box, whose center is the last point of the

line.
ekLCROUND Termination in a circle, whose center is the last point of the

line.

enum linejoin_t
Line junction style.

ekLJMITER Union at an angle. In very closed angles it is trimmed.
ekLJROUND Rounded union.
ekLJBEVEL Beveled union.

enum fillwrap_t
Behavior of the fill pattern in the limits.

ekFCLAMP The last limit value is used to fill the outside area.
ekFTILE Pattern is repeated.
ekFFLIP The pattern is repeated, reversing the order.

enum drawop_t
Operation to be performed on graphic primitives.

ekSTROKE Draw the outline of the figure with the default line style.
ekFILL Fill the figure area with the default color or pattern.

ekSKFILL First draw the outline and then fill in.
ekFILLSK First fill in and then draw the outline.

enum align_t
Alignment values.

ekLEFT Alignment to the left margin.
ekTOP Alignment to the upper margin.

ekCENTER Centered alignment.

39.1 - Types and Constants 991

ekRIGHT Alignment to the right margin.
ekBOTTOM Alignment to the lower margin.

ekJUSTIFY Justification or expansion of content.

enum ellipsis_t
Position of the ellipsis (...) when clipping a text.

ekELLIPNONE Without ellipsis.
ekELLIPBEGIN Ellipsis at the beginning of the text.

ekELLIPMIDDLE Ellipsis in the center of the text.
ekELLIPEND Ellipsis at the end of the text.

ekELLIPMLINE Multi-line text (without ellipsis).

struct color_t
32-bit integer representing an RGBA color. The lowest order byte corresponds to the
red channel (Red) and the highest order to the Alpha channel (transparency). “Colors”
(page 277).

struct color_t;

struct DCtx
2D drawing context, recipient for drawing commands. It is also known as canvas or surface.
“2D Contexts” (page 257).

struct DCtx;

struct Draw
Drawing geometric entities.

struct Drawf;

struct Drawd;

struct Draw;

992 Chapter 39 - Draw2D library

struct Palette
Color palette, usually related to indexed Pixbuf. “Palettes” (page 279).
struct Palette;

struct Pixbuf
In-memory buffer with pixel information. “Pixel Buffer” (page 280).
struct Pixbuf;

struct Image
Represents a bitmap image, composed of pixels. “Images” (page 283).
struct Image;

struct Font
Represents a typographic family, size and style with which the texts will be drawn. “Ty-
pography fonts” (page 288).
struct Font;

39.2. Functions

draw2d_start
Start the draw2d library, reserving space for global internal structures. Internally call
core_start. In desktop applications, osmain call this function when starting the pro-
gram.
void
draw2d_start(void);

draw2d_finish
Ends the draw2d library, freeing up the space of the global internal structures. Internally
call core_finish. In desktop applications, osmain call this function when exiting the
program.
void
draw2d_finish(void);

39.2 - Functions 993

resid_image
Makes a casting ResId-Image.
const Image*
resid_image(const ResId id);

id The resource Id.

Return:

The Image Id.

dctx_bitmap
Create a memory context, in order to generate an image.
DCtx*
dctx_bitmap(const uint32_t width,

const uint32_t height,
const pixformat_t format);

width Image width in pixels.
height Image height in pixels.
format Pixel format of the generated image.

Return:

Drawing context.

Remarks:

When we finish drawing, we must call dctx_image to get the picture.

dctx_image
Get the result image after drawing in the context created with dctx_bitmap.
Image*
dctx_image(DCtx **ctx);

ctx The context, which will be destroyed after generating the image.

Return:

The image.

994 Chapter 39 - Draw2D library

draw_clear
Clears the entire context area, using a solid color.
void
draw_clear(DCtx *ctx,

const color_t color);

ctx Drawing context.
color Background color.

draw_matrix
Set the context reference system (affine transformation).
void
draw_matrixf(DCtx *ctx,

const T2Df *t2d);

void
draw_matrixd(DCtx *ctx,

const T2Dd *t2d);

void
Draw::matrix(DCtx *ctx,

const T2D *t2d);

ctx Drawing context.
t2d Transformation.

Remarks:

The origin of coordinates is in the upper left corner. The Y axis increases down.

draw_matrix_cartesian
Set the reference system in Cartesian coordinates.
void
draw_matrix_cartesianf(DCtx *ctx,

const T2Df *t2d);

void
draw_matrix_cartesiand(DCtx *ctx,

const T2Dd *t2d);

void
Draw::matrix_cartesian(DCtx *ctx,

const T2D *t2d);

39.2 - Functions 995

ctx Drawing context.
t2d Transformation.

Remarks:

The origin of coordinates is in the lower left corner. The Y axis increases upwards. See
“Cartesian systemsCartesian systems” (page 262).

draw_antialias
Enable or disable antialiasing.
void
draw_antialias(DCtx *ctx,

const bool_t on);

ctx Drawing context.
on TRUE active, FALSE inactive.

Remarks:

The antialias can change in each primitive. It is not necessary to establish a policy for
the whole drawing. See “AntialiasingAntialiasing” (page 263).

draw_line
Draw a line.
void
draw_line(DCtx *ctx,

const real32_t x0,
const real32_t y0,
const real32_t x1,
const real32_t y1);

ctx Drawing context.
x0 X coordinate of the first point.
y0 Y coordinate of the first point.
x1 X coordinate of the second point.
y1 Y coordinate of the second point.

draw_polyline
Draw several joined lines.

996 Chapter 39 - Draw2D library

void
draw_polyline(DCtx *ctx,

const bool_t closed,
const V2Df *points,
const uint32_t n);

ctx Drawing context.
closed TRUE to join the last point with the first.
points Array of points that compose the polyline.

n Number of points.

draw_arc
Draw an arc (circle segment).
void
draw_arc(DCtx *ctx,

const real32_t x,
const real32_t y,
const real32_t radius,
const real32_t start,
const real32_t sweep);

ctx Drawing context.
x X coordinate of the arc center.
y Y coordinate of the arc center.

radius Arc radius.
start Initial angle with respect to the vector X=[1,0] in radians.

sweep Sweep angle or arc size in radians.

Remarks:

Positive angles are those that rotate from vector X to vector Y. See “2D Vectors”
(page 237).

draw_bezier
Draw a cubic Bézier curve (degree 3) using two endpoints (x0,y0)-(x3,y3) and two inter-
mediate control points (x1,y1)-(x2,y2).
void
draw_bezier(DCtx *ctx,

const real32_t x0,

39.2 - Functions 997

const real32_t y0,
const real32_t x1,
const real32_t y1,
const real32_t x2,
const real32_t y2,
const real32_t x3,
const real32_t y3);

ctx Drawing context.
x0 X coordinate of the starting point.
y0 Y coordinate of the starting point.
x1 X coordinate of the first intermediate point.
y1 Y coordinate of the first intermediate point.
x2 X coordinate of the second intermediate point.
y2 Y coordinate of the second intermediate point.
x3 X coordinate of end point.
y3 Y coordinate of the end point.

draw_line_color
Set the color of drawing lines and contours.
void
draw_line_color(DCtx *ctx,

const color_t color);

ctx Drawing context.
color Line color.

draw_line_fill
Sets the current fill pattern for line drawing.
void
draw_line_fill(DCtx *ctx);

ctx Drawing context.

Remarks:

The fill pattern must have been previously set by draw_fill_linear. See “Gradients
in linesGradients in lines” (page 270).

998 Chapter 39 - Draw2D library

draw_line_width
Set the line thickness.
void
draw_line_width(DCtx *ctx,

const real32_t width);

ctx Drawing context.
width Line width.

draw_line_cap
Set the style of the line ends.
void
draw_line_cap(DCtx *ctx,

const linecap_t cap);

ctx Drawing context.
cap Style.

draw_line_join
Set the style of line junctions.
void
draw_line_join(DCtx *ctx,

const linejoin_t join);

ctx Drawing context.
join Union style.

draw_line_dash
Set a pattern for line drawing.
void
draw_line_dash(DCtx *ctx,

const real32_t *pattern,
const uint32_t n);

ctx Drawing context.
pattern Array of values that define the pattern.

n Number of values.

39.2 - Functions 999

Remarks:

The first element of pattern defines the length of the first stroke and the second of
the first hole, so on. Lengths are scaled by line width draw_line_width, that is, a stroke
of length 1 will draw a square of side line_width. Lengths of value 2 equal to twice the
line thickness, etc. The pattern will scale proportionally when changing the thickness or
zooming through transformations.

draw_rect
Draw a rectangle.
void
draw_rect(DCtx *ctx,

const drawop_t op,
const real32_t x,
const real32_t y,
const real32_t width,
const real32_t height);

ctx Drawing context.
op Drawing operation.
x X coordinate of the upper left corner of the rectangle.
y Y coordinate of the upper left corner of the rectangle.

width Rectangle width.
height Rectangle height.

Remarks:

In “Cartesian systemsCartesian systems” (page 262) (x,y) indicate the origin of the
lower left corner.

draw_rndrect
Draw a rectangle with rounded edges.
void
draw_rndrect(DCtx *ctx,

const drawop_t op,
const real32_t x,
const real32_t y,
const real32_t width,
const real32_t height,
const real32_t radius);

1000 Chapter 39 - Draw2D library

ctx Drawing context.
op Drawing operation.
x X coordinate of the upper left corner of the rectangle.
y Y coordinate of the upper left corner of the rectangle.

width Rectangle width.
height Rectangle height.
radius Corner curvature radius.

Remarks:

In “Cartesian systemsCartesian systems” (page 262) (x,y) indicate the origin of the
lower left corner.

draw_circle
Draw a circle.
void
draw_circle(DCtx *ctx,

const drawop_t op,
const real32_t x,
const real32_t y,
const real32_t radius);

ctx Drawing context.
op Drawing operation.
x X coordinate of the center.
y Y coordinate of the center.

radius Radius.

draw_ellipse
Draw an ellipse.
void
draw_ellipse(DCtx *ctx,

const drawop_t op,
const real32_t x,
const real32_t y,
const real32_t radx,
const real32_t rady);

39.2 - Functions 1001

ctx Drawing context.
op Drawing operation.
x X coordinate of the center.
y Y coordinate of the center.

radx X axis radius.
rady Y axis radius.

draw_polygon
Draw a polygon.
void
draw_polygon(DCtx *ctx,

const drawop_t op,
const V2Df *points,
const uint32_t n);

ctx Drawing context.
op Drawing operation.

points Array of points that form the polygon.
n Number of points.

draw_fill_color
Set a solid color for area filling.
void
draw_fill_color(DCtx *ctx,

const color_t color);

ctx Drawing context.
color Fill color.

draw_fill_linear
Set a gradient for filling areas.
void
draw_fill_linear(DCtx *ctx,

const color_t *color,
const real32_t *stop,
const uint32_t n,

1002 Chapter 39 - Draw2D library

const real32_t x0,
const real32_t y0,
const real32_t x1,
const real32_t y1);

ctx Drawing context.
color Color array.
stop Color positions.

n Number of positions/colors.
x0 X coordinate of the starting point.
y0 Y coordinate of the starting point.
x1 X coordinate of the end point.
y1 Y coordinate of the end point.

Remarks:

The positions must go from the value 0 to 1. See “GradientsGradients” (page 267).

draw_fill_matrix
Sets the transformation matrix of the fill pattern.
void
draw_fill_matrix(DCtx *ctx,

const T2Df *t2d);

ctx Drawing context.
t2d Transformation.

Remarks:

It will only be effective in non-solid fills. See “GradientsGradients” (page 267).

draw_fill_wrap
Set the behavior of the gradient or fill pattern to the limits.
void
draw_fill_wrap(DCtx *ctx,

const fillwrap_t wrap);

ctx Drawing context.
wrap Behavior at the edge.

39.2 - Functions 1003

Remarks:

It will only be effective in non-solid fills. See “GradientsGradients” (page 267).

draw_font
Set the font for text drawing.
void
draw_font(DCtx *ctx,

const Font *font);

ctx Drawing context.
font Fuente tipográfica.

Remarks:

Tendrá efecto a partir del siguiente texto dibujado. Ver “Typography fonts” (page 288).

draw_text_color
Sets the text color.
void
draw_text_color(DCtx *ctx,

const color_t color);

ctx Drawing context.
color Color.

draw_text
Draw a block of text.
void
draw_text(DCtx *ctx,

const char_t *text,
const real32_t x,
const real32_t y);

ctx Drawing context.
text UTF8 string, terminated in a null character '\0'.

x X coordinate on the canvas of the text origin.
y Y coordinate on the canvas of the text origin.

1004 Chapter 39 - Draw2D library

Remarks:

The text will be drawn with the font and preset style and will be sensitive to the context
transformation. See “Drawing textDrawing text” (page 271).

draw_text_path
Draw a block of text as a geometric area. Similar to draw_text, but allows you to use
gradients or draw only the border of the text.
void
draw_text_path(DCtx *ctx,

const drawop_t op,
const char_t *text,
const real32_t x,
const real32_t y);

ctx Drawing context.
op Drawing operation.

text UTF8 string, null-terminated '\0'.
x X coordinate on the canvas of the text origin.
y Y coordinate on canvas of text origin.

Remarks:

The text will be drawn with the preset font and style (fill and line) and will be context
sensitive. See “Drawing textDrawing text” (page 271).

draw_text_width
Set the maximum width of the text blocks.
void
draw_text_width(DCtx *ctx,

const real32_t width);

ctx Drawing context.
width Maximum width.

Remarks:

If the text to draw with draw_text is wider than width, it will fragment into several
lines. Pass -1 to draw the entire block on a single line. Context scaling is not taken into
account. The measurement is made based on the size of the preset font. See “Drawing
textDrawing text” (page 271).

39.2 - Functions 1005

draw_text_trim
Sets how the text will be trimmed when it is wider than the value of draw_text_width.

void
draw_text_trim(DCtx *ctx,

const ellipsis_t ellipsis);

ctx Drawing context.
ellipsis Trim style.

draw_text_align
Sets the alignment of the text with respect to the insertion point.

void
draw_text_align(DCtx *ctx,

const align_t halign,
const align_t valign);

ctx Drawing context.
halign Horizontal alignment.
valign Vertical alignment.

Remarks:

The insertion point is the coordinate (x,y) from draw_text. See “Drawing textDraw-
ing text” (page 271).

draw_text_halign
Set the internal horizontal alignment of the text, within a multi-line block.

void
draw_text_halign(DCtx *ctx,

const align_t halign);

ctx Drawing context.
halign Horizontal alignment.

Remarks:

In single-line texts, it has no effect. See “Drawing textDrawing text” (page 271).

1006 Chapter 39 - Draw2D library

draw_text_extents
Calculate the size of a block of text.
void
draw_text_extents(DCtx *ctx,

const char_t *text,
const real32_t refwidth,
real32_t *width,
real32_t *height);

ctx Drawing context.
text Text.

refwidth Reference width.
width Block width.
height Block height.

Remarks:

If refwidth is greater than 0, width will be bounded by this value and height will
expand to accommodate all the text. Take into account possible new lines '\n' from
text.

draw_image
Draw a image.
void
draw_image(DCtx *ctx,

const real32_t x,
const real32_t y);

ctx Drawing context.
x X coordinate on the canvas of the image origin.
y Y coordinate on the canvas of the image origin.

Remarks:

The image will be drawn at its natural size and in the indicated position. Use draw_matrixf
to perform scaling and rotation. See “Drawing imagesDrawing images” (page 274).

draw_image_frame
Like draw_image, but indicating the sequence number of an animation.

39.2 - Functions 1007

void
draw_image_frame(DCtx *ctx,

const uint32_t frame,
const real32_t x,
const real32_t y);

ctx Drawing context.
frame Sequence index (frame) of the animation.

x X coordinate on the canvas of the image origin.
y Y coordinate on the canvas of the image origin.

Remarks:

Only images created from aGIF file support multiple frames (animations). See image_num_frames
.

draw_image_align
Sets the alignment of the image with respect to the insertion point.
void
draw_image_align(DCtx *ctx,

const align_t halign,
const align_t valign);

ctx Drawing context.
halign Horizontal alignment.
valign Vertical alignment.

Remarks:

The insertion point is the coordinate (x,y) from draw_image. See “Drawing images-
Drawing images” (page 274).

draw_v2d
Draw a 2D point.
void
draw_v2df(DCtx *ctx,

const drawop_t op,
const V2Df *v2d,
const real32_t radius);

void

1008 Chapter 39 - Draw2D library

draw_v2dd(DCtx *ctx,
const drawop_t op,
const V2Dd *v2d,
const real64_t radius);

void
Draw::v2d(DCtx *ctx,

const drawop_t op,
const V2D *v2d,
const real radius);

ctx Drawing context.
op Drawing operation.

v2d Point.
radius Radius.

draw_seg2d
Draw a 2D segment.
void
draw_seg2df(DCtx *ctx,

const Seg2Df *seg);

void
draw_seg2dd(DCtx *ctx,

const Seg2Dd *seg);

void
Draw::seg2d(DCtx *ctx,

const Seg2D *seg);

ctx Drawing context.
seg Segment.

draw_cir2d
Draw a 2D circle.
void
draw_cir2df(DCtx *ctx,

const drawop_t op,
const Cir2Df *cir);

void
draw_cir2dd(DCtx *ctx,

39.2 - Functions 1009

const drawop_t op,
const Cir2Dd *cir);

void
Draw::cir2d(DCtx *ctx,

const drawop_t op,
const Cir2D *cir);

ctx Drawing context.
op Drawing operation.
cir Circle.

draw_box2d
Draw a 2D box.
void
draw_box2df(DCtx *ctx,

const drawop_t op,
const Box2Df *box);

void
draw_box2dd(DCtx *ctx,

const drawop_t op,
const Box2Dd *box);

void
Draw::box2d(DCtx *ctx,

const drawop_t op,
const Box2D *box);

ctx Drawing context.
op Drawing operation.

box Aligned box.

draw_obb2d
Draw an oriented 2D box.
void
draw_obb2df(DCtx *ctx,

const drawop_t op,
const OBB2Df *obb);

void
draw_obb2dd(DCtx *ctx,

1010 Chapter 39 - Draw2D library

const drawop_t op,
const OBB2Dd *obb);

void
Draw::obb2d(DCtx *ctx,

const drawop_t op,
const OBB2D *obb);

ctx Drawing context.
op Drawing operation.

obb Oriented box.

draw_tri2d
Draw a 2D triangle.
void
draw_tri2df(DCtx *ctx,

const drawop_t op,
const Tri2Df *tri);

void
draw_tri2dd(DCtx *ctx,

const drawop_t op,
const Tri2Dd *tri);

void
Draw::tri2d(DCtx *ctx,

const drawop_t op,
const Tri2D *tri);

ctx Drawing context.
op Drawing operation.
tri Triangle.

draw_pol2d
Draw a 2D polygon.
void
draw_pol2df(DCtx *ctx,

const drawop_t op,
const Pol2Df *pol);

void
draw_pol2dd(DCtx *ctx,

39.2 - Functions 1011

const drawop_t op,
const Pol2Dd *pol);

void
Draw::pol2d(DCtx *ctx,

const drawop_t op,
const Pol2D *pol);

ctx Drawing context.
op Drawing operation.
pol Polygon.

color_rgb
Create a color from the channels R (red), G (green) y B (blue).

color_t
color_rgb(const uint8_t r,

const uint8_t g,
const uint8_t b);

r Red channel.
g Green channel.
b Blue channel.

Return:

Color.

Remarks:

The alpha channel is set to 255 (totally opaque).

color_rgba
Create a color from the channels R (red), G (green), B (blue) and A (alpha).

color_t
color_rgba(const uint8_t r,

const uint8_t g,
const uint8_t b,
const uint8_t a);

1012 Chapter 39 - Draw2D library

r Red channel.
g Green channel.
b Blue channel.
a Alpha channel (transparency).

Return:

Color.

Remarks:

a=0 not supported. Use kCOLOR_TRANSPARENT in those cases.

color_rgbaf
Create a color from the normalized RGBA channels from 0 to 1.
color_t
color_rgbaf(const real32_t r,

const real32_t g,
const real32_t b,
const real32_t a);

r Red channel.
g Green channel.
b Blue channel.
a Alpha channel (transparency).

Return:

Color.

Remarks:

a=0 not supported. Use kCOLOR_TRANSPARENT in those cases.

color_hsbf
Creates a color (rgb) from its components Hue-Saturation-Brightness.
color_t
color_hsbf(const real32_t hue,

const real32_t sat,
const real32_t bright);

39.2 - Functions 1013

hue Hue component.
sat Saturation component.

bright Brightness component.

Return:

Color.

color_red
Create an RGB color using only the red channel.
color_t
color_red(const uint8_t r);

r Red Channel.

Return:

Color.

Remarks:

Equivalent to color_rgb(r, 0, 0).

color_green
Create an RGB color using only the green channel.
color_t
color_green(const uint8_t g);

g Green channel.

Return:

Color.

Remarks:

Equivalent to color_rgb(0, g, 0).

color_blue
Create an RGB color using only the blue channel.

1014 Chapter 39 - Draw2D library

color_t
color_blue(const uint8_t b);

b Blue channel.

Return:

Color.

Remarks:

Equivalent to color_rgb(0, 0, b).

color_gray
Creates a gray RGB color from intensity value.
color_t
color_gray(const uint8_t l);

l Intensity (luminance).

Return:

Color.

Remarks:

Equivalent to color_rgb(l, l, l).

color_bgr
Create a color from a 32-bit BGR value. Byte 0 corresponds to channel B , 1 to G and 2
to R. The highest order byte is ignored (set to 255).
color_t
color_bgr(const uint32_t bgr);

bgr The bgr 32bits value.

Return:

Color.

Remarks:

This byte order is typical in Web colors.

39.2 - Functions 1015

color_html
Create a color from a string in HTML or CSS format.
color_t
color_html(const char_t *html);

color_t c1 = color_html("#FF0000"); // Red
color_t c2 = color_html("#000080"); // Navy

html The text string with the HTML color.

Return:

The color transformed to RGB.

color_to_hsbf
Convert a color (rgb) to HSB space (hue, saturation, brightness).
void
color_to_hsbf(const color_t color,

real32_t *hue,
real32_t *sat,
real32_t *sat);

color Color.
hue Hue component.
sat Saturation component.
sat Brightness component.

color_to_html
Convert a color to the HTML or CSS format (#RRGGBB).
void
color_to_html(const color_t color,

char_t *html,
const uint32_t size);

color The color to convert.
html Buffer where to write the result.
size Result buffer size.

1016 Chapter 39 - Draw2D library

color_get_rgb
Returns RGB color values.
void
color_get_rgb(const color_t color,

uint8_t *r,
uint8_t *g,
uint8_t *b);

color Color.
r Red channel.
g Green channel.
b Blue channel.

Remarks:

In system or indexed colors, it makes effective the RGB value.

color_get_rgbf
Returns RGB color values, normalized from 0 to 1.
void
color_get_rgbf(const color_t color,

real32_t *r,
real32_t *g,
real32_t *b);

color Color.
r Red channel.
g Green channel.
b Blue channel.

Remarks:

In system or indexed colors, it makes effective the RGB value.

color_get_rgba
Returns the RGBA values of the color.
void
color_get_rgba(const color_t color,

uint8_t *r,
uint8_t *g,

39.2 - Functions 1017

uint8_t *b,
uint8_t *a);

color Color.
r Red channel.
g Green channel.
b Blue channel.
a Alpha channel (transparency).

Remarks:

In system or indexed colors, it makes effective the RGBA value.

color_get_rgbaf
Returns the RGBA values of the color, normalized from 0 to 1.
void
color_get_rgbaf(const color_t color,

real32_t *r,
real32_t *g,
real32_t *b,
real32_t *a);

color Color.
r Red channel.
g Green channel.
b Blue channel.
a Alpha channel (transparency).

Remarks:

In system or indexed colors, it makes effective the RGBA value.

color_get_alpha
Get the alpha (transparency) color component.
uint8_t
color_get_alpha(const color_t color);

color Color.

1018 Chapter 39 - Draw2D library

Return:

The alpha component. If it is equal 0 it means that the color is indexed (does not
contain RGB values).

color_set_alpha
Changes the alpha (transparency) value of a color.
color_t
color_set_alpha(const color_t color,

const uint8_t alpha);

color Color.
alpha Alpha component.

Return:

The new color, with the altered alpha component.

palette_create
Create a palette.
Palette*
palette_create(const uint32_t size);

size The number of colors.

Return:

The palette. The initial content is undetermined. Edit with palette_colors.

palette_cga2
Create the 4-color (2-bit) palette of CGA cards.
Palette*
palette_cga2(const bool_t mode,

const bool_t intense);

mode TRUE for CGA mode 1, FALSE mode 0.
intense TRUE for bright colors.

Return:

The palette.

39.2 - Functions 1019

Remarks:

“Predefined palettePredefined palette” (page 280)

palette_ega4
Create the default palette for EGA cards (16 colors, 4 bits).
Palette*
palette_ega4(void);

Return:

The palette.

Remarks:

“Predefined palettePredefined palette” (page 280)

palette_rgb8
Create the default 8-bit RGB palette. Colors combine 8 tones of red, 8 green and 4 blue.
Palette*
palette_rgb8(void);

Return:

The palette.

Remarks:

“Predefined palettePredefined palette” (page 280)

palette_gray1
Create a palette of 2 tones of gray (1 bit). Black (0) and white (1).
Palette*
palette_gray1(void);

Return:

The palette.

Remarks:

“Predefined palettePredefined palette” (page 280)

1020 Chapter 39 - Draw2D library

palette_gray2
Create a palette of 4 tones of gray (2 bit). Black (0), White (3).

Palette*
palette_gray2(void);

Return:

The palette.

Remarks:

“Predefined palettePredefined palette” (page 280)

palette_gray4
Create a palette of 16 tones of gray (4 bit). Black (0), White (15).

Palette*
palette_gray4(void);

Return:

The palette.

Remarks:

“Predefined palettePredefined palette” (page 280)

palette_gray8
Create a palette of 256 shades of gray (8 bit). Black (0), White (255).

Palette*
palette_gray8(void);

Return:

The palette.

Remarks:

“Predefined palettePredefined palette” (page 280)

39.2 - Functions 1021

palette_binary
Create a two-color palette.

Palette*
palette_binary(const color_t zero,

const color_t one);

zero Color associated with the 0 value.
one Color associated with the 1 value.

Return:

The palette.

palette_destroy
Destroy the palette.

void
palette_destroy(Palette **palette);

palette The palette. It will be set to NULL after the destruction.

palette_size
Returns the number of colors in the palette.

uint32_t
palette_size(const Palette *palette);

palette The palette.

Return:

The number of colors.

palette_colors
Get the color list.

color_t*
palette_colors(Palette *palette);

palette The palette.

1022 Chapter 39 - Draw2D library

Return:

Colors. The size of the array is given by palette_size.

Remarks:

The buffer is read/write.

palette_colors_const
Get the color list.
const color_t*
palette_colors_const(const Palette *palette);

palette The palette.

Return:

Colors. The size of the array is given by palette_size.

pixbuf_create
Create a new pixel buffer.
Pixbuf*
pixbuf_create(const uint32_t width,

const uint32_t height,
const pixformat_t format);

width Width.
height Height.
format Pixel format.

Return:

The buffer pixel.

Remarks:

Initial content will be undefined.

pixbuf_copy
Create a copy of the pixel buffer.

39.2 - Functions 1023

Pixbuf*
pixbuf_copy(const Pixbuf *pixbuf);

pixbuf The original buffer.

Return:

The copy.

pixbuf_trim
Crop a buffer pixel.

Pixbuf*
pixbuf_trim(const Pixbuf *pixbuf,

const uint32_t x,
const uint32_t y,
const uint32_t width,
const uint32_t height);

pixbuf The original buffer.
x X coordinate of the upper-left pixel.
y Y coordinate of the upper-left pixel.

width Number of pixels wide.
height Number of pixels high.

Return:

A new buffer pixel with clipping.

Remarks:

The function does not check that the limits are valid. You will get a segmentation error
in such cases.

pixbuf_convert
Change the format of a buffer pixel.

Pixbuf*
pixbuf_convert(const Pixbuf *pixbuf,

const Palette *palette,
const pixformat_t oformat);

1024 Chapter 39 - Draw2D library

pixbuf The original buffer.
palette Color palette required for certain conversions.

oformat Result buffer format.

Return:

The converted buffer.

Remarks:

See “Copy and conversionCopy and conversion” (page 283).

pixbuf_destroy
Destroy the buffer.
void
pixbuf_destroy(Pixbuf **pixbuf);

pixbuf The buffer. It will be set to NULL after the destruction.

pixbuf_format
Get the pixel format.
pixformat_t
pixbuf_format(const Pixbuf *pixbuf);

pixbuf The buffer.

Return:

The format.

Remarks:

See “Pixel formatsPixel formats” (page 281).

pixbuf_width
Get the width of the buffer.
uint32_t
pixbuf_width(const Pixbuf *pixbuf);

pixbuf The buffer.

39.2 - Functions 1025

Return:

Width.

pixbuf_height
Get the height of the buffer.
uint32_t
pixbuf_height(const Pixbuf *pixbuf);

pixbuf The buffer.

Return:

Height.

pixbuf_size
Get the buffer size (in pixels).
uint32_t
pixbuf_size(const Pixbuf *pixbuf);

pixbuf The buffer.

Return:

Width x height.

pixbuf_dsize
Gets the buffer size (in bytes).
uint32_t
pixbuf_dsize(const Pixbuf *pixbuf);

pixbuf The buffer.

Return:

Number of total bytes in the buffer.

pixbuf_cdata
Gets a read-only pointer to the contents of the buffer.
const byte_t*
pixbuf_cdata(const Pixbuf *pixbuf);

1026 Chapter 39 - Draw2D library

pixbuf The buffer.

Return:

Pointer to the first element.

Remarks:

Correctly manipulating the buffer requires knowing the “Pixel formatsPixel formats”
(page 281) and sometimes using the operators at the bit level. Use pixbuf_get to correctly
read a pixel.

pixbuf_data
Gets a read/write pointer to the contents of the buffer.
byte_t*
pixbuf_data(Pixbuf *pixbuf);

pixbuf The buffer.

Return:

Pointer to the first element.

Remarks:

Correctly manipulating the buffer requires knowing the “Pixel formatsPixel formats”
(page 281) and sometimes using the operators at the bit level. Use pixbuf_get to correctly
read a pixel.

pixbuf_format_bpp
Gets bits per pixel based on format.
uint32_t
pixbuf_format_bpp(const pixformat_t format);

format The format.

Return:

Bits per pixel.

Remarks:

See “Pixel formatsPixel formats” (page 281).

39.2 - Functions 1027

pixbuf_get
Get the value of a pixel.
uint32_t
pixbuf_get(const Pixbuf *pixbuf,

const uint32_t x,
const uint32_t y);

pixbuf The buffer.
x Pixel x-coordinate.
y Pixel y coordinate.

Return:

The color value.

Remarks:

See “Pixel formatsPixel formats” (page 281) to correctly interpret the value.

pixbuf_set
Sets the value of a pixel.
void
pixbuf_set(Pixbuf *pixbuf,

const uint32_t x,
const uint32_t y,
const uint32_t value);

pixbuf The buffer.
x Pixel x-coordinate.
y Pixel y coordinate.

value The color value.

Remarks:

See “Pixel formatsPixel formats” (page 281) to correctly interpret the value.

image_from_pixels
Create an image from an array of pixels.
Image*
image_from_pixels(const uint32_t width,

1028 Chapter 39 - Draw2D library

const uint32_t height,
const pixformat_t format,
const byte_t *data,
const color_t *palette,
const uint32_t palsize);

width The image width (in pixels).
height The image height (in pixels).
format Pixel format.

data Buffer that contains the color value of each pixel. It will depend on the
resolution and format.

palette Color palette required to render indexed images. If it is NULL a “Prede-
fined palettePredefined palette” (page 280) will be used if necessary.

palsize Number of colors in the palette.

Return:

The image.

Remarks:

See “Pixel accessPixel access” (page 285).

image_from_pixbuf
Create an image from a buffer pixel.

Image*
image_from_pixbuf(const Pixbuf *pixbuf,

const Palette *palette);

pixbuf The buffer.
palette The palette.

Return:

The image.

Remarks:

Equal to image_from_pixels avoiding indicating parameters separately.

39.2 - Functions 1029

image_from_file
Create an image from a file on disk.
Image*
image_from_file(const char_t *pathname,

ferror_t *error);

pathname The file path. “Filename and pathnameFilename and pathname”
(page 178).

error Error code if the function fails. Can be NULL.

Return:

The image.

Remarks:

Only formats jpg, png, bmp and gif are accepted.

image_from_data
Create an image from a buffer containing the encoded data.
Image*
image_from_data(const byte_t *data,

const uint32_t size);

data The buffer with the image data.
size The buffer size in bytes.

Return:

The image.

Remarks:

The buffer represents data encoded in jpg, png, bmp or gif. To create the image directly
from pixels use image_from_pixels.

image_from_resource
Get an image of a resource package.
const Image*
image_from_resource(const ResPack *pack,

const ResId id);

1030 Chapter 39 - Draw2D library

pack The resource package.
id The resource identifier.

Return:

The image.

Remarks:

The image should not be destroyed with image_destroy as it is part of the package
itself (it is constant). Make a copy with image_copy in case it needs to be kept after
destroying the resources. See “Resources” (page 129).

image_copy
Create a copy of the image.

Image*
image_copy(const Image *image);

image The source image.

Return:

The image copy.

Remarks:

Images are immutable objects. Copying really means increasing an internal counter
without cloning the object. However, the application must destroy the copy with image_destroy
just like those created with any other constructor. When all copies are destroyed, it will

actually be removed from memory.

image_trim
Create an image by cropping another image.

Image*
image_trim(const uint32_t x,

const uint32_t y,
const uint32_t width,
const uint32_t height);

39.2 - Functions 1031

x X coordinate of the origin of the sub-image.
y Y coordinate of the origin of the sub-image.

width Width in pixels of the sub-image.
height Height in pixels of the sub-image.

Return:

The new image.

image_rotate
Create a new image by rotating an existing one.
Image*
image_rotate(const Image *image,

const real32_t angle,
const bool_t nsize,
const color_t background,
T2Df *t2d);

image The original image.
angle Angle in radians.
nsize TRUE the resulting image will be resized to fit the entire original. FALSE

the resulting image will have the same dimensions as the original, cutting
part of the content (clipping).

background Background color. The new image will have “blank” areas due to rota-
tion.

t2d Saves the transformation applied to the image. They can be NULL if we
don’t need this value.

Return:

The newly created image.

image_scale
Create a copy of the image, with a new size.
Image*
image_scale(const Image *image,

const uint32_t nwidth,
const uint32_t nheight);

1032 Chapter 39 - Draw2D library

image The source image.
nwidth The width of the new image. Pass UINT32_MAX so that the aspect ratio

with respect to nheight.
nheight The height of the new image. Pass UINT32_MAX so that the aspect ratio

with respect to nwidth.

Return:

The image.

Remarks:

If both values nwidth, nheight are UINT32_MAX or the new dimensions are identical to
the current ones, the internal reference counter will increase, as is the case in image_copy.

image_read
Create an image from the data read from a “Streams” (page 193).
Image*
image_read(Stream *stm);

stm Input stream. Data encoded in jpg, png, bmp or gif are expected. The
function detects the format automatically.

Return:

The image.

image_to_file
Save an image to disk, using the codec associated with it.
bool_t
image_to_file(const Image *image,

const char_t *pathname,
ferror_t *error);

image The image.
pathname The path of the destination file. “Filename and pathnameFilename and

pathname” (page 178).
error Error code if the function fails. Can be NULL.

Return:

TRUE if it was saved correctly or FALSE and an error has occurred.

39.2 - Functions 1033

Remarks:

Use image_codec to change the default codec.

image_write
Write an image in an output stream, using the codec associated with it.
void
image_write(Stream *stm,

const Image *image);

stm Writing stream. Data encoded in jpg, png, bmp or gif will be written.
image The image.

Remarks:

Use image_codec to change the default codec.

image_destroy
Destroy the image.
void
image_destroy(Image **image);

image The image. Will be set to NULL after destruction.

image_format
Get the pixel format of the image.
pixformat_t
image_format(const Image *image);

image The image.

Return:

Pixel format.

image_width
Get the width of the image in pixels.
uint32_t
image_width(const Image *image);

1034 Chapter 39 - Draw2D library

image The image.

Return:

Number of pixels wide.

image_height
Get the height of the image in pixels.
uint32_t
image_height(const Image *image);

image The image.

Return:

Number of pixels in height.

image_pixels
Get a buffer with the pixels that make up the decoded image.
Pixbuf*
image_pixels(const Image *image,

const pixformat_t format);

image The image.
format The required pixel format.

Return:

Pixel buffer with image content.

Remarks:

If in pixformat we indicate ekFIMAGE it will return the buffer with the original format
of the image. We can indicate ekRGB24, ekRGBA32 or ekGRAY8 if we need a specific format.
Cannot use indexed formats.

image_codec
Change the default codec associated with the image.
bool
image_codec(const Image *image,

const codec_t codec);

39.2 - Functions 1035

Image *img = image_from_file("lenna.jpg", NULL);
Stream *stm = stm_socket(ip, port, NULL, NULL);
image_codec(img, ekPNG);
image_write(socket, img);

image The image.
codec The new codec.

Return:

TRUE if the graphical API supports the selected codec. FALSE otherwise.

Remarks:

The change will take effect the next time we save or write the image. By default, the im-
age retains the codec with which it was read. When we create it with image_from_pixels
ekJPG codec is assigned as default. For images from 2d contexts dctx_image, the default
codec is ekPNG. All codecs are supported by all graphical APIs, except ekGIF in some
versions of Linux. Check the return value if it is imperative that your application export
images in GIF.

image_get_codec
Get the codec associated with the image.
codec_t
image_get_codec(const Image *image);

image The image.

Return:

El codec.

Remarks:

See image_codec.

image_num_frames
Get the number of sequences in animated images.
uint32_t
image_num_frames(const Image *image);

image The image.

1036 Chapter 39 - Draw2D library

Return:

The number of sequences or frames.

Remarks:

Only the gif format supports animations. For the rest 1 will always be returned.

image_frame_length
Get the time of an animation sequence.

real32_t
image_frame_length(const Image *image,

const uint32_t findex);

image The image.
findex The frame index.

Return:

Sequence time in seconds.

Remarks:

Only gif format supports animations.

image_data
Link user data with the image.

void
image_data(Image *image,

type *data,
FPtr_destroy func_destroy_data,
type);

image The image.
data The user data.

func_destroy_data Destructor of user data.
User data type.

39.2 - Functions 1037

image_get_data
Gets the user data of the image.
type*
image_get_data(const Image *image,

type);

image The image.
User data type.

Return:

The user data.

image_native
Gets the image in the native format of each platform.
void*
image_native(const Image *image);

image The image.

Return:

The native image. Gdiplus::Bitmap in Windows, GdkPixbuf in Linux and NSImage
in macOS.

font_create
Create a font.
Font*
font_create(const char_t *family,

const real32_t size,
const uint32_t style);

family Typographic family. Eg: “Arial”, “Times New Roman”, etc.
size Font size. Default in pixels. Use ekFPOINTS in style to change the

unit.
style Operation OR | over the fields of the fstyle_t structure. Eg: ekFBOLD

| ekFITALIC.

Return:

The font.

1038 Chapter 39 - Draw2D library

font_system
Create a font, with the system default family.
Font*
font_system(const real32_t size,

const uint32_t style);

size Font size. Default in pixels. Use ekFPOINTS in style to change the
unit.

style Operation OR | over the fields of the fstyle_t structure. Eg: ekFBOLD
| ekFITALIC.

Return:

The font.

font_monospace
Create a font, with the default system mono-space family.
Font*
font_monospace(const real32_t size,

const uint32_t style);

size Font size. Default in pixels. Use ekFPOINTS in style to change the
unit.

style Operation OR | over the fields of the fstyle_t structure. Eg: ekFBOLD
| ekFITALIC.

Return:

The font.

font_with_style
Create a copy of an existing font, changing the style.
Font*
font_with_style(const Font *font,

const uint32_t style);

font Original font.
style Operation OR | over the fields of the fstyle_t structure. Eg: ekFBOLD

| ekFITALIC.

39.2 - Functions 1039

Return:

A copy of font with another style.

font_copy
Create an exact copy of a font.
Font*
font_copy(const Font *font);

font Source font.

Return:

The copy of font.

Remarks:

Fonts are immutable objects. Copying really means increasing an internal counter with-
out cloning the object. However, the application must destroy the copy with font_destroy
just like those created with any other constructor.

font_destroy
Destroy the font.
void
font_destroy(Font **font);

font The font. Will be set to NULL after destruction.

font_equals
Compare two fonts. They are considered equal if they have the same family, size and style.
bool_t
font_equals(const Font *font1,

const Font *font2);

font1 First font to compare.
font2 Second font to compare.

Return:

TRUE if they are the same, FALSE if not.

1040 Chapter 39 - Draw2D library

font_regular_size
Get the default font size for interface controls.
real32_t
font_regular_size(void);

Return:

The default size in pixels.

font_small_size
Get the small font size by default for interface controls.
real32_t
font_small_size(void);

Return:

The size in pixels.

Remarks:

This size is slightly smaller than that obtained by font_regular_size.

font_mini_size
Get the default mini font size for interface controls.
real32_t
font_mini_size(void);

Return:

The size in pixels.

Remarks:

This size is slightly smaller than that obtained by font_small_size.

font_family
Get the font type family.
const char_t*
font_family(const Font *font);

39.2 - Functions 1041

font The font.

Return:

The typographic family in UTF8.

font_size
Get the font size.

real32_t
font_size(const Font *font);

font The font.

Return:

The size. The units depend on the parameter style.

font_height
Get the height of the cell or line of text with this font.

real32_t
font_height(const Font *font);

font The font.

Return:

Cell height.

font_style
Get the font style.

uint32_t
font_style(const Font *font);

font The font.

Return:

The style. Combination of fstyle_t structure values. Eg: ekFBOLD | ekFITALIC.

1042 Chapter 39 - Draw2D library

font_extents
Gets the size in pixels of a text string, based on the font.
void
font_extents(const Font *font,

const char_t *text,
const real32_t refwidth,
real32_t *width,
real32_t *height);

font The font.
text The text string to size.

refwidth Maximum width of the text box.
width Text box width.
height Text box height.

font_exists_family
Check if a typeface family is installed in the operating system.
bool_t
font_exists_family(const char_t *family);

family UTF8 string with family name, terminated in a null character '\0'.

Return:

TRUE if the family exists, FALSE if not.

font_installed_families
Get a list with the names of all the typographic families installed in the operating system.
ArrPt(String)*
font_installed_families(void);

ArrPt(String) *families = font_installed_families();
...
arrpt_destroy(&families, str_destroy, String);

Return:

Array of String with the names of the families, arranged alphabetically. It must be
destroyed with arrpt_destroy.

39.2 - Functions 1043

font_native
Gets the font in the native format of each platform.
void*
font_native(const Font *font);

font The font.

Return:

The native font. HFONT in Windows, PangoFontDescription in Linux and NSFont in
macOS.

1044 Chapter 39 - Draw2D library

40C
ha

pt
er

Gui library

40.1. Types and Constants

enum gui_orient_t
Orientation.

ekGUI_HORIZONTAL Horizontal.
ekGUI_VERTICAL Vertical.

enum gui_state_t
State values.

ekGUI_OFF Off.
ekGUI_ON On.

ekGUI_MIXED Medium/undetermined.

enum gui_mouse_t
Mouse buttons.

ekGUI_MOUSE_LEFT Left.
ekGUI_MOUSE_RIGHT Right.

ekGUI_MOUSE_MIDDLE Center.

enum gui_cursor_t
Cursors. See window_cursor.

1045

1046 Chapter 40 - Gui library

ekGUI_CURSOR_ARROW Arrow (default).
ekGUI_CURSOR_HAND Hand.
ekGUI_CURSOR_IBEAM Vertical bar (text editing).
ekGUI_CURSOR_CROSS Cross.

ekGUI_CURSOR_SIZEWE Horizontal resize (left-right).
ekGUI_CURSOR_SIZENS Vertical resize (top-bottom).
ekGUI_CURSOR_USER Created from an image.

enum gui_close_t
Reason for closing a window.

ekGUI_CLOSE_ESC The [ESC] key has been pressed (cancel).
ekGUI_CLOSE_INTRO The [ENTER] key has been pressed (accept).

ekGUI_CLOSE_BUTTON The close button [X] has been pressed in the title bar.
ekGUI_CLOSE_DEACT The parent window has been hidden.

enum gui_scale_t
Scaling modes.

ekGUI_SCALE_AUTO Automatic scaling, the proportion may change.
ekGUI_SCALE_NONE No scaling.

ekGUI_SCALE_ASPECT Automatic scaling, but maintaining the proportion (aspect
ratio).

ekGUI_SCALE_ASPECTDW Same as above, but does not increase the original size, only
reduce it if appropriate.

enum gui_event_t
Event type. See “GUI EventsGUI Events” (page 300).

ekGUI_EVENT_LABEL Click on a Label control.
ekGUI_EVENT_BUTTON Click on a Button control.
ekGUI_EVENT_POPUP The selection of a PopUp control has been changed.

40.1 - Types and Constants 1047

ekGUI_EVENT_LISTBOX The selection of a control has been changed ListBox.
ekGUI_EVENT_SLIDER You are moving an Slidercontrol.
ekGUI_EVENT_UPDOWN Click on a UpDown control.

ekGUI_EVENT_TXTFILTER The text of a Edit or Combo control is being edited.
ekGUI_EVENT_TXTCHANGE You have finished editing the text of a Edit or Combo con-

trol.
ekGUI_EVENT_FOCUS A control has received keyboard focus.
ekGUI_EVENT_MENU Click on a menu.
ekGUI_EVENT_DRAW The view content must be redrawn.

ekGUI_EVENT_RESIZE The size of a view has changed.
ekGUI_EVENT_ENTER The mouse has entered the view area.
ekGUI_EVENT_EXIT The mouse has left the view area.
ekGUI_EVENT_MOVED The mouse is moving on the view surface.
ekGUI_EVENT_DOWN A mouse button was pressed.

ekGUI_EVENT_UP A mouse button has been released.
ekGUI_EVENT_CLICK Click on a view.
ekGUI_EVENT_DRAG Dragging is being done over.
ekGUI_EVENT_WHEEL Mouse wheel has moved.

ekGUI_EVENT_KEYDOWN A key has been pressed.
ekGUI_EVENT_KEYUP A key has been released.

ekGUI_EVENT_WND_MOVED The window is moving across the desktop.
ekGUI_EVENT_WND_SIZING The window is being resized.
ekGUI_EVENT_WND_SIZE The window has been resized.
ekGUI_EVENT_WND_CLOSE The window has been closed.

ekGUI_EVENT_COLOR An update color of comwin_color.
ekGUI_EVENT_THEME Desktop theme has changed.

ekGUI_EVENT_OBJCHANGE An object linked to a layout has been edited. “Notifica-
tions and calculated fieldsNotifications and calculated fields”
(page 357).

1048 Chapter 40 - Gui library

ekGUI_EVENT_TBL_NROWS A table needs to know the number of rows.
tableview_OnData.

ekGUI_EVENT_TBL_BEGIN A table will begin to draw the visible part of the data.
tableview_OnData.tableview_OnData.

ekGUI_EVENT_TBL_END A table has finished drawing. tableview_OnData.
ekGUI_EVENT_TBL_CELL A table needs the data of a cell. tableview_OnData.
ekGUI_EVENT_TBL_SEL The selected rows in a table have changed.

tableview_OnSelect.
ekGUI_EVENT_TBL_HEADCLICK Click on a table header. tableview_OnHeaderClick.

enum window_flag_t
Window creation attributes.

ekWINDOW_FLAG Default attributes.
ekWINDOW_EDGE The window draws an outer border.
ekWINDOW_TITLE The window has a title bar.

ekWINDOW_MAX The window shows the maximize button.
ekWINDOW_MIN The window shows the minimize button.

ekWINDOW_CLOSE The window shows the close button.
ekWINDOW_RESIZE The window has resizable borders.
ekWINDOW_RETURN The window will process the pressing of the [RETURN] key

as a possible closing event, sending the message OnClose.
ekWINDOW_ESC The window will process the pressing of the [ESC] key as a

possible closing event, sending the message OnClose.
ekWINDOW_MODAL_NOHIDE Avoids hiding a modal window when the modal cycle has

finished. See “Modal windowsModal windows” (page 347).
ekWINDOW_STD Combination ekWINDOW_TITLE | ekWINDOW_MIN |

ekWINDOW_CLOSE.
ekWINDOW_STDRES Combination ekWINDOW_STD | ekWINDOW_MAX |

ekWINDOW_RESIZE.

enum gui_notif_t
Notifications sent by the gui library.

40.1 - Types and Constants 1049

1050 Chapter 40 - Gui library

ekGUI_NOTIF_LANGUAGE The interface language has been changed.
ekGUI_NOTIF_WIN_DESTROY A window has been destroyed.

ekGUI_NOTIF_MENU_DESTROY A menu has been destroyed.

struct Control
Interface Control (abstract).
struct Control;

struct Label
Interface control that contains static text, usually limited to a single line. “Label” (page 302).
struct Label;

struct Button
Interface control representing a button. “Button” (page 304).
struct Button;

struct PopUp
Control button with drop-down list. “PopUp” (page 306).
struct PopUp;

struct Edit
Text editing control “Edit” (page 307).
struct Edit;

struct Combo
Control that combines an edit box with a drop-down list. “Combo” (page 309).
struct Combo;

40.1 - Types and Constants 1051

struct ListBox
List control. “ListBox” (page 309).
struct ListBox;

struct UpDown
Control that shows two small increase and decrease buttons. “UpDown” (page 310).
struct UpDown;

struct Slider
Control that shows a bar with a slider. “Slider” (page 311).
struct Slider;

struct Progress
Progress bar. “Progress” (page 311).
struct Progress;

struct View
Custom View that allows to create our own controls, drawing what we want. “View”
(page 312)
struct View;

struct TextView
Text view with several paragraphs and different attributes. “TextView” (page 317).
struct TextView;

struct ImageView
Image viewer control. “ImageView” (page 319).
struct ImageView;

1052 Chapter 40 - Gui library

struct TableView
Table view with multiple rows and columns. “TableView” (page 320).
struct TableView;

struct SplitView
Resizable horizontal or vertical split view. “SplitView” (page 326).
struct SplitView;

struct Layout
Invisible grid where the controls of a Panel are organized. “Layout” (page 329).
struct Layout;

struct Cell
Each of the cells that form a Layout. “Cell” (page 337).
struct Cell;

struct Panel
Internal area of a window, which allows you to group different controls. “Panel” (page 338).
struct Panel;

struct Window
Interface window. “Window” (page 344).
struct Window;

struct Menu
Menu or submenu. “Menu” (page 359).
struct Menu;

40.1 - Types and Constants 1053

struct MenuItem
Item within a menu. “MenuItem” (page 360).
struct MenuItem;

struct EvButton
Parameters of the OnClick event of a button or OnSelect of a popup.
struct EvButton
{

uint32_t index;
gui_state_t state;
const char_t* text;

};

index Button or item index.
state State.
text Text.

struct EvSlider
Parameters of the OnMoved event of a slider.
struct EvSlider
{

real32_t pos;
real32_t incr;
uint32_t step;

};

pos Normalized slider position (0, 1).
incr Increase with respect to the previous position.
step Interval index (only for discrete ranges).

struct EvText
Parameters of the OnChange event of the text boxes.
struct EvText
{

const char_t* text;
uint32_t cpos;

};

1054 Chapter 40 - Gui library

text Text.
cpos Cursor position (caret).

struct EvTextFilter
Result of the OnFilter event of the text boxes.
struct EvTextFilter
{

bool_t apply;
char_t* text;
uint32_t cpos;

};

apply TRUE if the original control text should be changed.
text New control text, which is a revision (filter) of the original

text.
cpos Cursor position (caret).

struct EvDraw
OnDraw event parameters.
struct EvDraw
{

DCtx* ctx;
real32_t x;
real32_t y;
real32_t width;
real32_t height;

};

ctx 2D drawing context.
x X coordinate of the drawing area (viewport).
y Y coordinate of the drawing area.

width Width of the drawing area.
height Height of the drawing area.

struct EvMouse
Mouse event parameters.
struct EvMouse

40.1 - Types and Constants 1055

{
real32_t x;
real32_t y;
gui_mouse_t button;
uint32_t count;

};

x Pointer x coordinate.
y Coordinate and pointer.

button Active button.
count Number of clicks.

struct EvWheel
OnWheel event parameters.
struct EvWheel
{

real32_t x;
real32_t y;
real32_t dx;
real32_t dy;
real32_t dz;

};

x Pointer x coordinate.
y Pointer y coordinate.
dx Increase in x of the wheel or trackpad.
dy Increase in x of the wheel or trackpad.
dz Increase in x of the wheel or trackpad.

struct EvKey
Keyboard event parameters.
struct EvKey
{

vkey_t key;
};

key Pulsed key or released.

1056 Chapter 40 - Gui library

struct EvPos
Parameters of change of position events.
struct EvPos
{

real32_t x;
real32_t y;

};

x X coordinate.
y Y coordinate.

struct EvSize
Resize event parameters.
struct EvSize
{

real32_t width;
real32_t height;

};

width Width (size in x).
height Height (size in y).

struct EvWinClose
Window closing Event Parameters.
struct EvWinClose
{

gui_close_t origin;
};

origin Origin of the close.

struct EvMenu
Menu event parameters.
struct EvMenu
{

uint32_t index;

40.1 - Types and Constants 1057

gui_state_t state;
const char_t* str;

};

index Pressed item index.
state Pressed item status.

str Pressed item text.

struct EvTbPos
Location of a cell in a table.
struct EvTbPos
{

uint32_t col;
uint32_t row;

};

col Column index.
row Row index.

struct EvTbRect
Group of cells in a table.
struct EvTbRect
{

uint32_t stcol;
uint32_t edcol;
uint32_t strow;
uint32_t edrow;

};

stcol Initial column index.
edcol End column index.
strow Initial row index.
edrow End row index.

struct EvTbSel
Selection in a table.
struct EvTbSel
{

1058 Chapter 40 - Gui library

ArrSt(uint32_t)* sel;
};

sel Row indices.

struct EvTbCell
Data from a cell in a table.
struct EvTbCell
{

const char_t* text;
align_t align;

};

text Cell text.
align Text alignment.

40.2. Functions

gui_start
Start the Gui library, reserving space for global internal structures. Internally call draw2d_start
. It is called automatically by osmain.
void
gui_start(void);

gui_finish
Finish the Gui library, freeing up the space of global internal structures. Internally call
draw2d_finish. It is called automatically by osmain.
void
gui_finish(void);

gui_respack
Register a resource package.
void
gui_respack(FPtr_respack func_respack);

func_respack Resource constructor.

40.2 - Functions 1059

Remarks:

See “Resources” (page 129).

gui_language
Set the language of the registered resources with gui_respack.
void
gui_language(const char_t *lang);

lang Language.

Remarks:

See “Resources” (page 129).

gui_text
Get a text string through its resource identifier.
const char_t*
gui_text(const ResId id);

id Resource Identifier.

Return:

The text string or NULL if it is not found.

Remarks:

The resource must belong to a package registered with gui_respack.

gui_image
Get an image through its resource identifier.
const Image*
gui_image(const ResId id);

id Resource Identifier.

Return:

The image or NULL if it is not found.

Remarks:

1060 Chapter 40 - Gui library

The resource must belong to a package registered with gui_respack. Do not destroy
the image as it is managed by Gui.

gui_file
Get the contents of a file through its resource identifier.
const byte_t*
gui_file(const ResId id,

uint32_t *size);

id Resource Identifier.
size Buffer size in bytes.

Return:

File data or NULL if it is not found.

Remarks:

The resource must belong to a package registered with gui_respack. The data is
managed by Gui, so there is no need to free memory.

gui_dark_mode
Determines if the window environment has a light or dark theme.
bool_t
gui_dark_mode(void);

Return:

TRUE for Dark mode, FALSE for light mode.

gui_alt_color
Create a color with two alternative versions.
color_t
gui_alt_color(const color_t light_color,

const color_t dark_color);

light_color Color for LIGHT desktop themes.
dark_color Color for DARK desktop themes.

40.2 - Functions 1061

Return:

The color.

Remarks:

The system will set the final color based on the “lightness” of the window manager
colors (Light/Dark). Nested alternate colors ARE NOT ALLOWED. The light and
dark values must be RGB or system colors.

gui_label_color
Returns the default color of text labels Label.
color_t
gui_label_color(void);

Return:

The color.

gui_view_color
Returns the background color in controls View.
color_t
gui_view_color(void);

Return:

The color.

gui_line_color
Returns the color of lines in tables or window separator elements.
color_t
gui_line_color(void);

Return:

The color.

gui_link_color
Returns the color of the text in hyperlinks.

1062 Chapter 40 - Gui library

color_t
gui_link_color(void);

Return:

The color.

gui_border_color
Returns the border color in button controls, popups, etc..
color_t
gui_border_color(void);

Return:

The color.

gui_resolution
Returns screen resolution.
S2Df
gui_resolution(void);

Return:

Resolution.

gui_mouse_pos
Returns the position of the mouse cursor.
V2Df
gui_mouse_pos(void);

Return:

Position.

gui_update
Refreshes all application windows, after a theme change.
void
gui_update(void);

40.2 - Functions 1063

Remarks:

Normally it is not necessary to call this method. It is called automatically from osapp.

gui_OnThemeChanged
Set a handler to detect the change of the visual theme of the windows environment.
void
gui_OnThemeChanged(Listener *listener);

listener The event handler.

gui_update_transitions
Update the automatic animations of the interface.
void
gui_update_transitions(const real64_t prtime,

const real64_t crtime);

prtime Time of the previous instant.
crtime Time of the current instant.

Remarks:

Normally it is not necessary to call this method. It is called automatically from osapp.

gui_OnNotification
Sets up a handler to receive notifications from gui.
void
gui_OnNotification(Listener *listener);

listener The event handler.

Remarks:

See gui_notif_t.

evbind_object
Gets the object linked to a layout within a callback function.
type*
evbind_object(Event *e,

type);

1064 Chapter 40 - Gui library

e The event.
type The object type.

Return:

The object.

Remarks:

See “Notifications and calculated fieldsNotifications and calculated fields” (page 357).

evbind_modify
Checks, inside a callback function, if the object’s field has been modified.
bool_t
evbind_modify(Event *e,

type,
mtype,
mname);

e The event.
type The object type.

mtype The type of the field to check.
mname The name of the field to check.

Return:

TRUE if the field has been modified.

Remarks:

See “Notifications and calculated fieldsNotifications and calculated fields” (page 357).

label_create
Create a text control.
Label*
label_create(void);

Return:

The new label.

40.2 - Functions 1065

label_multiline
Create a multi-line text control.
Label*
label_multiline(void);

Return:

The new label.

label_OnClick
Set the OnClick event handler.
void
label_OnClick(Label *label,

Listener *listener);

label The label.
listener Event handler.

Remarks:

See “GUI EventsGUI Events” (page 300).

label_text
Set the text that the label will display.
void
label_text(Label *label,

const char_t *text);

label The label.
text UTF8 C-string terminated in null character '\0'.

label_font
Set the text font.
void
label_font(Label *label,

const Font *font);

label The label.
font Font.

1066 Chapter 40 - Gui library

label_style_over
Set the font modifiers, when the mouse is over the control.
void
label_style_over(Label *label,

const uint32_t style);

label The label.
style Combination of values fstyle_t.

label_align
Sets the horizontal alignment of the text with respect to the size of the control.
void
label_align(Label *label,

const align_t align);

label The label.
align Alignment.

label_color
Set the text color.
void
label_color(Label *label,

const color_t color);

label The label.
color The color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

label_color_over
Set the color of the text, when the mouse is over the control.
void
label_color_over(Label *label,

const color_t color);

40.2 - Functions 1067

label The label.
color The color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

label_bgcolor
Set the background color of the text.
void
label_bgcolor(Label *label,

const color_t color);

label The label.
color The color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

label_bgcolor_over
Set the background color of the text, when the mouse is over the control.
void
label_bgcolor_over(Label *label,

const color_t color);

label The label.
color El color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

button_push
Create a push button, the typical [Accept], [Cancel], etc.
Button*
button_push(void);

Return:

The button.

1068 Chapter 40 - Gui library

button_check
Create a checkbox.

Button*
button_check(void);

Return:

The button.

button_check3
Create a checkbox with three states.

Button*
button_check3(void);

Return:

The button.

button_radio
Create a radio button.

Button*
button_radio(void);

Return:

The button.

button_flat
Create a flat button, to which an image can be assigned. It is the typical toolbar button.

Button*
button_flat(void);

Return:

The button.

40.2 - Functions 1069

button_flatgle
Create a flat button with status. The button will alternate between pressed/released each
time you click on it.
Button*
button_flatgle(void);

Return:

The button.

button_OnClick
Set a function for pressing the button.
void
button_OnClick(Button *button,

Listener *listener);

button The button.
listener Callback function to be called after clicking.

Remarks:

See “GUI EventsGUI Events” (page 300).

button_text
Set the text that the button will display.
void
button_text(Button *button,

const char_t *text);

button The button.
text UTF8 C-string terminated in null character '\0'.

Remarks:

In flat buttons, the text will be displayed as tooltip.

button_text_alt
Set an alternative text.

1070 Chapter 40 - Gui library

void
button_text_alt(Button *button,

const char_t *text);

button The button.
text UTF8 C-string terminated in null character '\0'.

Remarks:

Only applicable on flat buttons with status button_flatgle. It will be displayed when
the button is in ekGUI_ON status.

button_tooltip
Set a tooltip for the button. It is a small explanatory text that will appear when the
mouse is over the control.
void
button_tooltip(Button *button,

const char_t *text);

button The button.
text UTF8 C-string terminated in null character '\0'.

button_font
Set the button font.
void
button_font(Button *button,

const Font *font);

button The button.
font Font.

button_image
Set the icon that will show the button.
void
button_image(Button *button,

const Image *image);

button The button.
image Image.

40.2 - Functions 1071

Remarks:

Not applicable in checkbox or radiobutton. In flat buttons, the size of the control will
be adjusted to the image.

button_image_alt
Set an alternative image for the button.

void
button_image_alt(Button *button,

const Image *image);

button The button.
image Image.

Remarks:

Only applicable on flat buttons with status button_flatgle. It will be displayed when
the button is in ekGUI_ON status.

button_state
Set the button status.

void
button_state(Button *button,

const gui_state_t state);

button The button.
state State.

Remarks:

Not applicable on push buttons button_push.

button_get_state
Get button status.

gui_state_t
button_get_state(Button *button);

button The button.

1072 Chapter 40 - Gui library

Return:

The state.

Remarks:

Not applicable on push buttons button_push.

button_tag
Sets a numeric tag for the button.
void
button_tag(Button *button,

const uint32_t tag);

button The button.
tag The tag.

button_get_tag
Gets the button’s tag.
uint32_t
button_get_tag(const Button *button);

button The button.

Return:

The tag value.

popup_create
Create a new popup control (PopUp button).
PopUp*
popup_create(void);

Return:

The newly popup.

popup_OnSelect
Set an event handler for the selection of a new item.

40.2 - Functions 1073

void
popup_OnSelect(PopUp *popup,

Listener *listener);

popup The popup.
listener Callback function to be called after selecting a new item from the list.

Remarks:

See “GUI EventsGUI Events” (page 300).

popup_tooltip
Assign a tooltip to the popup control.
void
popup_tooltip(PopUp *popup,

const char_t *text);

popup The popup.
text UTF8 C-string terminated in null character '\0'.

popup_add_elem
Add a new item to the popup list.
void
popup_add_elem(PopUp *popup,

const char_t *text,
const Image *image);

popup The popup.
text The text of the element in UTF-8 or the resource identifier. “Resources”

(page 129).
image Icon associated with the resource element or identifier. For space, it will

scale to a maximum maximum of 16 pixels.

popup_set_elem
Edit an item from the drop-down list.
void
popup_set_elem(PopUp *popup,

const uint32_t index,

1074 Chapter 40 - Gui library

const char_t *text,
const Image *image);

popup The popup.
index The index of the item to replace.
text The text of the element in UTF-8 or the resource identifier. “Resources”

(page 129).
image Icon associated with the resource element or identifier. For space, it will

scale to a maximum maximum of 16 pixels.

popup_clear
Remove all items from the dropdown list.
void
popup_clear(PopUp *popup);

popup The popup.

popup_count
Gets the number of items in the list.
uint32_t
popup_count(const PopUp *popup);

popup The popup.

Return:

The number of elements.

popup_list_height
Set the size of the drop-down list.
void
popup_list_height(PopUp *popup,

const uint32_t elems);

popup The popup.
elems Number of visible elements. If the control has more, a scroll bar will

appear.

40.2 - Functions 1075

popup_selected
Set the selected popup element.
void
popup_selected(PopUp *popup,

const uint32_t index);

popup The popup.
index The item to select. If we pass UINT32_MAX the selection is removed.

popup_get_selected
Get the selected popup item.
uint32_t
popup_get_selected(PopUp *popup);

popup The popup.

Return:

The selected item.

edit_create
Create a text edit control.
Edit*
edit_create(void);

Return:

The edit.

edit_multiline
Create a text editing control that allows multiple lines.
Edit*
edit_multiline(void);

Return:

The edit.

1076 Chapter 40 - Gui library

edit_OnFilter
Set a function to filter the text while editing.

void
edit_OnFilter(Edit *edit,

Listener *listener);

edit The edit.
listener Callback function to be called after each key press. In EvTextFilter

from event_result filtered text will be returned.

Remarks:

See “Filter textsFilter texts” (page 308) and “GUI EventsGUI Events” (page 300).

edit_OnChange
Set a function to detect when the text has changed.

void
edit_OnChange(Edit *edit,

Listener *listener);

edit The edit.
listener Callback function to be called when the control loses focus on the key-

board, indicating the end of the edition.

Remarks:

See “GUI EventsGUI Events” (page 300).

edit_text
Set the edit control text.

void
edit_text(Edit *edit,

const char_t *text);

edit The edit.
text UTF8 C-string terminated in null character '\0'.

40.2 - Functions 1077

edit_font
Set the font of the edit control.
void
edit_font(Edit *edit,

const Font *font);

edit The edit.
font Font.

edit_align
Set text alignment.
void
edit_align(Edit *edit,

const align_t align);

edit The edit.
align Alignment.

edit_passmode
Activate the password mode, which will hide the typed characters.
void
edit_passmode(Edit *edit,

const bool_t passmode);

edit The edit.
passmode Enable or disable password mode.

edit_editable
Enable or disable editing in the control.
void
edit_editable(Edit *edit,

const bool_t is_editable);

edit The edit.
is_editable TRUEwill allow to edit the text (by default).

1078 Chapter 40 - Gui library

edit_autoselect
Activate or deactivate auto-selection of text.

void
edit_autoselect(Edit *edit,

const bool_t autoselect);

edit The edit.
autoselect TRUE the control text will be fully selected when it receives focus.

Remarks:

Default FALSE.

edit_tooltip
Assigns a tooltip to the edit control.

void
edit_tooltip(Edit *edit,

const char_t *text);

edit The edit.
text UTF8 C-string terminated in null character '\0'.

edit_color
Set the text color.

void
edit_color(Edit *edit,

const color_t color);

edit The edit.
color Text color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

edit_color_focus
Sets the color of the text, when the control has the keyboard focus.

40.2 - Functions 1079

void
edit_color_focus(Edit *edit,

const color_t color);

edit The edit.
color Text color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

edit_bgcolor
Set the background color.
void
edit_bgcolor(Edit *edit,

const color_t color);

edit The edit.
color Background color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

edit_bgcolor_focus
Sets the background color, when the control has keyboard focus.
void
edit_bgcolor_focus(Edit *edit,

const color_t color);

edit The edit.
color Background color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

edit_phtext
Set an explanatory text for when the control is blank (placeholder).

1080 Chapter 40 - Gui library

void
edit_phtext(Edit *edit,

const char_t *text);

edit The edit.
text UTF8 C-string terminated in null character '\0'.

edit_phcolor
Set the color of the placeholder text.
void
edit_phcolor(Edit *edit,

const color_t color);

edit The edit.
color Text color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

edit_phstyle
Set the font style for the placeholder.
void
edit_phstyle(Edit *edit,

const uint32_t fstyle);

edit The edit.
fstyle Combination of values of fstyle_t.

edit_get_text
Get control text.
const char_t*
edit_get_text(const Edit *edit);

edit The edit.

Return:

UTF8 C-string terminated in null character '\0'.

40.2 - Functions 1081

combo_create
Create a combo control.

Combo*
combo_create(void);

Return:

The combo.

combo_OnFilter
Set a function to filter the text while editing.

void
combo_OnFilter(Combo *combo,

Listener *listener);

combo The combo.
listener Callback function to be called after each key press. In EvTextFilter

from event_result filtered text will be returned.

Remarks:

See “Filter textsFilter texts” (page 308) and “GUI EventsGUI Events” (page 300).

combo_OnChange
Set a function to be called when the text has changed.

void
combo_OnChange(Combo *combo,

Listener *listener);

combo The combo.
listener Callback function to be called when the control loses focus on the key-

board, indicating the end of the edition.

Remarks:

This event will also be launched when you select an item from the list, a sign that the
text has changed in the edit box. See “GUI EventsGUI Events” (page 300).

1082 Chapter 40 - Gui library

combo_text
Set the combo edit text.
void
combo_text(Combo *combo,

const char_t *text);

combo The combo.
text UTF8 C-string terminated in null character '\0'.

combo_align
Set text alignment.
void
combo_align(Combo *combo,

const align_t align);

combo The combo.
align Alignment.

combo_tooltip
Assign a tooltip to the control combo.
void
combo_tooltip(Combo *combo,

const char_t *text);

combo The combo.
text UTF8 C-string terminated in null character '\0'.

combo_color
Set the color of the combo text.
void
combo_color(Combo *combo,

const color_t color);

combo The combo.
color Text color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

40.2 - Functions 1083

combo_color_focus
Sets the color of the text, when the control has the keyboard focus.

void
combo_color_focus(Combo *combo,

const color_t color);

combo The combo.
color Text color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

combo_bgcolor
Set the background color.

void
combo_bgcolor(Combo *combo,

const color_t color);

combo The combo.
color Background color.

Remarks:

RGB values may not be fully portable. See “Colors” (page 277).

combo_bgcolor_focus
Sets the background color when the control has keyboard focus.

void
combo_bgcolor_focus(Combo *combo,

const color_t color);

combo The combo.
color Background color.

combo_phtext
Set an explanatory text for when the control is blank.

1084 Chapter 40 - Gui library

void
combo_phtext(Combo *combo,

const char_t *text);

combo The combo.
text UTF8 C-string terminated in null character '\0'.

combo_phcolor
Set the color of the placeholder text.

void
combo_phcolor(Combo *combo,

const color_t color);

combo The combo.
color Text color.

combo_phstyle
Set the font style for the placeholder.

void
combo_phstyle(Combo *combo,

const uint32_t fstyle);

combo The combo.
fstyle Combination of values of fstyle_t.

combo_get_text
Get control text.

const char_t*
combo_get_text(const Combo *combo);

combo The combo.

Return:

UTF8 C-string terminated in null character '\0'.

40.2 - Functions 1085

combo_count
Gets the number of items in the dropdown list.
uint32_t
combo_count(const Combo *combo);

combo The combo.

Return:

The number of elements.

combo_add_elem
Add a new item to the drop-down list.
void
combo_add_elem(Combo *combo,

const char_t *text,
const Image *image);

combo The combo.
text The text of the element in UTF-8 or the resource identifier. “Resources”

(page 129).
image Icon associated with the resource element or identifier. For space, it will

scale to a maximum maximum of 16 pixels.

combo_set_elem
Edit an item from the drop-down list.
void
combo_set_elem(Combo *combo,

const uint32_t index,
const char_t *text,
const Image *image);

combo The combo.
index The index of the item to replace.
text The text of the element in UTF-8 or the resource identifier. “Resources”

(page 129).
image Icon associated with the resource element or identifier. For space, it will

scale to a maximum maximum of 16 pixels.

1086 Chapter 40 - Gui library

combo_ins_elem
Insert an item in the drop-down list.
void
combo_ins_elem(Combo *combo,

const uint32_t index,
const char_t *text,
const Image *image);

combo The combo.
index Insertion position.
text The text of the element in UTF-8 or the resource identifier. “Resources”

(page 129).
image Icon associated with the resource element or identifier. For space, it will

scale to a maximum maximum of 16 pixels.

combo_del_elem
Remove an item from the drop-down list.
void
combo_del_elem(Combo *combo,

const uint32_t index);

combo The combo.
index The index of the item to delete.

combo_duplicates
Prevents duplicate texts from the drop-down list.
void
combo_duplicates(Combo *combo,

const bool_t duplicates);

combo The combo.
duplicates TRUEto allow duplicate texts.

listbox_create
Create a new list control.
ListBox*
listbox_create(void);

40.2 - Functions 1087

Return:

The newly created listbox.

listbox_OnSelect
Set an event handler for the selection of a new item.
void
listbox_OnSelect(ListBox *listbox,

Listener *listener);

listbox The ListBox.
listener Callback function to be called after selecting a new item from the list.

Remarks:

See “GUI EventsGUI Events” (page 300).

listbox_size
Set the default size of the list.
void
listbox_size(ListBox *listbox,

const S2Df size);

listbox The ListBox.
size The size.

Remarks:

It corresponds to “Natural sizingNatural sizing” (page 330) of control Default 128x128.

listbox_checkbox
Show or hide checkboxes to the left of items.
void
listbox_checkbox(ListBox *listbox,

const bool_t show);

listbox ListBox.
show TRUE for show them.

1088 Chapter 40 - Gui library

listbox_multisel
Enable multiple selection.
void
listbox_multisel(ListBox *listbox,

const bool_t multisel);

listbox ListBox.
multisel TRUE to allow multiple selected items at the same time.

listbox_add_elem
Adds a new element.
void
listbox_add_elem(ListBox *listbox,

const char_t *text,
const Image *image);

listbox ListBox.
text The text of the element in UTF-8 or the identifier of the resource. “Re-

sources” (page 129).
image Icon associated with the element or resource identifier.

listbox_set_elem
Edit a list item.
void
listbox_set_elem(ListBox *listbox,

const uint32_t index,
const char_t *text,
const Image *image);

listbox ListBox.
index The index of the element to replace.
text The text of the element in UTF-8 or the identifier of the resource. “Re-

sources” (page 129).
image Icon associated with the element or resource identifier.

listbox_clear
Remove all items from the list.

40.2 - Functions 1089

void
listbox_clear(ListBox *listbox);

listbox ListBox.

listbox_color
Sets the text color of an element.
void
listbox_color(ListBox *listbox,

const color_t color);

listbox ListBox.
color The. By default kCOLOR_DEFAULT.

listbox_select
Select an item from the program code.
void
listbox_select(ListBox *listbox,

const uint32_t index,
const bool_t select);

listbox ListBox.
index The index of the item to select.
select Select or deselect.

Remarks:

If multiple selection is not enabled, selecting one item implies de-selecting all the others.

listbox_check
Check or uncheck the checkbox of the element from the program code.
void
listbox_check(ListBox *listbox,

const uint32_t index,
const bool_t check);

listbox ListBox.
index The item index.
check Check or uncheck.

1090 Chapter 40 - Gui library

Remarks:

Checking an item is independent of selecting it. Items can be marked even if checkboxes
are not visible. See listbox_checkbox.

listbox_count
Returns the number of elements in the list.

uint32_t
listbox_count(const ListBox *listbox);

listbox ListBox.

Return:

The number of elements.

listbox_text
Returns the text of an element.

const char_t*
listbox_text(const ListBox *listbox);

listbox ListBox.

Return:

The UTF-8 text terminated in null character ’\0’.

listbox_selected
Returns whether or not an element is selected.

bool_t
listbox_selected(const ListBox *listbox);

listbox ListBox.

Return:

The selection state.

40.2 - Functions 1091

listbox_checked
Returns whether an element is checked or not.
bool_t
listbox_checked(const ListBox *listbox);

listbox ListBox.

Return:

The checkbox state.

Remarks:

Checking an item is independent of selecting it. Items can be marked even if checkboxes
are not visible. See listbox_checkbox.

updown_create
Create an updown control.
UpDown*
updown_create(void);

Return:

The updown.

updown_OnClick
Set an event handler for pressing the button.
void
updown_OnClick(UpDown *updown,

Listener *listener);

updown The updown.
listener Callback function to be called after clicking.

Remarks:

See “GUI EventsGUI Events” (page 300).

updown_tooltip
Set a tooltip for the button. It is a small explanatory text that will appear when the
mouse is over the control.

1092 Chapter 40 - Gui library

void
updown_tooltip(UpDown *updown,

const char_t *text);

updown The updown.
text UTF8 C-string terminated in null character '\0'.

slider_create
Create a new slider control.
Slider*
slider_create(void);

Return:

Slider.

slider_vertical
Create a new vertical slider.
Slider*
slider_vertical(void);

Return:

Slider.

slider_OnMoved
Set an event handler for slider movement.
void
slider_OnMoved(Slider *slider,

Listener *listener);

slider Slider.
listener Callback function that will be called continuously while the user moves

a slider.

Remarks:

EvSlider contains the event parameters, see “GUI EventsGUI Events” (page 300).

40.2 - Functions 1093

slider_tooltip
Set a tooltip for the slider. It is a small explanatory text that will appear when the mouse
is over the control.
void
slider_tooltip(Slider *slider,

const char_t *text);

slider Slider.
text UTF8 C-string terminated in null character '\0'.

slider_steps
Changes the slider from continuous range to discrete intervals.
void
slider_steps(Slider *slider,

const uint32_t steps);

slider Slider.
steps Number of intervals. Use UINT32_MAX to return to continuous range.

slider_value
Set the slider position.
void
slider_value(Slider *slider,

const real32_t value);

slider Slider.
value The position between 0.0 and 1.0.

slider_get_value
Get the slider position.
real32_t
slider_get_value(const Slider *slider);

slider Slider.

Return:

The normalized position between 0.0 and 1.0.

1094 Chapter 40 - Gui library

progress_create
Create a progress bar.

Progress*
progress_create(void);

Return:

The progress.

progress_undefined
Set the progress bar as undefined.

void
progress_undefined(Progress *progress,

const bool_t running);

progress The progress.
running TRUEto activate the animation.

progress_value
Set the progress position.

void
progress_value(Progress *progress,

const real32_t value);

progress The progress.
value The position between 0.0 and 1.0.

view_create
Create a new custom view.

View*
view_create(void);

Return:

The view.

40.2 - Functions 1095

view_scroll
Create a new custom view with scrollbars.
View*
view_scroll(void);

Return:

The view.

view_data
Associate user data with the view.
void
view_data(View *view,

type **data,
FPtr_destroy func_destroy_data,
type);

view The view.
data User data.

func_destroy_data Destructor of user data. It will be called upon destroying the view.
type Type of user data.

view_get_data
Obtiene los datos de usuario asociados con la vista.
type*
view_get_data(const View *view,

type);

view The view.
type Type of user data.

Return:

Los datos de usuario.

view_size
Set the default view size.

1096 Chapter 40 - Gui library

void
view_size(View *view,

const S2Df size);

view The view.
size The size.

Remarks:

It corresponds to “Natural sizingNatural sizing” (page 330) of control Default 128x128.

view_OnDraw
Set an event handler to draw in the view.
void
view_OnDraw(View *view,

Listener *listener);

view The view.
listener Callback function to be called every time the drawing needs to be re-

freshed.

Remarks:

See “GUI EventsGUI Events” (page 300).

view_OnSize
Set an event handler for resizing.
void
view_OnSize(View *view,

Listener *listener);

view The view.
listener Callback function to be called every time the view changes size.

Remarks:

See “GUI EventsGUI Events” (page 300).

view_OnEnter
Set an event handler for mouse enter.

40.2 - Functions 1097

void
view_OnEnter(View *view,

Listener *listener);

view The view.
listener Callback function to be called when the mouse cursor enters the view

area.

Remarks:

See “GUI EventsGUI Events” (page 300).

view_OnExit
Set an event handle for mouse exit.

void
view_OnExit(View *view,

Listener *listener);

view The view.
listener Callback function to be called when the mouse cursor exits the view

area.

Remarks:

See “GUI EventsGUI Events” (page 300).

view_OnMove
Set an event handler for mouse movement.

void
view_OnMove(View *view,

Listener *listener);

view The view.
listener Callback function to be called as the mouse cursor moves over the view.

Remarks:

See “GUI EventsGUI Events” (page 300).

1098 Chapter 40 - Gui library

view_OnDown
Sets an event handler for a mouse button down.

void
view_OnDown(View *view,

Listener *listener);

view The view.
listener Callback function that will be called every time the button is down.

Remarks:

See “GUI EventsGUI Events” (page 300).

view_OnUp
Sets an event handler for a mouse button up.

void
view_OnUp(View *view,

Listener *listener);

view The view.
listener Callback function that will be called every time the button is up.

Remarks:

See “GUI EventsGUI Events” (page 300).

view_OnClick
Set an event handler for mouse click.

void
view_OnClick(View *view,

Listener *listener);

view The view.
listener Callback function that will be called every time the view is clicked.

Remarks:

See “GUI EventsGUI Events” (page 300).

40.2 - Functions 1099

view_OnDrag
Set an event handler for mouse drag.
void
view_OnDrag(View *view,

Listener *listener);

view The view.
listener Callback function to be called while dragging the mouse cursor over the

view.

Remarks:

“Drag” is to move the mouse with one of the buttons pressed. See “GUI EventsGUI
Events” (page 300).

view_OnWheel
Set an event handler for mouse wheel.
void
view_OnWheel(View *view,

Listener *listener);

view The view.
listener Callback function that will be called when the mouse wheel moves over

the view.

Remarks:

See “GUI EventsGUI Events” (page 300).

view_OnKeyDown
Set an event handler for a keystroke.
void
view_OnKeyDown(View *view,

Listener *listener);

view The view.
listener Callback function to be called when a key is pressed and the view has

the keyboard focus.

Remarks:

See “GUI EventsGUI Events” (page 300).

1100 Chapter 40 - Gui library

view_OnKeyUp
Set an event handler for releasing a key.
void
view_OnKeyUp(View *view,

Listener *listener);

view The view.
listener Callback function to be called when a key is released and the view has

the keyboard focus.

Remarks:

See “GUI EventsGUI Events” (page 300).

view_OnFocus
Sets an event handler for keyboard focus.
void
view_OnFocus(View *view,

Listener *listener);

view The view.
listener Callback function to be called when keyboard focus is received or lost.

Remarks:

See “Using the keyboardUsing the keyboard” (page 316) and “GUI EventsGUI Events”
(page 300).

view_keybuf
Sets a keyboard buffer for synchronous or asynchronous query of key state.
void
view_keybuf(View *view,

Keybuf *buffer);

view The view.
buffer Keyboard buffer that will be maintained by the view, capturing the

OnKeyDown and OnKeyUpevents.

Remarks:

40.2 - Functions 1101

It just keeps a reference to the buffer, which will need to be destroyed by the object
that created it. See “Keyboard buffer” (page 231). The application will still be able to
receive keyboard events through view_OnKeyDown and view_OnKeyUp.

view_get_size
Gets the current size of the view.

void
view_get_size(const View *view,

S2Df *size);

view The view.
size The size.

view_content_size
Set the size of the drawing area when scroll bars exist.

void
view_content_size(View *view,

const S2Df size);

view The view.
size The internal size of the drawing area.

Remarks:

When creating a scroll view, this method indicates the entire drawing area. The control
will use it to size and position the scroll bars.

view_scroll_x
Move the horizontal scroll bar to the indicated position.

void
view_scroll_x(View *view,

const real32_t pos);

view The view.
pos New horizontal bar position.

1102 Chapter 40 - Gui library

view_scroll_y
Move the vertical scroll bar to the indicated position.
void
view_scroll_y(View *view,

const real32_t pos);

view The view.
pos New vertical bar position.

view_viewport
Gets the dimensions of the visible area of the view.
void
view_viewport(const View *view,

V2Df *pos,
S2Df *size);

view The view.
pos The position of the viewport. It can be NULL.
size The size of the viewport. It can be NULL.

Remarks:

If the view does not have scroll bars, pos will be (0,0).

view_point_scale
Gets the scaling of the point.
void
view_point_scale(const View *view,

real32_t *scale);

view The view.
scale The scaling.

Remarks:

The view size and drawing coordinates are expressed in points, which typically corre-
spond to pixels (1pt = 1px). In “Retina displaysRetina displays” (page 264) it can happen
that (1pt = 2px). Although “2D Contexts” (page 257) handles this automatically, we
may need to know the number of pixels to create another type of framebuffers (OpenGL,
DirectX, etc). Pixels = view_get_size * view_point_scale.

40.2 - Functions 1103

view_update
Send an order to the operating system that the view should be refreshed.

void
view_update(View *view);

view The view.

textview_create
Create a text view.

TextView*
textview_create(void);

Return:

The text view.

textview_size
Sets the default size of the view.

void
textview_size(TextView *view,

const S2Df size);

view The view.
size The size.

Remarks:

It corresponds to the “Natural sizingNatural sizing” (page 330) of the control. Default
245x144.

textview_clear
Clears all content from view.

void
textview_clear(TextView *view);

view The view.

1104 Chapter 40 - Gui library

textview_printf
Writes text to the view, using the format of the printf.
uint32_t
textview_printf(TextView *view,

const char_t *format,
...);

textview_printf(view, Code: %10s Price %5.2f\n", code, price);

view The view.
format String in type-printf format with a variable number of parameters.

... Printf arguments or variables.

Return:

The number of bytes written.

textview_writef
Write a C UTF8 string to the view.
void
textview_writef(TextView *view,

const char_t *str);

view The view.
str String C UTF8 terminated in null character '\0'.

textview_rtf
Insert text in Microsoft RTF format.
void
textview_rtf(TextView *view,

Stream *rtf_in);

view The view.
rtf_in Reading stream with RTF content.

textview_units
Sets the text units.

40.2 - Functions 1105

void
textview_units(TextView *view,

const uint32_t units);

view The view.
units Units ekFPIXELS or ekFPOINTS.

Remarks:

ekFPOINTS is the default value and the one normally used by word processors. See
“Size in pointsSize in points” (page 291).

textview_family
Sets the font family of the text (“Arial”, “Times New Roman”, “Helvetica”, etc).

void
textview_family(TextView *view,

const char_t *family);

view The view.
family The font family.

Remarks:

Not all families will be present on all platforms. Use font_exists_family or font_installed_families
to check.

textview_fsize
Set the text size.

void
textview_fsize(TextView *view,

const real32_t size);

view The view.
size The size.

Remarks:

The value is conditional on the units established in textview_units.

1106 Chapter 40 - Gui library

textview_fstyle
Sets the text style.
void
textview_fstyle(TextView *view,

const uint32_t fstyle);

view The view.
fstyle Combination of ekFBOLD, ekFITALIC, ekFSTRIKEOUT, ekFUNDERLINE

ekFSUBSCRIPT, ekFSUPSCRIPT. To override any previous style use
ekFNORMAL.

textview_color
Sets the text color.
void
textview_color(TextView *view,

const color_t color);

view The view.
color The color. Use kCOLOR_DEFAULT to restore the default color.

textview_bgcolor
Sets the background color of the text.
void
textview_bgcolor(TextView *view,

const color_t color);

view The view.
color The color. Use kCOLOR_DEFAULT to restore the default color.

textview_pgcolor
Sets the background color of the control.
void
textview_pgcolor(TextView *view,

const color_t color);

view The view.
color The color. Use kCOLOR_DEFAULT to restore the default color.

40.2 - Functions 1107

textview_halign
Sets the alignment of text in a paragraph.
void
textview_halign(TextView *view,

const align_t align);

view The view.
align The alignment. By default ekLEFT.

textview_lspacing
Sets the line spacing of the paragraph.
void
textview_lspacing(TextView *view,

const real32_t scale);

view The view.
scale Scale factor in font height. 1 is the default value, 2 twice this height, 3

triple, etc. Intermediate values are also valid (eg 1.25).

textview_bfspace
Sets a vertical space before the paragraph.
void
textview_bfspace(TextView *view,

const real32_t space);

view The view.
space The space in the preset units.

textview_afspace
Sets a vertical space after the paragraph.
void
textview_afspace(TextView *view,

const real32_t space);

view The view.
space The space in the preset units.

1108 Chapter 40 - Gui library

textview_scroll_down
Forces a scroll to the lower limit of the content of the view.
void
textview_scroll_down(TextView *view);

view The view.

Remarks:

Will make the last inserted content visible.

textview_editable
Sets whether or not the control text is editable.
void
textview_editable(TextView *view,

const bool_t is_editable);

view The view.
is_editable TRUE will allow you to edit the text. By default FALSE.

imageview_create
Create an image view control.
ImageView*
imageview_create(void);

Return:

The image view.

imageview_size
Set the default control size.
void
imageview_size(ImageView *view,

const S2Df size);

view The view.
size The size.

40.2 - Functions 1109

imageview_scale
Set the scaling to apply to the image.
void
imageview_scale(ImageView *view,

const gui_scale_t scale);

view The view.
scale Scaling.

imageview_image
Set the image to be displayed in the control.
void
imageview_image(ImageView *view,

const Image *image);

view The view.
image The image to show.

imageview_OnClick
Set a handle for the event click on the image.
void
imageview_OnClick(ImageView *view,

Listener *listener);

view The view.
listener Callback function to be called after clicking.

imageview_OnOverDraw
Allows you to draw an overlay on the image when the mouse is over it.
void
imageview_OnOverDraw(ImageView *view,

Listener *listener);

view The view.
listener Callback function that will be called when the mouse is over the image.

Here we will include the additional drawing code.

1110 Chapter 40 - Gui library

tableview_create
Creates a new table view.
TableView*
tableview_create(void);

Return:

The TableView.

tableview_OnData
Sets up a handler to read data from the application.
void
tableview_OnData(TableView *view,

Listener *listener);

view The TableView.
listener A callback function that will be called each time the table needs to

update its content.

Remarks:

See “Data connectionData connection” (page 320).

tableview_OnSelect
Notifies that the selection has changed.
void
tableview_OnSelect(TableView *view,

Listener *listener);

view The TableView.
listener A callback function that will be called whenever the selection in the table

changes.

Remarks:

See “Multiple selectionMultiple selection” (page 324).

tableview_OnHeaderClick
Notifies each time a header is clicked.

40.2 - Functions 1111

void
tableview_OnHeaderClick(TableView *view,

Listener *listener);

view The TableView.
listener A callback function that will be called every time a table header is

clicked.

Remarks:

See “Configure columnsConfigure columns” (page 325).

tableview_font
Sets the general font for the entire table.
void
tableview_font(TableView *view,

const Font *font);

view The TableView.
font Font.

tableview_size
Sets the default size of the table control.
void
tableview_size(TableView *view,

const S2Df size);

view The TableView.
size The size.

Remarks:

Corresponds to the “Natural sizingNatural sizing” (page 330) of the control. By default
256x128.

tableview_new_column_text
Adds a new column to the table.
uint32_t
tableview_new_column_text(TableView *view);

1112 Chapter 40 - Gui library

view The TableView.

Return:

The column identifier (index).

Remarks:

See “Configure columnsConfigure columns” (page 325).

tableview_column_width
Sets the width of a column.
void
tableview_column_width(TableView *view,

const uint32_t column_id,
const real32_t width);

view The TableView.
column_id The column id.

width The column width.

Remarks:

See “Configure columnsConfigure columns” (page 325).

tableview_column_limits
Sets the size limits of a column.
void
tableview_column_limits(TableView *view,

const uint32_t column_id,
const real32_t min,
const real32_t max);

view The TableView.
column_id The column id.

min The minimum width.
max The maximum width.

Remarks:

See “Configure columnsConfigure columns” (page 325).

40.2 - Functions 1113

tableview_column_resizable
Sets whether a column is resizable or not.
void
tableview_column_resizable(TableView *view,

const uint32_t column_id,
const bool_t resizable);

view The TableView.
column_id The column id.

resizable TRUE if resizable.

Remarks:

See “Configure columnsConfigure columns” (page 325).

tableview_column_freeze
Allows freeze the first columns of the table.
void
tableview_column_freeze(TableView *view,

const uint32_t last_column_id);

view The TableView.
last_column_id The identifier of the last column set.

Remarks:

See “Configure columnsConfigure columns” (page 325).

tableview_header_title
Sets the text of a column header.
void
tableview_header_title(TableView *view,

const uint32_t column_id,
const char_t *text);

view The TableView.
column_id The column id.

text The text in UTF-8 or the identifier of the resource. “Resources”
(page 129).

1114 Chapter 40 - Gui library

Remarks:

See “Configure columnsConfigure columns” (page 325).

tableview_header_align
Sets the alignment of the header text.
void
tableview_header_align(TableView *view,

const uint32_t column_id,
const align_t align);

view The TableView.
column_id The column id.

align The alignment.

Remarks:

See “Configure columnsConfigure columns” (page 325).

tableview_header_visible
Sets whether the table header is visible or not.
void
tableview_header_visible(TableView *view,

const bool_t visible);

view The TableView.
visible TRUE to display the header.

Remarks:

See “Configure columnsConfigure columns” (page 325).

tableview_header_clickable
Sets whether the table header can be clicked as a button.
void
tableview_header_clickable(TableView *view,

const bool_t clickable);

view The TableView.
clickable TRUE to allow clicks.

40.2 - Functions 1115

Remarks:

See “Configure columnsConfigure columns” (page 325).

tableview_header_resizable
Sets whether the header allows column resizing.

void
tableview_header_resizable(TableView *view,

const bool_t resizable);

view The TableView.
resizable TRUE if resizable.

Remarks:

See “Configure columnsConfigure columns” (page 325).

tableview_multisel
Sets the row selection mode.

void
tableview_multisel(TableView *view,

const bool_t multisel,
const bool_t preserve);

view The TableView.
multisel TRUE to allow multiple selection.
preserve TRUE to preserve the selection while browsing.

Remarks:

See “Multiple selectionMultiple selection” (page 324).

tableview_grid
Sets the drawing of the interior lines.

void
tableview_grid(TableView *view,

const bool_t hlines,
const bool_t vlines);

1116 Chapter 40 - Gui library

view The TableView.
hlines TRUE to draw horizontal lines.
vlines TRUE to draw vertical lines.

Remarks:

See “Grid drawingGrid drawing” (page 326).

tableview_update
Synchronizes the table with the data source.
void
tableview_update(TableView *view);

view The TableView.

Remarks:

See “Data connectionData connection” (page 320). We must call this function from the
application whenever the data linked to the table changes, in order to update the view.

tableview_select
Selects rows in the table.
void
tableview_select(TableView *view,

const uint32_t *rows,
const uint32_t n);

view The TableView.
rows Vector of line indices.

n Number of elements in the vector.

Remarks:

See “Multiple selectionMultiple selection” (page 324).

tableview_deselect
Deselects rows in the table.
void
tableview_deselect(TableView *view,

const uint32_t *rows,

40.2 - Functions 1117

const uint32_t n);

view The TableView.
rows Vector of line indices.

n Number of elements in the vector.

Remarks:

See “Multiple selectionMultiple selection” (page 324).

tableview_deselect_all
Deselects all rows in the table.
void
tableview_deselect_all(TableView *view);

view The TableView.

Remarks:

See “Multiple selectionMultiple selection” (page 324).

tableview_selected
Returns the currently selected rows.
const ArrSt(uint32_t)*
tableview_selected(const TableView *view);

view The TableView.

Return:

Array with the indices of the selected rows.

Remarks:

See “Multiple selectionMultiple selection” (page 324).

splitview_horizontal
Create a splitview with horizontal split.
SplitView*
splitview_horizontal(void);

1118 Chapter 40 - Gui library

Return:

The newly created split view.

splitview_vertical
Create a splitview with vertical split.
SplitView*
splitview_vertical(void);

Return:

The newly created split view.

splitview_size
Sets the default size of the view.
void
splitview_size(SplitView *split,

const S2Df size);

split The view.
size The size.

Remarks:

It corresponds to the “Natural sizingNatural sizing” (page 330) of the control. Default
128x128.

splitview_view
Add a custom view to the splitview.
void
splitview_view(SplitView *split,

View *view,
const bool_t tabstop);

split The splitview.
view The custom view.

tabstop TRUE if we want the view to be part of the tablist. See “TabstopsTab-
stops” (page 335).

40.2 - Functions 1119

Remarks:

See “Add controlsAdd controls” (page 327).

splitview_text
Add a text view to the splitview.
void
splitview_text(SplitView *split,

TextView *view,
const bool_t tabstop);

split The splitview.
view The text view.

tabstop TRUE if we want the view to be part of the tablist. See “TabstopsTab-
stops” (page 335).

Remarks:

See “Add controlsAdd controls” (page 327).

splitview_split
Add a splitview (child) to the splitview.
void
splitview_split(SplitView *split,

SplitView *child);

split The splitview.
child The splitview to add.

Remarks:

See “Add controlsAdd controls” (page 327).

splitview_panel
Add a panel to the splitview.
void
splitview_panel(SplitView *split,

Panel *panel);

1120 Chapter 40 - Gui library

split The splitview.
panel The panel.

Remarks:

See “Add controlsAdd controls” (page 327).

splitview_pos
Sets the position of the view separator.
void
splitview_pos(SplitView *split,

const real32_t pos);

split The splitview.
pos The new position of the separator.

Remarks:

See “Split modesSplit modes” (page 328).

layout_create
Create a new layout specifying the number of columns and rows.
Layout*
layout_create(const uint32_t ncols,

const uint32_t nrows);

ncols The number of columns.
nrows The number of rows.

Return:

The layout.

layout_cell
Get a layout cell.
Cell*
layout_cell(Layout *layout,

const uint32_t col,
const uint32_t row);

40.2 - Functions 1121

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The cell.

layout_label
Insert a Label control in a layout.
void
layout_label(Layout *layout,

Label *label,
const uint32_t col,
const uint32_t row);

layout The layout.
label The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

layout_button
Insert a Button control in a layout.
void
layout_button(Layout *layout,

Button *button,
const uint32_t col,
const uint32_t row);

layout The layout.
button The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

layout_popup
Insert a PopUp control in a layout.

1122 Chapter 40 - Gui library

void
layout_popup(Layout *layout,

PopUp *popup,
const uint32_t col,
const uint32_t row);

layout The layout.
popup The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

layout_edit
Insert an Edit control in a layout.
void
layout_edit(Layout *layout,

Edit *edit,
const uint32_t col,
const uint32_t row);

layout The layout.
edit The control to insert.
col Column, cell x coordinate.

row Row, cell y coordinate.

layout_combo
Insert a Combo control in a layout.
void
layout_combo(Layout *layout,

Combo *combo,
const uint32_t col,
const uint32_t row);

layout The layout.
combo The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

40.2 - Functions 1123

layout_listbox
Insert a ListBox control in a layout.
void
layout_listbox(Layout *layout,

ListBox *list,
const uint32_t col,
const uint32_t row);

layout The layout.
list The control to insert.
col Column, cell x coordinate.

row Row, cell y coordinate.

layout_updown
Insert an UpDown control in a layout.
void
layout_updown(Layout *layout,

UpDown *updown,
const uint32_t col,
const uint32_t row);

layout The layout.
updown The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

layout_slider
Insert an Slider control in a layout.
void
layout_slider(Layout *layout,

Slider *slider,
const uint32_t col,
const uint32_t row);

layout The layout.
slider The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

1124 Chapter 40 - Gui library

layout_progress
Insert a Progress control in a layout.
void
layout_progress(Layout *layout,

Progress *progress,
const uint32_t col,
const uint32_t row);

layout The layout.
progress The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

layout_view
Insert View in a layout.
void
layout_view(Layout *layout,

View *view,
const uint32_t col,
const uint32_t row);

layout The layout.
view The view to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

layout_textview
Insert a TextView control in a layout.
void
layout_textview(Layout *layout,

TextView *view,
const uint32_t col,
const uint32_t row);

layout The layout.
view The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

40.2 - Functions 1125

layout_imageview
Insert an ImageView control in a layout.
void
layout_imageview(Layout *layout,

ImageView *view,
const uint32_t col,
const uint32_t row);

layout The layout.
view The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

layout_tableview
Insert an TableView control in a layout.
void
layout_tableview(Layout *layout,

TableView *view,
const uint32_t col,
const uint32_t row);

layout The layout.
view The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

layout_splitview
Insert an SplitView control in a layout.
void
layout_splitview(Layout *layout,

SplitView *view,
const uint32_t col,
const uint32_t row);

layout The layout.
view The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

1126 Chapter 40 - Gui library

layout_panel
Insert a Panel control in a layout.
void
layout_panel(Layout *layout,

Panel *panel,
const uint32_t col,
const uint32_t row);

layout The layout.
panel The control to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

layout_layout
Insert a layout into a cell in another layout.
void
layout_layout(Layout *layout,

Layout *sublayout,
const uint32_t col,
const uint32_t row);

layout The main layout.
sublayout The layout to insert.

col Column, cell x coordinate.
row Row, cell y coordinate.

layout_get_label
Gets the Label of a cell.
Label*
layout_get_label(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

40.2 - Functions 1127

Return:

The control.

layout_get_button
Gets the Button of a cell.
Button*
layout_get_button(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The control.

layout_get_popup
Gets the PopUp of a cell.
PopUp*
layout_get_popup(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The control.

layout_get_edit
Gets the Edit of a cell.
Edit*
layout_get_edit(const Layout *layout,

const uint32_t col,
const uint32_t row);

1128 Chapter 40 - Gui library

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The control.

layout_get_combo
Gets the Combo of a cell.
Combo*
layout_get_combo(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The control.

layout_get_listbox
Gets the ListBox of a cell.
ListBox*
layout_get_listbox(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The control.

layout_get_updown
Gets the UpDown of a cell.

40.2 - Functions 1129

UpDown*
layout_get_updown(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The control.

layout_get_slider
Gets the Slider of a cell.

Slider*
layout_get_slider(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The control.

layout_get_progress
Gets the Progress of a cell.

Progress*
layout_get_progress(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

1130 Chapter 40 - Gui library

Return:

The control.

layout_get_view
Gets the View of a cell.
View*
layout_get_view(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The view.

layout_get_textview
Gets the TextView of a cell.
TextView*
layout_get_textview(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The control.

layout_get_imageview
Gets the ImageView of a cell.
ImageView*
layout_get_imageview(const Layout *layout,

const uint32_t col,
const uint32_t row);

40.2 - Functions 1131

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The control.

layout_get_tableview
Gets the TableView of a cell.
TableView*
layout_get_tableview(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The control.

layout_get_splitview
Gets the SplitView of a cell.
SplitView*
layout_get_splitview(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The control.

layout_get_panel
Gets the Panel of a cell.

1132 Chapter 40 - Gui library

Panel*
layout_get_panel(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The panel.

layout_get_layout
Gets the Layout of a cell.
Layout*
layout_get_layout(const Layout *layout,

const uint32_t col,
const uint32_t row);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.

Return:

The sublayout.

layout_taborder
Set how the keyboard focus will move when you press [TAB].
void
layout_taborder(Layout *layout,

const gui_orient_t order);

layout The layout.
order Loop through rows or columns.

Remarks:

See “TabstopsTabstops” (page 335).

40.2 - Functions 1133

layout_tabstop
Sets whether or not a cell in the layout will receive keyboard focus when navigating with
[TAB][SHIFT][TAB].

void
layout_tabstop(Layout *layout,

const uint32_t col,
const uint32_t row,
const bool_t tabstop);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.
tabstop Enable or disable cell tabstop.

Remarks:

See “TabstopsTabstops” (page 335).

layout_next_tabstop
Moves keyboard focus to the next control in the tab-list. It has the same effect as pressing
[TAB].

void
layout_next_tabstop(Layout *layout);

layout The layout.

Remarks:

Will only work if the layout is active in a window. Equivalent to window_next_tabstop
. See “TabstopsTabstops” (page 335).

layout_previous_tabstop
Moves the keyboard focus to the previous control in the tab-list. This has the same effect
as pressing [SHIFT]+[TAB].

void
layout_previous_tabstop(Layout *layout);

layout The layout.

1134 Chapter 40 - Gui library

Remarks:

Will only work if the layout is active in a window. Equivalent to window_previous_tabstop
. See “TabstopsTabstops” (page 335).

layout_hsize
Set a fixed width for a layout column.

void
layout_hsize(Layout *layout,

const uint32_t col,
const real32_t width);

layout The layout.
col Column index.

width Width.

layout_vsize
Force a fixed height for the layout row.

void
layout_vsize(Layout *layout,

const uint32_t row,
const real32_t height);

layout The layout.
row Row index.

height Height.

layout_hmargin
Establish an inter-column margin within the layout. It is the separation between two
consecutive columns.

void
layout_hmargin(Layout *layout,

const uint32_t col,
const real32_t margin);

40.2 - Functions 1135

layout The layout.
col Index of the column. The index 0 refers to the separation between

column 0 and column 1. ncols2 is the maximum accepted value.
margin Margin.

layout_vmargin
Set an inter-row margin within the layout. It is the separation between two consecutive
rows.
void
layout_vmargin(Layout *layout,

const uint32_t row,
const real32_t margin);

layout The layout.
row Row index Index 0 refers to the separation between row 0 and row 1.

nrows2 is the maximum accepted value.
margin Margin.

layout_hexpand
Set the column to expand horizontally.
void
layout_hexpand(Layout *layout,

const uint32_t col);

layout The layout.
col Column index.

Remarks:

See “Cell expansionCell expansion” (page 335).

layout_hexpand2
Set the two columns that will expand horizontally.
void
layout_hexpand2(Layout *layout,

const uint32_t col1,
const uint32_t col2,
const real32_t exp);

1136 Chapter 40 - Gui library

layout The layout.
col1 Index of column 1.
col2 Index of column 2.
exp Expansion of col1 between 0 and 1.

Remarks:

The expansion of col2 = 1 exp. See “Cell expansionCell expansion” (page 335).

layout_hexpand3
Set the three columns that will expand horizontally.
void
layout_hexpand3(Layout *layout,

const uint32_t col1,
const uint32_t col2,
const uint32_t col3,
const real32_t exp1,
const real32_t exp2);

layout The layout.
col1 Index of column 1.
col2 Index of column 2.
col3 Index of column 3.
exp1 Expansion of col1 between 0 and 1.
exp2 Expansion of col2 between 0 and 1.

Remarks:

exp1 + exp2 < = 1. The expansion of col3 = 1 exp1 exp2 . See “Cell
expansionCell expansion” (page 335).

layout_vexpand
Set the row that will expand vertically.
void
layout_vexpand(Layout *layout,

const uint32_t row);

layout The layout.
row Row index.

40.2 - Functions 1137

Remarks:

See “Cell expansionCell expansion” (page 335).

layout_vexpand2
Set the two rows that will expand vertically.
void
layout_vexpand2(Layout *layout,

const uint32_t row1,
const uint32_t row2,
const real32_t exp);

layout The layout.
row1 Index of row 1.
row2 Index of row 2.
exp Expansion of row1 between 0 and 1.

Remarks:

The expansion of row2 = 1 exp. See “Cell expansionCell expansion” (page 335).

layout_vexpand3
Set the three rows that will expand horizontally.
void
layout_vexpand3(Layout *layout,

const uint32_t row1,
const uint32_t row2,
const uint32_t row3,
const real32_t exp1,
const real32_t exp2);

layout The layout.
row1 Index of row 1.
row2 Index of row 2.
row3 Index of row 3.
exp1 Expansion of row1 between 0 and 1.
exp2 Expansion of row2 between 0 and 1.

Remarks:

1138 Chapter 40 - Gui library

exp1 + exp2 < = 1. The expansion of row3 = 1 exp1 exp2. See “Cell expan-
sionCell expansion” (page 335).

layout_halign
Sets the horizontal alignment of a cell. It will take effect when the column is wider than
the cell.
void
layout_halign(Layout *layout,

const uint32_t col,
const uint32_t row,
const align_t align);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.
align Horizontal alignment.

layout_valign
Sets the vertical alignment of a cell. It will take effect when the row is taller than the cell.
void
layout_valign(Layout *layout,

const uint32_t col,
const uint32_t row,
const align_t align);

layout The layout.
col Column, cell x coordinate.

row Row, cell y coordinate.
align Vertical alignment.

layout_show_col
Show or hide a layout column.
void
layout_show_col(Layout *layout,

const uint32_t col,
const bool_t visible);

40.2 - Functions 1139

layout The layout.
col Column index.

visible Visible or hidden.

layout_show_row
Show or hide a layout row.

void
layout_show_row(Layout *layout,

const uint32_t row,
const bool_t visible);

layout The layout.
row Row index.

visible Visible or hidden.

layout_margin
Set a uniform margin for the layout border.

void
layout_margin(Layout *layout,

const real32_t mall);

layout The layout.
mall Margin for all four sides (left, right, up and down).

layout_margin2
Set a horizontal and vertical margin for the layout edge.

void
layout_margin2(Layout *layout,

const real32_t mtb,
const real32_t mlr);

layout The layout.
mtb Upper and lower margin.
mlr Left and right margin.

1140 Chapter 40 - Gui library

layout_margin4
Set margins for the layout border.
void
layout_margin4(Layout *layout,

const real32_t mt,
const real32_t mr,
const real32_t mb,
const real32_t ml);

layout The layout.
mt Top edge margin.
mr Right edge margin.
mb Bottom edge margin.
ml Left edge margin.

layout_bgcolor
Assign a background color to the layout.
void
layout_bgcolor(Layout *layout,

const color_t color);

layout The layout.
color The color. With ekCOLOR_TRANSPARENT default color is restored.

layout_skcolor
Assign a color to the edge of the layout.
void
layout_skcolor(Layout *layout,

const color_t color);

layout The layout.
color The color. With ekCOLOR_TRANSPARENT default color is restored.

layout_update
Update the window associated with the layout.
void
layout_update(Layout *layout);

40.2 - Functions 1141

layout The layout.

Remarks:

It is equivalent to calling window_update.

layout_dbind
Associate a type struct with a layout.
void
layout_dbind(Layout *layout,

Listener *listener,
type);

layout The layout.
listener Will notify through this listener every time the object changes. Can

be NULL.
type The struct type.

Remarks:

See “GUI Data binding” (page 349).

layout_dbind_obj
Associate an object with a layout to view and edit it.
void
layout_dbind_obj(Layout *layout,

type *obj,
type);

layout The layout.
obj The object to edit.

type Object type.

Remarks:

See “GUI Data binding” (page 349).

layout_dbind_update
Updates the interface of the object associated with the layout.

1142 Chapter 40 - Gui library

void
layout_dbind_update(Layout *layout,

type,
mtype,
mname);

layout The layout.
type The object type.

mtype The type of the field to update.
mname The name of the field to update.

Remarks:

See “GUI Data binding” (page 349).

cell_label
Get the label inside the cell.
Label*
cell_label(Cell *cell);

cell The cell.

Return:

The control.

cell_button
Get the button inside the cell.
Button*
cell_button(Cell *cell);

cell The cell.

Return:

The control.

cell_popup
Get the popup inside the cell.

40.2 - Functions 1143

PopUp*
cell_popup(Cell *cell);

cell The cell.

Return:

The control.

cell_edit
Get the edit inside the cell.
Edit*
cell_edit(Cell *cell);

cell The cell.

Return:

The control.

cell_combo
Get the combo inside the cell.
Combo*
cell_combo(Cell *cell);

cell The cell.

Return:

The control.

cell_listbox
Get the listbox inside the cell.
ListBox*
cell_listbox(Cell *cell);

cell The cell.

Return:

The control.

1144 Chapter 40 - Gui library

cell_updown
Get the updown inside the cell.
UpDown*
cell_updown(Cell *cell);

cell The cell.

Return:

The control.

cell_slider
Get the slider inside the cell.
Slider*
cell_slider(Cell *cell);

cell The cell.

Return:

The control.

cell_progress
Get the progress inside the cell.
Progress*
cell_progress(Cell *cell);

cell The cell.

Return:

The control.

cell_view
Get the view inside the cell.
View*
cell_view(Cell *cell);

cell The cell.

40.2 - Functions 1145

Return:

The view.

cell_textview
Get the textview inside the cell.
TextView*
cell_textview(Cell *cell);

cell The cell.

Return:

The control.

cell_imageview
Get the imageview inside the cell.
ImageView*
cell_imageview(Cell *cell);

cell The cell.

Return:

The control.

cell_tableview
Get the tableview inside the cell.
TableView*
cell_tableview(Cell *cell);

cell The cell.

Return:

The control.

cell_splitview
Get the splitview inside the cell.
SplitView*
cell_splitview(Cell *cell);

1146 Chapter 40 - Gui library

cell The cell.

Return:

The control.

cell_panel
Get the panel inside the cell.

Panel*
cell_panel(Cell *cell);

cell The cell.

Return:

The control.

cell_layout
Get the layout inside the cell.

Layout*
cell_layout(Cell *cell);

cell The cell.

Return:

El layout.

cell_enabled
Activate or deactivate a cell.

void
cell_enabled(Cell *cell,

const bool_t enabled);

cell The cell.
enabled Enabled or not.

40.2 - Functions 1147

cell_visible
Show or hide a cell.
void
cell_visible(Cell *cell,

const bool_t visible);

cell The cell.
visible Visible or not.

cell_focus
Set the keyboard focus on the cell.
void
cell_focus(Cell *cell);

cell The cell.

cell_padding
Set an inner margin.
void
cell_padding(Cell *cell,

const real32_t pall);

cell The cell.
pall Inner margin.

cell_padding2
Set an inner margin.
void
cell_padding2(Cell *cell,

const real32_t ptb,
const real32_t plr);

cell The cell.
ptb Upper and lower margin.
plr Left and right margin.

1148 Chapter 40 - Gui library

cell_padding4
Set an inner margin.
void
cell_padding4(Cell *cell,

const real32_t pt,
const real32_t pr,
const real32_t pb,
const real32_t pl);

cell The cell.
pt Top margin.
pr Right margin.
pb Bottom margin.
pl Left margin.

cell_dbind
Associates a cell with the field of a struct.
void
cell_dbind(Cell *cell,

type,
mtype,
mname);

cell_dbind(cell, Product, String*, description);

cell The cell.
type The struct type.

mtype The struct field type.
mname Field name.

Remarks:

See “GUI Data binding” (page 349).

panel_create
Create a panel.
Panel*
panel_create(void);

40.2 - Functions 1149

Return:

The new panel.

panel_scroll
Create a panel with scroll bars.
Panel*
panel_scroll(const bool_t hscroll,

const bool_t vscroll);

hscroll TRUE if we want horizontal scroll bar.
vscroll TRUE if we want vertical scroll bar.

Return:

The new panel.

Remarks:

See “Understanding panel sizingUnderstanding panel sizing” (page 339).

panel_data
Associate user data with the panel.
void
panel_data(Panel *panel,

type **data,
FPtr_destroy func_destroy_data,
type);

panel The panel.
data User data.

func_destroy_data Destructor of user data. It will be called when the panel is destroyed.
type Type of user data.

panel_get_data
Get the user data associated with the panel.
type*
panel_get_data(const Panel *panel,

type);

1150 Chapter 40 - Gui library

panel The panel.
type Type of user data.

Return:

User data.

panel_size
Sets the default size of the visible area of a panel.
void
panel_size(Panel *panel,

const S2Df size);

panel The panel.
size The default size.

Remarks:

See “Understanding panel sizingUnderstanding panel sizing” (page 339).

panel_layout
Add a layout to a panel.
uint32_t
panel_layout(Panel *panel,

Layout *layout);

panel The panel.
layout Layout.

Return:

The newly added layout index.

panel_get_layout
Get a layout of a panel.
Layout*
panel_get_layout(Panel *panel,

const uint32_t index);

40.2 - Functions 1151

panel The panel.
index The layout index.

Return:

Layout.

panel_visible_layout
Set the active layout inside the panel.
void
panel_visible_layout(Panel *panel,

const uint32_t index);

panel The panel.
index The layout index.

Remarks:

To make the change effective, you have to call panel_update.

panel_update
Update the window that contains the panel.
void
panel_update(Panel *panel);

panel The panel.

Remarks:

It is equivalent to calling window_update.

panel_scroll_width
Gets the width of the scroll bar of the associated panel.
real32_t
panel_scroll_width(const Panel *panel);

panel The panel.

Return:

The width of the bar.

1152 Chapter 40 - Gui library

Remarks:

Only valid if the panel has been created with panel_scroll. Useful if we want to take
into account the size of the scroll bars when setting the margins of the Layout.

panel_scroll_height
Gets the height of the scroll bar.
real32_t
panel_scroll_height(const Panel *panel);

panel The panel.

Return:

The height of the bar.

Remarks:

See panel_scroll_width.

window_create
Create a new window.
Window*
window_create(const uint32_t flags);

flags Combination of window_flag_t values.

Return:

The window.

window_destroy
Destroy the window and all its contents.
void
window_destroy(Window **window);

window The window. Will be set to NULL after destruction.

Remarks:

Panels, layouts and components will be recursively destroyed.

40.2 - Functions 1153

window_panel
Associate the main panel with a window.
void
window_panel(Window *window,

Panel *panel);

window The window.
panel Main panel, which integrates all the content of the window (views, con-

trols, etc).

Remarks:

The size of the window will be adjusted based on the “Natural sizingNatural sizing”
(page 330) of the main panel.

window_OnClose
Set an event handler for the window closing.
void
window_OnClose(Window *window,

Listener *listener);

window The window.
listener Callback function to be called before closing a window.

Remarks:

See “Closing the windowClosing the window” (page 346).

window_OnMoved
Set an event handler for moving the window on the desktop.
void
window_OnMoved(Window *window,

Listener *listener);

window The window.
listener Callback function to be called as the title bar is dragged and the window

moves across the desktop.

Remarks:

See “GUI EventsGUI Events” (page 300).

1154 Chapter 40 - Gui library

window_OnResize
Set an event handler for window resizing.
void
window_OnResize(Window *window,

Listener *listener);

window The window.
listener Callback function to be called as the outer edges of the window are

dragged to resize.

Remarks:

The resizing and relocation of elements is done automatically based on the main Layout
, so it is not usually necessary for the application to respond to this event. See “GUI
EventsGUI Events” (page 300).

window_title
Set the text that will display the window in the title bar.
void
window_title(Window *window,

const char_t *text);

window The window.
text UTF8 C-string terminated in null character '\0'.

window_show
Show the window. By default windows are created hidden. You have to show them
explicitly.
void
window_show(Window *window);

window The window.

window_hide
Hide the window.
void
window_hide(Window *window);

window The window.

40.2 - Functions 1155

window_modal
Launch a window in modal mode.
uint32_t
window_modal(Window *window,

Window *parent);

window The window.
parent The parent window.

Return:

Value returned by window_stop_modal.

Remarks:

parent stop receiving events until you call window_stop_modal.

window_stop_modal
Ends the modal cycle of a window.
void
window_stop_modal(Window *window,

const uint32_t return_value);

window The window previously launched with window_modal.
return_value Value to be returned window_modal.

window_hotkey
Sets an action associated with pressing a key.
void
window_hotkey(Window *window,

const vkey_t key,
const uint32_t modifiers);

window The window.
key The key.

modifiers Modifiers. 0 or combination of mkey_t.

Remarks:

See “HotkeysHotkeys” (page 349).

1156 Chapter 40 - Gui library

window_next_tabstop
Moves keyboard focus to the next control in the tab-list. It has the same effect as pressing
[TAB].
void
window_next_tabstop(Window *window);

window The window.

Remarks:

Equivalent to layout_next_tabstop. See “TabstopsTabstops” (page 335).

window_previous_tabstop
Moves the keyboard focus to the previous control in the tab-list. This has the same effect
as pressing [SHIFT]+[TAB].
void
window_previous_tabstop(Window *window);

window The window.

Remarks:

Equivalent to layout_previous_tabstop. See “TabstopsTabstops” (page 335).

window_cycle_tabstop
Activate or deactivate the cyclic behavior of tabstops.
void
window_cycle_tabstop(Window *window,

const bool_t cycle);

window The window.
cycle TRUE to activate cycles in tabstops (default).

Remarks:

See “TabstopsTabstops” (page 335).

window_update
Recalculate the position and size of the controls after modifying any Layout.

40.2 - Functions 1157

void
window_update(Window *window);

window The window.

window_origin
Move the window to specific desktop coordinates.
void
window_origin(Window *window,

const V2Df origin);

window The window.
origin Position (x,y) of the upper-left corner of the window.

window_size
Set the size of the client area of the window.
void
window_size(Window *window,

const S2Df size);

window The window.
size Main panel size.

Remarks:

The final size will depend on the window frame and desktop theme settings. This
measure only refers to the interior area.

window_get_origin
Get the window position.
V2Df
window_get_origin(const Window *window);

window The window.

Return:

Position (x,y) from the upper-left corner of the window.

1158 Chapter 40 - Gui library

window_get_size
Get the total dimensions of the window.
S2Df
window_get_size(const Window *window);

window The window.

Return:

Window size.

Remarks:

The frame and title bar are taken into account.

window_get_client_size
Get the dimensions of the client area of the window.
S2Df
window_get_client_size(const Window *window);

window The window.

Return:

Main panel size.

window_defbutton
Set the default window button. It will be activated when pressed [Intro].
void
window_defbutton(Window *window,

Button *button);

window The window.
button The button.

window_cursor
Change the mouse cursor.
void
window_cursor(Window *window,

const gui_cursor_t cursor,

40.2 - Functions 1159

const Image *image,
const real32_t hot_x,
const real32_t hot_y);

window The window.
cursor Identifier of the new cursor.
image Custom image. Only valid in ekGUI_CURSOR_USER.
hot_x The x coordinate of the click point. Only valid in ekGUI_CURSOR_USER.
hot_y The y coordinate of the click point. Only valid in ekGUI_CURSOR_USER.

Remarks:

hot_x, hot_y indicate the “sensitive” point within the image, which will indicate the
exact position of the mouse.

menu_create
Create a new menu.
Menu*
menu_create(void);

Return:

The new menu.

menu_destroy
Destroy a menu and its entire hierarchy.
void
menu_destroy(Menu **menu);

menu The menu. Will be set to NULL after destruction.

menu_launch
Launch a menu as secondary or PopUp.
void
menu_launch(Menu *menu,

const V2Df position);

menu The menu.
position Coordinates of the upper left corner.

1160 Chapter 40 - Gui library

menu_hide
Hides a secondary PopUp menu.

void
menu_hide(Menu *menu);

menu The menu.

menu_item
Add an item to the menu.

void
menu_item(Menu *menu,

MenuItem *item);

menu The menu.
item The item to add.

menu_off_items
Set status ekGUI_OFF for all menu items.

void
menu_off_items(Menu *menu);

menu The menu.

menu_get_item
Get an item from the menu.

MenuItem*
menu_get_item(Menu *menu,

const uint32_t index);

menu The menu.
index The index of the item.

Return:

The item.

40.2 - Functions 1161

menu_size
Gets the number of items.
uint32_t
menu_size(const Menu *menu);

menu The menu.

Return:

Number of items.

menuitem_create
Create a new item for a menu.
MenuItem*
menuitem_create(void);

Return:

The newly item.

menuitem_separator
Create a new separator for a menu.
MenuItem*
menuitem_separator(void);

Return:

The newly item.

menuitem_OnClick
Set an event handle for item click.
void
menuitem_OnClick(MenuItem *item,

Listener *listener);

item The item.
listener Callback function to be called after clicking.

Remarks:

See “GUI EventsGUI Events” (page 300).

1162 Chapter 40 - Gui library

menuitem_enabled
Enables or disables a menu item.
void
menuitem_enabled(MenuItem *item,

const bool_t enabled);

item The item.
enabled Enabled or not.

menuitem_visible
Show or hide a menu item.
void
menuitem_visible(MenuItem *item,

const bool_t enabled);

item The item.
enabled Enabled or not.

menuitem_text
Set the item text.
void
menuitem_text(MenuItem *item,

const char_t *text);

item The item.
text UTF8 C-string terminated in null character '\0'.

menuitem_image
Set the icon that will display the item.
void
menuitem_image(MenuItem *item,

const Image *image);

item The item.
image Image.

40.2 - Functions 1163

menuitem_key
Set a keyboard shortcut to select the menu item.
void
menuitem_key(MenuItem *item,

const vkey_t key,
const uint32_t modifiers);

item The item.
key Key code.

modifiers Modifiers.

menuitem_submenu
Assign a drop-down submenu when selecting the item.
void
menuitem_submenu(MenuItem *item,

Menu **submenu);

item The item.
submenu The submenu.

menuitem_state
Set the status of the item, which will be reflected with a mark next to the text.
void
menuitem_state(MenuItem *item,

const gui_state_t state);

item The item.
state State.

comwin_open_file
Launch the open file dialog.
const char_t*
comwin_open_file(Window *parent,

const char_t **ftypes,
const uint32_t size,
const char_t *start_dir);

1164 Chapter 40 - Gui library

parent Parent window.
ftypes File types for the filter.

size Number of file types.
start_dir Start directory of the dialog. It can be NULL.

Return:

The name of the selected file or NULL if the user has aborted the dialog.

Remarks:

It will be launched in modal. parent will remain locked until the dialog is accepted.

comwin_save_file
Launch the save file dialog.
const char_t*
comwin_save_file(Window *parent,

const char_t **ftypes,
const uint32_t size,
const char_t *start_dir);

parent Parent window.
ftypes File types for the filter.

size Number of file types.
start_dir Start directory of the dialog. It can be NULL.

Return:

The name of the selected file or NULL if the user has aborted the dialog.

Remarks:

It will be launched modal. parent will remain locked until the dialog is accepted.

comwin_color
Launch the color selection dialog.
void
comwin_color(Window *parent,

const real32_t x,
const real32_t y,
const align_t halign,

40.2 - Functions 1165

const align_t valign,
const color_t current,
color_t *colors,
const uint32_t n,
Listener *OnChange);

static void i_OnColorChange(App *app, Event *e)
{

color_t *color = event_params(e, color_t);
// Do something
...

}

comwin_color(window, "Select color", 100, 50, ekRIGHT, ekTOP, kCOLOR_BLUE, NULL
↪→ , 0, listener(app, i_OnColorChange, App));

parent Parent window.
x Initial x position.
y Initial y position.

halign Horizontal alignment with respect to x.
valign Vertical alignment with respect to y.

current Current color the panel will display.
colors Custom colors that the panel will show and that can also be edited. It

can be NULL only if n = 0.
n Number of custom colors.

OnChange Callback function to be called after each color change.

Remarks:

On Windows and Linux systems the dialog will be launched modally and must be
accepted for a color change notification to occur via OnChange. On macOS, notifications
will be launched continuously as the dialog is manipulated.

1166 Chapter 40 - Gui library

41C
ha

pt
er

OSApp library

41.1. Functions

FPtr_app_create
An application constructor prototype.
type*
(*FPtr_app_create)(void);

Return:

Application object.

FPtr_app_update
Function prototype for update a synchronous application.
void
(*FPtr_app_update)(type *app,

const real64_t prtime,
const real64_t ctime);

app Application object.
prtime Previous update time.
ctime Current time.

FPtr_task_main
Function prototype for start a task.
uint32_t
(*FPtr_task_main)(type *data);

1167

1168 Chapter 41 - OSApp library

data Initial task data.

Return:

Task return value.

FPtr_task_update
Function prototype of a task update.
void
(*FPtr_task_update)(type *data);

data Task data.

FPtr_task_end
Function prototype of a task completion.
void
(*FPtr_task_end)(type *data,

const uint32_t rvalue);

data Task Data.
rvalue Task return value.

osmain
Start a desktop application.
void
osmain(FPtr_app_create func_create,

FPtr_destroy func_destroy,
const char_t *options,
type);

func_create Application object constructor.
func_destroy Application object destructor.

options Options string.
type Type of application object.

Remarks:

In “Hello World!” (page 23) you have a simple example of desktop application.

41.1 - Functions 1169

osmain_sync
Start a synchronous desktop application.

void
osmain_sync(const real64_t lframe,

FPtr_app_create func_create,
FPtr_destroy func_destroy,
FPtr_app_update func_update,
const char_t *options,
type);

lframe Time in seconds of the update interval (0.04 = 25 fps).
func_create Application object constructor.

func_destroy Application object destructor.
func_update Function to be called in each update interval.

options Options string.
type Type of application object.

Remarks:

See “Synchronous applicationsSynchronous applications” (page 369).

osapp_finish
End a desktop application, destroying the message cycle and the application object.

void
osapp_finish(void);

osapp_task
Launch a task in parallel, avoiding the thread lock that controls the user interface.

void
osapp_task(type *data,

const real32_t updtime,
FPtr_task_main func_main,
FPtr_task_update func_update,
FPtr_task_end func_end,
type);

1170 Chapter 41 - OSApp library

data Initial task data.
updtime Update interval time, if required.

func_main Task start function.
func_update Task update function.

func_end Function to be called when finishing the task.
type Type of initial task data.

Remarks:

See “Multi-threaded tasksMulti-threaded tasks” (page 370).

osapp_menubar
Set the general menu bar of the application.
void
osapp_menubar(Menu *menu,

Window *window);

menu The menu.
window The window that will host the menu.

Remarks:

In macOS the application menu is not linked to any window.

osapp_open_url
Open an Internet address using the default operating system browser.
void
osapp_open_url(const char_t *url);

url URL address.

42C
ha

pt
er

INet library

42.1. Types and Constants

enum ierror_t
Error codes of network connections.

ekINONET There is no internet connection on the device.
ekINOHOST Unable to connect to the remote server.
ekITIMEOUT Maximum timeout for connection has been exceeded.
ekISTREAM Error in the I/O channel when reading or writing.
ekISERVER Error in server response format.
ekINOIMPL Functionality not implemented.
ekIUNDEF Undetermined error.

ekIOK No error.

struct Http
Manage an HTTP connection initiated from the client process.

struct Http;

struct Url
Allows access to individual fields of a URL (web address) “URL” (page 383).

struct Url;

1171

1172 Chapter 42 - INet library

struct JsonOpts
Options when processing a JSON script.
struct JsonOpts;

42.2. Functions

http_create
Create an HTTP session.
Http*
http_create(const char_t *host,

const uint16_t port);

host Server name.
port Connection port. If we pass UINT16_MAX it will use 80 (by default for

HTTP).

Return:

HTTP session.

http_secure
Create an HTTPS session.
Http*
http_secure(const char_t *host,

const uint16_t port);

host Server name.
port Connection port. If we pass UINT16_MAX it will use 413 (by default for

HTTPS).

Return:

HTTP session.

http_destroy
Destroy an HTTP object.
void
http_destroy(Http **http);

42.2 - Functions 1173

http The HTTP object. Will be set to NULL after destruction.

http_clear_headers
Remove previously assigned HTTP headers.
void
http_clear_headers(Http *http);

http HTTP session.

http_add_header
Add a header to the HTTP request.
void
http_add_header(Http *http,

const char_t *name,
const char_t *value);

http HTTP session.
name The name of the header.
value The header value.

http_get
Make a GET request.
bool_t
http_get(Http *http,

const char_t *path,
const byte_t *data,
const uint32_t size,
ierror_t *error);

http HTTP session.
path Resource.
data Data to add in the body of the request. It can be NULL.
size Data block size in bytes.

error Error code if the function fails. It can be NULL.

Return:

1174 Chapter 42 - INet library

TRUE if the request has been processed correctly. If FALSE, in error we will have the
cause.

Remarks:

The request is synchronous, that is, the program will be stopped until the server re-
sponds. If we want an asynchronous model we will have to create a parallel thread that
manages the request. HTTP redirections are resolved automatically.

http_post
Make a POST request.

bool_t
http_post(Http *http,

const char_t *path,
const byte_t *data,
const uint32_t size,
ierror_t *error);

http HTTP session.
path Resource.
data Data to add in the body of the request. It can be NULL.
size Data block size in bytes.

error Error code if the function fails. It can be NULL.

Return:

TRUE if the request has been processed correctly. If FALSE, in error we will have the
cause.

Remarks:

See http_get.

http_response_status
Returns the response code of an HTTP request.

uint32_t
http_response_status(const Http *http);

http HTTP session.

42.2 - Functions 1175

Return:

The response code from the server.

http_response_protocol
Returns the protocol used by the HTTP server.
const char_t*
http_response_protocol(const Http *http);

http HTTP session.

Return:

The server protocol.

http_response_message
Returns the response message from the HTTP server.
const char_t*
http_response_message(const Http *http);

http HTTP session.

Return:

The response message from the server.

http_response_size
Returns the number of response headers from an HTTP request.
uint32_t
http_response_size(const Http *http);

http HTTP session.

Return:

The number of headers.

http_response_name
Returns the name of the response header of an HTTP request.

1176 Chapter 42 - INet library

const char_t*
http_response_name(const Http *http,

const uint32_t index);

http HTTP session.
index The index of the header (0, size-1).

Return:

The name of the header.

http_response_value
Returns the value of the response header of an HTTP request.
const char_t*
http_response_value(const Http *http,

const uint32_t index);

http HTTP session.
index The index of the header (0, size-1).

Return:

The value of the header.

http_response_header
Returns the value of a response header from an HTTP request.
const char_t*
http_response_header(const Http *http,

const char_t *name);

http HTTP session.
name The name of the desired header.

Return:

The value of the header. If the header does not exist, it will return an empty string "".

http_response_body
Returns the response body of an HTTP request.

42.2 - Functions 1177

bool_t
http_response_body(const Http *http,

Stream *body,
ierror_t *error);

http HTTP session.
body Write stream where the response content will be stored.
error Error code if the function fails. It can be NULL.

Return:

TRUE if it was read successfully. If FALSE, in error we will have the cause.

http_dget
Make a direct request for a web resource.

Stream*
http_dget(const char_t *url,

uint32_t *result,
ierror_t *error);

Stream *json = http_dget("http://serv.nappgui.com:80/dproducts.php", NULL, NULL
↪→);

if (json)
{

...
stm_close(&json);

}

url Resource URL.
result Server response code. It can be NULL.
error Error code if the function fails. It can be NULL.

Return:

Stream with the result of the request.

Remarks:

Use this function for direct access to an isolated resource. If you need to make several
requests or configure the headers, use http_create or http_secure.

1178 Chapter 42 - INet library

http_exists
Check if a web resource is available / accessible.
bool_t
http_exists(const char_t *url);

url Resource URL.

Return:

TRUE if the resource (web page, file, etc) is accessible.

Remarks:

HTTP redirections are not resolved. It will return FALSE if the URL as is is not valid.

json_read
Parse a JSON script. It will transform JSON text into a type or object in C.
type*
json_read(Stream *stm,

const JsonOpts *opts,
type);

stm Data entry in JSON format.
opts Options.
type Type of data.

Return:

Result object.

Remarks:

See “JSON parsing and conversion to data in CJSON parsing and conversion to data
in C” (page 377).

json_write
Write data in C to JSON format.
void
json_write(Stream *stm,

type *data,
const JsonOpts *opts,
type);

42.2 - Functions 1179

stm Data output in JSON format.
data Object.
opts Options.
type Type of data.

Remarks:

See “Convert from C to JSONConvert from C to JSON” (page 380).

json_destroy
Destroys a JSON object, previously created with json_read .
void
json_destroy(type **data,

type);

data Object.
type Type of data.

json_destopt
Destroys a JSON object, previously created with json_read, if it is not NULL.
void
json_destopt(type **data,

type);

data Object.
type Type of data.

url_parse
Create a URL object from a text string.
Url*
url_parse(const char_t *url);

url Null-terminated UTF8 C text string '\0'.

Return:

Result URL object after parsing the string.

1180 Chapter 42 - INet library

url_destroy
Destroy the URL object.
void
url_destroy(Url **url);

url URL object. Will be set to NULL after destruction.

url_scheme
Gets the scheme (protocol) of the URL.
const char_t*
url_scheme(const Url *url);

url URL object.

Return:

Protocol (http, https, ftp, etc).

url_user
Gets the user.
const char_t*
url_user(const Url *url);

url URL object.

Return:

User or "" if not specified.

url_pass
Get the password.
const char_t*
url_pass(const Url *url);

url URL object.

Return:

Password or "" if not specified.

42.2 - Functions 1181

url_host
Gets the name of the server.
const char_t*
url_host(const Url *url);

url URL object.

Return:

Host (Pe. www.google.com).

url_path
Gets the path (directories + name) of the requested file or resource.
const char_t*
url_path(const Url *url);

url URL object.

Return:

Pathname (Pe. /dir1/dir2/file.html).

url_params
Gets the parameters (from ';') of the URL.
const char_t*
url_params(const Url *url);

url URL object.

Return:

Parameters or "" if not specified.

url_query
Gets the parameters (from '?') of the URL.
const char_t*
url_query(const Url *url);

url URL object.

1182 Chapter 42 - INet library

Return:

Parameters or "" if not specified.

url_fragment
Gets the fragment (position or anchor of the document) of the URL.
const char_t*
url_fragment(const Url *url);

url URL object.

Return:

Fragment or "" if not specified.

url_resource
Get the full address of a resource within the server.
String*
url_resource(const Url *url);

url URL object.

Return:

Resource. path + ";"+ params + "?"+ query + "#"+ fragment.

url_port
Gets the access port to the server.
uint16_t
url_port(const Url *url);

url URL object.

Return:

Port. UINT16_MAX if not specified.

b64_encoded_size
Get the number of bytes needed to encode a memory block in format base64.
uint32_t
b64_encoded_size(const uint32_t data_size);

42.2 - Functions 1183

data_size The original block size.

Return:

Base64 size.

b64_decoded_size
Get the number of bytes needed to decode a block of memory in base64 format.
uint32_t
b64_decoded_size(const uint32_t data_size);

data_size The block size encoded in base64.

Return:

The size in bytes.

b64_encode
Encode a block of memory in base64.
uint32_t
b64_encode(const byte_t *data,

const uint32_t size,
char_t *base64);

data The data block.
size Block size.

base64 The buffer where to store the result.

Return:

The size in bytes.

Remarks:

The buffer base64 must be at least the size returned by b64_encoded_size.

b64_decode
De-encode a block base64.
uint32_t
b64_decode(const char_t *base64,

const uint32_t size,
byte_t *data);

1184 Chapter 42 - INet library

base64 The base64 block.
size Block size.

data The buffer where to store the result.

Return:

The size in bytes.

Remarks:

The buffer data must be at least the size returned by b64_decoded_size.

Index
align_t, 990
ArrPt, 767
arrpt_all, 859
arrpt_all_const, 859
arrpt_append, 860
arrpt_bsearch, 864
arrpt_bsearch_const, 865
arrpt_clear, 856
arrpt_copy, 854
arrpt_create, 854
arrpt_delete, 861
arrpt_destopt, 855
arrpt_destroy, 855
arrpt_end, 867
arrpt_find, 863
arrpt_first, 857
arrpt_first_const, 858
arrpt_forback, 867
arrpt_forback_const, 867
arrpt_foreach, 866
arrpt_foreach_const, 866
arrpt_get, 857
arrpt_get_const, 857
arrpt_grow, 859
arrpt_insert, 860
arrpt_join, 861
arrpt_last, 858
arrpt_last_const, 858
arrpt_pop, 862
arrpt_prepend, 860
arrpt_read, 855
arrpt_search, 863
arrpt_search_const, 864
arrpt_size, 856
arrpt_sort, 862
arrpt_sort_ex, 863
arrpt_write, 856
ArrSt, 767

arrst_all, 842
arrst_all_const, 843
arrst_append, 846
arrst_bsearch, 851
arrst_bsearch_const, 852
arrst_clear, 839
arrst_copy, 838
arrst_create, 837
arrst_delete, 848
arrst_destopt, 839
arrst_destroy, 838
arrst_end, 854
arrst_first, 841
arrst_first_const, 841
arrst_forback, 853
arrst_forback_const, 853
arrst_foreach, 852
arrst_foreach_const, 853
arrst_get, 840
arrst_get_const, 841
arrst_grow, 843
arrst_insert, 847
arrst_insert_n, 846
arrst_join, 847
arrst_last, 842
arrst_last_const, 842
arrst_new, 843
arrst_new0, 844
arrst_new_n, 844
arrst_new_n0, 845
arrst_pop, 849
arrst_prepend, 847
arrst_prepend_n, 845
arrst_read, 838
arrst_search, 850
arrst_search_const, 850
arrst_size, 840
arrst_sort, 849

1185

1186 Index

arrst_sort_ex, 849
arrst_write, 839

b64_decode, 1183
b64_decoded_size, 1183
b64_encode, 1183
b64_encoded_size, 1182
bfile_close, 744
bfile_create, 743
bfile_delete, 747
bfile_dir_close, 742
bfile_dir_create, 741
bfile_dir_data, 740
bfile_dir_delete, 743
bfile_dir_exec, 741
bfile_dir_get, 742
bfile_dir_home, 740
bfile_dir_open, 742
bfile_dir_set_work, 740
bfile_dir_work, 739
bfile_fstat, 745
bfile_lstat, 744
bfile_open, 744
bfile_pos, 747
bfile_read, 745
bfile_seek, 747
bfile_write, 746
blib_abort, 706
blib_atexit, 705
blib_bsearch, 704
blib_bsearch_ex, 705
blib_debug_break, 706
blib_qsort, 703
blib_qsort_ex, 704
blib_strcat, 701
blib_strcmp, 701
blib_strcpy, 700
blib_strlen, 699
blib_strncmp, 701
blib_strncpy, 700
blib_strstr, 699
blib_strtod, 703

blib_strtof, 703
blib_strtol, 702
blib_strtoul, 702
BMath::abs, 692
BMath::acos, 688
BMath::asin, 688
BMath::atan2, 688
BMath::ceil, 696
BMath::clamp, 693
BMath::cos, 686
BMath::exp, 691
BMath::floor, 696
BMath::isqrt, 690
BMath::log, 690
BMath::log10, 690
BMath::max, 692
BMath::min, 693
BMath::mod, 694
BMath::modf, 694
BMath::norm_angle, 689
BMath::pow, 691
BMath::prec, 694
BMath::rand, 697
BMath::rand_mt, 698
BMath::round, 695
BMath::round_step, 695
BMath::sin, 687
BMath::sqrt, 689
BMath::tan, 687
bmath_absd, 692
bmath_absf, 692
bmath_acosd, 688
bmath_acosf, 688
bmath_asind, 688
bmath_asinf, 688
bmath_atan2d, 688
bmath_atan2f, 688
bmath_ceild, 696
bmath_ceilf, 696
bmath_clampd, 693
bmath_clampf, 693
bmath_cosd, 686

Index 1187

bmath_cosf, 686
bmath_expd, 691
bmath_expf, 691
bmath_floord, 696
bmath_floorf, 696
bmath_isqrtd, 690
bmath_isqrtf, 690
bmath_log10d, 690
bmath_log10f, 690
bmath_logd, 690
bmath_logf, 690
bmath_maxd, 692
bmath_maxf, 692
bmath_mind, 693
bmath_minf, 693
bmath_modd, 694
bmath_modf, 694
bmath_modfd, 694
bmath_modff, 694
bmath_norm_angled, 689
bmath_norm_anglef, 689
bmath_powd, 691
bmath_powf, 691
bmath_precd, 694
bmath_precf, 694
bmath_rand_destroy, 698
bmath_rand_env, 698
bmath_rand_mtd, 698
bmath_rand_mtf, 698
bmath_rand_mti, 699
bmath_rand_seed, 696
bmath_randd, 697
bmath_randf, 697
bmath_randi, 697
bmath_round_stepd, 695
bmath_round_stepf, 695
bmath_roundd, 695
bmath_roundf, 695
bmath_sind, 687
bmath_sinf, 687
bmath_sqrtd, 689
bmath_sqrtf, 689

bmath_tand, 687
bmath_tanf, 687
bmem_aligned_malloc, 711
bmem_aligned_realloc, 711
bmem_cmp, 714
bmem_copy, 716
bmem_copy_n, 716
bmem_free, 712
bmem_is_zero, 714
bmem_malloc, 710
bmem_move, 716
bmem_overlaps, 717
bmem_realloc, 710
bmem_rev, 717
bmem_rev2, 717
bmem_rev4, 718
bmem_rev8, 718
bmem_rev_elems, 718
bmem_revcopy, 718
bmem_set1, 712
bmem_set16, 713
bmem_set4, 712
bmem_set8, 713
bmem_set_r32, 714
bmem_set_u32, 713
bmem_set_zero, 715
bmem_shuffle, 719
bmem_shuffle_n, 720
bmem_swap, 719
bmem_swap_type, 719
bmem_zero, 715
bmem_zero_n, 715
bmutex_close, 737
bmutex_create, 736
bmutex_lock, 737
bmutex_unlock, 737
bool_t, 664
Box2D, 919, 948
Box2D::add, 950
Box2D::add_circle, 951
Box2D::addn, 950
Box2D::area, 952

1188 Index

Box2D::center, 949
Box2D::from_points, 949
Box2D::is_null, 952
Box2D::merge, 951
Box2D::segments, 951
box2d_add_circled, 951
box2d_add_circlef, 951
box2d_addd, 950
box2d_addf, 950
box2d_addnd, 950
box2d_addnf, 950
box2d_aread, 952
box2d_areaf, 952
box2d_centerd, 949
box2d_centerf, 949
box2d_from_pointsd, 949
box2d_from_pointsf, 949
box2d_is_nulld, 952
box2d_is_nullf, 952
box2d_merged, 951
box2d_mergef, 951
box2d_segmentsd, 951
box2d_segmentsf, 951
box2dd, 948
box2df, 948
bproc_cancel, 730
bproc_close, 729
bproc_eread, 731
bproc_eread_close, 733
bproc_exec, 729
bproc_exit, 734
bproc_finish, 730
bproc_read, 731
bproc_read_close, 732
bproc_wait, 730
bproc_write, 732
bproc_write_close, 733
bsocket_accept, 749
bsocket_close, 749
bsocket_connect, 748
bsocket_host_name, 753
bsocket_host_name_ip, 753

bsocket_hton2, 754
bsocket_hton4, 754
bsocket_hton8, 755
bsocket_ip_str, 754
bsocket_local_ip, 750
bsocket_ntoh2, 755
bsocket_ntoh4, 755
bsocket_ntoh8, 755
bsocket_read, 751
bsocket_read_timeout, 750
bsocket_remote_ip, 750
bsocket_server, 748
bsocket_str_ip, 752
bsocket_url_ip, 752
bsocket_write, 751
bsocket_write_timeout, 750
bstd_eprintf, 708
bstd_ewrite, 709
bstd_ewritef, 708
bstd_printf, 707
bstd_read, 708
bstd_sprintf, 706
bstd_vsprintf, 707
bstd_write, 709
bstd_writef, 708
bthread_cancel, 735
bthread_close, 735
bthread_create, 734
bthread_current_id, 734
bthread_finish, 736
bthread_sleep, 736
bthread_wait, 735
btime_date, 756
btime_now, 756
btime_to_date, 757
btime_to_micro, 756
Buffer, 766
buffer_const, 781
buffer_create, 780
buffer_data, 781
buffer_destroy, 780
buffer_size, 781

Index 1189

buffer_with_data, 780
Button, 1050
button_check, 1068
button_check3, 1068
button_flat, 1068
button_flatgle, 1069
button_font, 1070
button_get_state, 1071
button_get_tag, 1072
button_image, 1070
button_image_alt, 1071
button_OnClick, 1069
button_push, 1067
button_radio, 1068
button_state, 1071
button_tag, 1072
button_text, 1069
button_text_alt, 1069
button_tooltip, 1070
byte_t, 664

cassert, 671
cassert_default, 672
cassert_fatal, 671
cassert_fatal_msg, 672
cassert_msg, 671
cassert_no_null, 672
cassert_no_nullf, 672
cassert_set_func, 673
Cell, 1052
cell_button, 1142
cell_combo, 1143
cell_dbind, 1148
cell_edit, 1143
cell_enabled, 1146
cell_focus, 1147
cell_imageview, 1145
cell_label, 1142
cell_layout, 1146
cell_listbox, 1143
cell_padding, 1147
cell_padding2, 1147

cell_padding4, 1148
cell_panel, 1146
cell_popup, 1142
cell_progress, 1144
cell_slider, 1144
cell_splitview, 1145
cell_tableview, 1145
cell_textview, 1145
cell_updown, 1144
cell_view, 1144
cell_visible, 1147
char_t, 664
Cir2D, 917, 945
Cir2D::area, 947
Cir2D::from_box, 946
Cir2D::from_points, 946
Cir2D::is_null, 948
Cir2D::minimum, 947
cir2d_aread, 947
cir2d_areaf, 947
cir2d_from_boxd, 946
cir2d_from_boxf, 946
cir2d_from_pointsd, 946
cir2d_from_pointsf, 946
cir2d_is_nulld, 948
cir2d_is_nullf, 948
cir2d_minimumd, 947
cir2d_minimumf, 947
cir2dd, 945
cir2df, 945
Clock, 769
clock_create, 910
clock_destroy, 911
clock_elapsed, 911
clock_frame, 911
clock_reset, 911
codec_t, 989
Col2D, 920
Col2D::box_box, 975
Col2D::box_circle, 974
Col2D::box_point, 973
Col2D::box_segment, 974

1190 Index

Col2D::circle_circle, 973
Col2D::circle_point, 971
Col2D::circle_segment, 972
Col2D::obb_box, 977
Col2D::obb_circle, 977
Col2D::obb_obb, 978
Col2D::obb_point, 976
Col2D::obb_segment, 976
Col2D::point_point, 969
Col2D::poly_box, 984
Col2D::poly_circle, 983
Col2D::poly_obb, 985
Col2D::poly_point, 982
Col2D::poly_poly, 986
Col2D::poly_segment, 983
Col2D::poly_tri, 985
Col2D::segment_point, 970
Col2D::segment_segment, 971
Col2D::tri_box, 980
Col2D::tri_circle, 980
Col2D::tri_obb, 981
Col2D::tri_point, 979
Col2D::tri_segment, 979
Col2D::tri_tri, 982
col2d_box_boxd, 975
col2d_box_boxf, 975
col2d_box_circled, 974
col2d_box_circlef, 974
col2d_box_pointd, 973
col2d_box_pointf, 973
col2d_box_segmentd, 974
col2d_box_segmentf, 974
col2d_circle_circled, 973
col2d_circle_circlef, 973
col2d_circle_pointd, 971
col2d_circle_pointf, 971
col2d_circle_segmentd, 972
col2d_circle_segmentf, 972
col2d_obb_boxd, 977
col2d_obb_boxf, 977
col2d_obb_circled, 977
col2d_obb_circlef, 977

col2d_obb_obbd, 978
col2d_obb_obbf, 978
col2d_obb_pointd, 976
col2d_obb_pointf, 976
col2d_obb_segmentd, 976
col2d_obb_segmentf, 976
col2d_point_pointd, 969
col2d_point_pointf, 969
col2d_poly_boxd, 984
col2d_poly_boxf, 984
col2d_poly_circled, 983
col2d_poly_circlef, 983
col2d_poly_obbd, 985
col2d_poly_obbf, 985
col2d_poly_pointd, 982
col2d_poly_pointf, 982
col2d_poly_polyd, 986
col2d_poly_polyf, 986
col2d_poly_segmentd, 983
col2d_poly_segmentf, 983
col2d_poly_trid, 985
col2d_poly_trif, 985
col2d_segment_pointd, 970
col2d_segment_pointf, 970
col2d_segment_segmentd, 971
col2d_segment_segmentf, 971
col2d_tri_boxd, 980
col2d_tri_boxf, 980
col2d_tri_circled, 980
col2d_tri_circlef, 980
col2d_tri_obbd, 981
col2d_tri_obbf, 981
col2d_tri_pointd, 979
col2d_tri_pointf, 979
col2d_tri_segmentd, 979
col2d_tri_segmentf, 979
col2d_tri_trid, 982
col2d_tri_trif, 982
color_bgr, 1014
color_blue, 1013
color_get_alpha, 1017
color_get_rgb, 1016

Index 1191

color_get_rgba, 1016
color_get_rgbaf, 1017
color_get_rgbf, 1016
color_gray, 1014
color_green, 1013
color_hsbf, 1012
color_html, 1015
color_red, 1013
color_rgb, 1011
color_rgba, 1011
color_rgbaf, 1012
color_set_alpha, 1018
color_t, 991
color_to_hsbf, 1015
color_to_html, 1015
Combo, 1050
combo_add_elem, 1085
combo_align, 1082
combo_bgcolor, 1083
combo_bgcolor_focus, 1083
combo_color, 1082
combo_color_focus, 1083
combo_count, 1085
combo_create, 1081
combo_del_elem, 1086
combo_duplicates, 1086
combo_get_text, 1084
combo_ins_elem, 1086
combo_OnChange, 1081
combo_OnFilter, 1081
combo_phcolor, 1084
combo_phstyle, 1084
combo_phtext, 1083
combo_set_elem, 1085
combo_text, 1082
combo_tooltip, 1082
comwin_color, 1164
comwin_open_file, 1163
comwin_save_file, 1164
Control, 1050
core_event_t, 760
core_finish, 771

core_start, 771

Date, 726
date_add_days, 908
date_add_hours, 907
date_add_minutes, 907
date_add_seconds, 907
date_between, 909
date_cmp, 908
date_DD_MM_YYYY_HH_MM_SS, 909
date_is_null, 909
date_month_en, 910
date_month_es, 910
date_system, 906
date_year, 908
date_YYYY_MM_DD_HH_MM_SS, 909
dbind, 886
dbind_create, 887
dbind_default, 889
dbind_destopt, 888
dbind_destroy, 888
dbind_enum, 887
dbind_increment, 890
dbind_init, 887
dbind_precision, 890
dbind_range, 890
dbind_read, 889
dbind_remove, 888
dbind_suffix, 891
dbind_write, 889
DCtx, 991
dctx_bitmap, 993
dctx_image, 993
DeclPt, 759
DeclSt, 759
device_t, 721
Dir, 726
DirEntry, 768
DLib, 727
dlib_close, 738
dlib_open, 737
dlib_proc, 738

1192 Index

dlib_var, 739
Draw, 991
draw2d_finish, 992
draw2d_start, 992
Draw::box2d, 1009
Draw::cir2d, 1008
Draw::matrix, 994
Draw::matrix_cartesian, 994
Draw::obb2d, 1009
Draw::pol2d, 1010
Draw::seg2d, 1008
Draw::tri2d, 1010
Draw::v2d, 1007
draw_antialias, 995
draw_arc, 996
draw_bezier, 996
draw_box2dd, 1009
draw_box2df, 1009
draw_cir2dd, 1008
draw_cir2df, 1008
draw_circle, 1000
draw_clear, 994
draw_ellipse, 1000
draw_fill_color, 1001
draw_fill_linear, 1001
draw_fill_matrix, 1002
draw_fill_wrap, 1002
draw_font, 1003
draw_image, 1006
draw_image_align, 1007
draw_image_frame, 1006
draw_line, 995
draw_line_cap, 998
draw_line_color, 997
draw_line_dash, 998
draw_line_fill, 997
draw_line_join, 998
draw_line_width, 998
draw_matrix_cartesiand, 994
draw_matrix_cartesianf, 994
draw_matrixd, 994
draw_matrixf, 994

draw_obb2dd, 1009
draw_obb2df, 1009
draw_pol2dd, 1010
draw_pol2df, 1010
draw_polygon, 1001
draw_polyline, 995
draw_rect, 999
draw_rndrect, 999
draw_seg2dd, 1008
draw_seg2df, 1008
draw_text, 1003
draw_text_align, 1005
draw_text_color, 1003
draw_text_extents, 1006
draw_text_halign, 1005
draw_text_path, 1004
draw_text_trim, 1005
draw_text_width, 1004
draw_tri2dd, 1010
draw_tri2df, 1010
draw_v2dd, 1007
draw_v2df, 1007
drawop_t, 990

Edit, 1050
edit_align, 1077
edit_autoselect, 1078
edit_bgcolor, 1079
edit_bgcolor_focus, 1079
edit_color, 1078
edit_color_focus, 1078
edit_create, 1075
edit_editable, 1077
edit_font, 1077
edit_get_text, 1080
edit_multiline, 1075
edit_OnChange, 1076
edit_OnFilter, 1076
edit_passmode, 1077
edit_phcolor, 1080
edit_phstyle, 1080
edit_phtext, 1079

Index 1193

edit_text, 1076
edit_tooltip, 1078
ekAPPEND, 724
ekAPRIL, 724
ekARCHIVE, 724
ekAUGUST, 724
ekBIGEND, 722
ekBMP, 989
ekBOTTOM, 991
ekCENTER, 990
ekDECEMBER, 724
ekDESKTOP, 721
ekDIRECTORY, 724
ekEASSERT, 760
ekEENTRY, 760
ekEEXIT, 760
ekEFILE, 760
ekELLIPBEGIN, 991
ekELLIPEND, 991
ekELLIPMIDDLE, 991
ekELLIPMLINE, 991
ekELLIPNONE, 991
ekFBIG, 725
ekFBIGNAME, 725
ekFBOLD, 989
ekFCLAMP, 990
ekFEBRUARY, 724
ekFEXISTS, 725
ekFFLIP, 990
ekFILL, 990
ekFILLSK, 990
ekFIMAGE, 989
ekFITALIC, 989
ekFLOCK, 725
ekFNOACCESS, 725
ekFNOEMPTY, 725
ekFNOFILE, 725
ekFNOFILES, 725
ekFNOPATH, 725
ekFNORMAL, 989
ekFOK, 725
ekFPIXELS, 989

ekFPOINTS, 989
ekFRIDAY, 722
ekFSEEKNEG, 725
ekFSTRIKEOUT, 989
ekFSUBSCRIPT, 989
ekFSUPSCRIPT, 989
ekFTILE, 990
ekFUNDEF, 725
ekFUNDERLINE, 989
ekGIF, 989
ekGRAY8, 988
ekGUI_CLOSE_BUTTON, 1046
ekGUI_CLOSE_DEACT, 1046
ekGUI_CLOSE_ESC, 1046
ekGUI_CLOSE_INTRO, 1046
ekGUI_CURSOR_ARROW, 1046
ekGUI_CURSOR_CROSS, 1046
ekGUI_CURSOR_HAND, 1046
ekGUI_CURSOR_IBEAM, 1046
ekGUI_CURSOR_SIZENS, 1046
ekGUI_CURSOR_SIZEWE, 1046
ekGUI_CURSOR_USER, 1046
ekGUI_EVENT_BUTTON, 1046
ekGUI_EVENT_CLICK, 1047
ekGUI_EVENT_COLOR, 1047
ekGUI_EVENT_DOWN, 1047
ekGUI_EVENT_DRAG, 1047
ekGUI_EVENT_DRAW, 1047
ekGUI_EVENT_ENTER, 1047
ekGUI_EVENT_EXIT, 1047
ekGUI_EVENT_FOCUS, 1047
ekGUI_EVENT_KEYDOWN, 1047
ekGUI_EVENT_KEYUP, 1047
ekGUI_EVENT_LABEL, 1046
ekGUI_EVENT_LISTBOX, 1047
ekGUI_EVENT_MENU, 1047
ekGUI_EVENT_MOVED, 1047
ekGUI_EVENT_OBJCHANGE, 1047
ekGUI_EVENT_POPUP, 1046
ekGUI_EVENT_RESIZE, 1047
ekGUI_EVENT_SLIDER, 1047
ekGUI_EVENT_TBL_BEGIN, 1048

1194 Index

ekGUI_EVENT_TBL_CELL, 1048
ekGUI_EVENT_TBL_END, 1048
ekGUI_EVENT_TBL_HEADCLICK, 1048
ekGUI_EVENT_TBL_NROWS, 1048
ekGUI_EVENT_TBL_SEL, 1048
ekGUI_EVENT_THEME, 1047
ekGUI_EVENT_TXTCHANGE, 1047
ekGUI_EVENT_TXTFILTER, 1047
ekGUI_EVENT_UP, 1047
ekGUI_EVENT_UPDOWN, 1047
ekGUI_EVENT_WHEEL, 1047
ekGUI_EVENT_WND_CLOSE, 1047
ekGUI_EVENT_WND_MOVED, 1047
ekGUI_EVENT_WND_SIZE, 1047
ekGUI_EVENT_WND_SIZING, 1047
ekGUI_HORIZONTAL, 1045
ekGUI_MIXED, 1045
ekGUI_MOUSE_LEFT, 1045
ekGUI_MOUSE_MIDDLE, 1045
ekGUI_MOUSE_RIGHT, 1045
ekGUI_NOTIF_LANGUAGE, 1050
ekGUI_NOTIF_MENU_DESTROY, 1050
ekGUI_NOTIF_WIN_DESTROY, 1050
ekGUI_OFF, 1045
ekGUI_ON, 1045
ekGUI_SCALE_ASPECT, 1046
ekGUI_SCALE_ASPECTDW, 1046
ekGUI_SCALE_AUTO, 1046
ekGUI_SCALE_NONE, 1046
ekGUI_VERTICAL, 1045
ekINDEX1, 988
ekINDEX2, 988
ekINDEX4, 988
ekINDEX8, 988
ekINOHOST, 1171
ekINOIMPL, 1171
ekINONET, 1171
ekIOK, 1171
ekIOS, 721
ekISERVER, 1171
ekISTREAM, 1171
ekITIMEOUT, 1171

ekIUNDEF, 1171
ekJANUARY, 724
ekJPG, 989
ekJULY, 724
ekJUNE, 724
ekJUSTIFY, 991
ekKEY_0, 761
ekKEY_1, 761
ekKEY_2, 761
ekKEY_3, 761
ekKEY_4, 761
ekKEY_5, 761
ekKEY_6, 761
ekKEY_7, 761
ekKEY_8, 761
ekKEY_9, 761
ekKEY_A, 760
ekKEY_B, 761
ekKEY_BACK, 762
ekKEY_BSLASH, 761
ekKEY_C, 761
ekKEY_CAPS, 764
ekKEY_COMMA, 762
ekKEY_D, 761
ekKEY_DOWN, 764
ekKEY_E, 761
ekKEY_END, 764
ekKEY_ESCAPE, 762
ekKEY_EXCLAM, 764
ekKEY_F, 761
ekKEY_F1, 764
ekKEY_F10, 763
ekKEY_F11, 763
ekKEY_F12, 763
ekKEY_F13, 763
ekKEY_F14, 763
ekKEY_F15, 763
ekKEY_F16, 763
ekKEY_F17, 762
ekKEY_F18, 763
ekKEY_F19, 763
ekKEY_F2, 764

Index 1195

ekKEY_F3, 763
ekKEY_F4, 764
ekKEY_F5, 763
ekKEY_F6, 763
ekKEY_F7, 763
ekKEY_F8, 763
ekKEY_F9, 763
ekKEY_G, 761
ekKEY_GRAVE, 764
ekKEY_GTLT, 762
ekKEY_H, 761
ekKEY_HOME, 764
ekKEY_I, 762
ekKEY_INSERT, 764
ekKEY_J, 762
ekKEY_K, 762
ekKEY_L, 762
ekKEY_LALT, 764
ekKEY_LCTRL, 764
ekKEY_LCURLY, 762
ekKEY_LEFT, 764
ekKEY_LSHIFT, 764
ekKEY_LWIN, 764
ekKEY_M, 762
ekKEY_MENU, 764
ekKEY_MINUS, 762
ekKEY_N, 762
ekKEY_NUM0, 763
ekKEY_NUM1, 763
ekKEY_NUM2, 763
ekKEY_NUM3, 763
ekKEY_NUM4, 763
ekKEY_NUM5, 763
ekKEY_NUM6, 763
ekKEY_NUM7, 763
ekKEY_NUM8, 763
ekKEY_NUM9, 763
ekKEY_NUMADD, 762
ekKEY_NUMDECIMAL, 762
ekKEY_NUMDIV, 762
ekKEY_NUMEQUAL, 763
ekKEY_NUMLOCK, 762

ekKEY_NUMMINUS, 763
ekKEY_NUMMULT, 762
ekKEY_NUMRET, 762
ekKEY_O, 762
ekKEY_P, 762
ekKEY_PAGEDOWN, 764
ekKEY_PAGEUP, 763
ekKEY_PERIOD, 762
ekKEY_PLUS, 764
ekKEY_Q, 761
ekKEY_QUEST, 762
ekKEY_R, 761
ekKEY_RALT, 764
ekKEY_RCTRL, 764
ekKEY_RCURLY, 761
ekKEY_RETURN, 762
ekKEY_RIGHT, 764
ekKEY_RSHIFT, 764
ekKEY_RWIN, 764
ekKEY_S, 761
ekKEY_SEMICOLON, 762
ekKEY_SPACE, 762
ekKEY_SUPR, 764
ekKEY_T, 761
ekKEY_TAB, 762
ekKEY_TILDE, 764
ekKEY_U, 762
ekKEY_UNDEF, 760
ekKEY_UP, 764
ekKEY_V, 761
ekKEY_W, 761
ekKEY_X, 761
ekKEY_Y, 761
ekKEY_Z, 761
ekLCFLAT, 990
ekLCROUND, 990
ekLCSQUARE, 990
ekLEFT, 990
ekLINUX, 721
ekLITEND, 722
ekLJBEVEL, 990
ekLJMITER, 990

1196 Index

ekLJROUND, 990
ekMACOS, 721
ekMARCH, 724
ekMAY, 724
ekMKEY_ALT, 765
ekMKEY_COMMAND, 765
ekMKEY_CONTROL, 765
ekMKEY_NONE, 765
ekMKEY_SHIFT, 765
ekMONDAY, 722
ekNOVEMBER, 724
ekOCTOBER, 724
ekOTHERFILE, 724
ekPEXEC, 725
ekPHONE, 721
ekPNG, 989
ekPOK, 725
ekPPIPE, 725
ekREAD, 724
ekRGB24, 989
ekRGBA32, 989
ekRIGHT, 991
ekSATURDAY, 722
ekSEEKCUR, 724
ekSEEKEND, 725
ekSEEKSET, 724
ekSEPTEMBER, 724
ekSKFILL, 990
ekSNOHOST, 726
ekSNONET, 726
ekSOK, 726
ekSSTREAM, 726
ekSTBROKEN, 760
ekSTCORRUPT, 760
ekSTEND, 760
ekSTIMEOUT, 726
ekSTOK, 760
ekSTROKE, 990
ekSUNDAY, 722
ekSUNDEF, 726
ekTABLET, 721
ekTAMPER, 766

ekTAPOST, 766
ekTASTERK, 765
ekTAT, 766
ekTBSLASH, 766
ekTCIRCUM, 766
ekTCLOSBRAC, 765
ekTCLOSCURL, 765
ekTCLOSPAR, 765
ekTCOLON, 765
ekTCOMMA, 765
ekTCORRUP, 766
ekTDOLLAR, 765
ekTEOF, 766
ekTEOL, 765
ekTEQUALS, 765
ekTEXCLA, 766
ekTGREAT, 765
ekTHEX, 766
ekTHURSDAY, 722
ekTIDENT, 766
ekTINTEGER, 766
ekTLESS, 765
ekTMINUS, 765
ekTMLCOM, 765
ekTOCTAL, 766
ekTOP, 990
ekTOPENBRAC, 765
ekTOPENCURL, 765
ekTOPENPAR, 765
ekTPERCEN, 766
ekTPERIOD, 765
ekTPLUS, 765
ekTPOUND, 766
ekTQUEST, 766
ekTQUOTE, 766
ekTREAL, 766
ekTRESERVED, 766
ekTSCOLON, 765
ekTSLASH, 766
ekTSLCOM, 765
ekTSPACE, 765
ekTSTRING, 766

Index 1197

ekTTILDE, 766
ekTUESDAY, 722
ekTUNDEF, 766
ekTVLINE, 766
ekUTF16, 668
ekUTF32, 668
ekUTF8, 668
ekWEDNESDAY, 722
ekWIN_10, 722
ekWIN_2K, 721
ekWIN_7, 722
ekWIN_71, 722
ekWIN_8, 722
ekWIN_81, 722
ekWIN_9x, 721
ekWIN_NO, 722
ekWIN_NT4, 721
ekWIN_VI, 722
ekWIN_VI1, 722
ekWIN_VI2, 722
ekWIN_XP, 721
ekWIN_XP1, 722
ekWIN_XP2, 722
ekWIN_XP3, 722
ekWINDOW_CLOSE, 1048
ekWINDOW_EDGE, 1048
ekWINDOW_ESC, 1048
ekWINDOW_FLAG, 1048
ekWINDOW_MAX, 1048
ekWINDOW_MIN, 1048
ekWINDOW_MODAL_NOHIDE, 1048
ekWINDOW_RESIZE, 1048
ekWINDOW_RETURN, 1048
ekWINDOW_STD, 1048
ekWINDOW_STDRES, 1048
ekWINDOW_TITLE, 1048
ekWINDOWS, 721
ekWRITE, 724
ellipsis_t, 991
endian_t, 722
evbind_modify, 1064
evbind_object, 1063

EvButton, 1053
EvDraw, 1054
Event, 768
event_params, 894
event_result, 895
event_sender, 894
event_type, 894
EvFileDir, 769
EvKey, 1055
EvMenu, 1056
EvMouse, 1054
EvPos, 1056
EvSize, 1056
EvSlider, 1053
EvTbCell, 1058
EvTbPos, 1057
EvTbRect, 1057
EvTbSel, 1057
EvText, 1053
EvTextFilter, 1054
EvWheel, 1055
EvWinClose, 1056

FALSE, 664
ferror_t, 725
File, 726
file_mode_t, 724
file_seek_t, 724
file_type_t, 724
fillwrap_t, 990
Font, 992
font_copy, 1039
font_create, 1037
font_destroy, 1039
font_equals, 1039
font_exists_family, 1042
font_extents, 1042
font_family, 1040
font_height, 1041
font_installed_families, 1042
font_mini_size, 1040
font_monospace, 1038

1198 Index

font_native, 1043
font_regular_size, 1040
font_size, 1041
font_small_size, 1040
font_style, 1041
font_system, 1038
font_with_style, 1038
FPtr_app_create, 1167
FPtr_app_update, 1167
FPtr_assert, 670
FPtr_compare, 669
FPtr_compare_ex, 670
FPtr_copy, 669
FPtr_destroy, 668
FPtr_event_handler, 770
FPtr_read, 770
FPtr_read_init, 770
FPtr_remove, 770
FPtr_scopy, 669
FPtr_task_end, 1168
FPtr_task_main, 1167
FPtr_task_update, 1168
FPtr_thread_main, 727
FPtr_write, 771
fstyle_t, 989

gui_alt_color, 1060
gui_border_color, 1062
gui_close_t, 1046
gui_cursor_t, 1045
gui_dark_mode, 1060
gui_event_t, 1046
gui_file, 1060
gui_finish, 1058
gui_image, 1059
gui_label_color, 1061
gui_language, 1059
gui_line_color, 1061
gui_link_color, 1061
gui_mouse_pos, 1062
gui_mouse_t, 1045
gui_notif_t, 1048

gui_OnNotification, 1063
gui_OnThemeChanged, 1063
gui_orient_t, 1045
gui_resolution, 1062
gui_respack, 1058
gui_scale_t, 1046
gui_start, 1058
gui_state_t, 1045
gui_text, 1059
gui_update, 1062
gui_update_transitions, 1063
gui_view_color, 1061

heap_aligned_calloc, 775
heap_aligned_malloc, 774
heap_aligned_realloc, 775
heap_auditor_add, 779
heap_auditor_delete, 780
heap_calloc, 773
heap_delete, 779
heap_delete_n, 779
heap_end_mt, 772
heap_free, 776
heap_leaks, 772
heap_malloc, 773
heap_new, 776
heap_new0, 777
heap_new_n, 777
heap_new_n0, 778
heap_realloc, 774
heap_realloc_n, 778
heap_start_mt, 771
heap_stats, 772
heap_verbose, 772
hfile_appdata, 905
hfile_buffer, 901
hfile_copy, 901
hfile_date, 899
hfile_dir, 897
hfile_dir_create, 897
hfile_dir_destroy, 898
hfile_dir_entry_remove, 898

Index 1199

hfile_dir_list, 898
hfile_dir_loop, 903
hfile_dir_sync, 899
hfile_exists, 900
hfile_from_data, 903
hfile_from_string, 903
hfile_home_dir, 905
hfile_is_uptodate, 900
hfile_stream, 902
hfile_string, 902
Http, 1171
http_add_header, 1173
http_clear_headers, 1173
http_create, 1172
http_destroy, 1172
http_dget, 1177
http_exists, 1178
http_get, 1173
http_post, 1174
http_response_body, 1176
http_response_header, 1176
http_response_message, 1175
http_response_name, 1175
http_response_protocol, 1175
http_response_size, 1175
http_response_status, 1174
http_response_value, 1176
http_secure, 1172

ierror_t, 1171
IListener, 768
Image, 992
image_codec, 1034
image_copy, 1030
image_data, 1036
image_destroy, 1033
image_format, 1033
image_frame_length, 1036
image_from_data, 1029
image_from_file, 1029
image_from_pixbuf, 1028
image_from_pixels, 1027

image_from_resource, 1029
image_get_codec, 1035
image_get_data, 1037
image_height, 1034
image_native, 1037
image_num_frames, 1035
image_pixels, 1034
image_read, 1032
image_rotate, 1031
image_scale, 1031
image_to_file, 1032
image_trim, 1030
image_width, 1033
image_write, 1033
ImageView, 1051
imageview_create, 1108
imageview_image, 1109
imageview_OnClick, 1109
imageview_OnOverDraw, 1109
imageview_scale, 1109
imageview_size, 1108
INT16_MAX, 665
INT16_MIN, 665
int16_t, 663
INT32_MAX, 665
INT32_MIN, 665
int32_t, 663
INT64_MAX, 666
INT64_MIN, 666
int64_t, 663
INT8_MAX, 665
INT8_MIN, 665
int8_t, 663

json_destopt, 1179
json_destroy, 1179
json_read, 1178
json_write, 1178
JsonOpts, 1172

kBMATH_DEG2RADd, 667
kBMATH_DEG2RADf, 667

1200 Index

kBMATH_Ed, 666
kBMATH_Ef, 666
kBMATH_INFINITYd, 668
kBMATH_INFINITYf, 668
kBMATH_LN10d, 667
kBMATH_LN10f, 667
kBMATH_LN2d, 667
kBMATH_LN2f, 667
kBMATH_PId, 667
kBMATH_PIf, 667
kBMATH_RAD2DEGd, 668
kBMATH_RAD2DEGf, 668
kBMATH_SQRT2d, 667
kBMATH_SQRT2f, 667
kBMATH_SQRT3d, 667
kBMATH_SQRT3f, 667
kBOX2D_NULLd, 914
kBOX2D_NULLf, 914
kCIR2D_NULLd, 914
kCIR2D_NULLf, 914
kCOLOR_BLACK, 987
kCOLOR_BLUE, 988
kCOLOR_CYAN, 988
kCOLOR_DEFAULT, 987
kCOLOR_GREEN, 988
kCOLOR_MAGENTA, 988
kCOLOR_RED, 987
kCOLOR_TRANSPARENT, 987
kCOLOR_WHITE, 987
kCOLOR_YELLOW, 988
kDATE_NULL, 760
kDEG2RAD, 667
kDEVNULL, 760
kE, 666
KeyBuf, 768
keybuf_clear, 896
keybuf_create, 895
keybuf_destroy, 895
keybuf_dump, 897
keybuf_OnDown, 896
keybuf_OnUp, 895
keybuf_pressed, 896

keybuf_str, 897
kIDENT, 914
kINFINITY, 668
kLN10, 667
kLN2, 667
kNULL, 914
kPI, 667
kR2D_ZEROd, 914
kR2D_ZEROf, 914
kRAD2DEG, 668
kS2D_ZEROd, 913
kS2D_ZEROf, 913
kSQRT2, 667
kSQRT3, 667
kSTDERR, 759
kSTDIN, 759
kSTDOUT, 759
kT2D_IDENTd, 914
kT2D_IDENTf, 914
kV2D_Xd, 913
kV2D_Xf, 913
kV2D_Yd, 913
kV2D_Yf, 913
kV2D_ZEROd, 913
kV2D_ZEROf, 913
kX, 913
kY, 913
kZERO, 913, 914

Label, 1050
label_align, 1066
label_bgcolor, 1067
label_bgcolor_over, 1067
label_color, 1066
label_color_over, 1066
label_create, 1064
label_font, 1065
label_multiline, 1065
label_OnClick, 1065
label_style_over, 1066
label_text, 1065
Layout, 1052

Index 1201

layout_bgcolor, 1140
layout_button, 1121
layout_cell, 1120
layout_combo, 1122
layout_create, 1120
layout_dbind, 1141
layout_dbind_obj, 1141
layout_dbind_update, 1141
layout_edit, 1122
layout_get_button, 1127
layout_get_combo, 1128
layout_get_edit, 1127
layout_get_imageview, 1130
layout_get_label, 1126
layout_get_layout, 1132
layout_get_listbox, 1128
layout_get_panel, 1131
layout_get_popup, 1127
layout_get_progress, 1129
layout_get_slider, 1129
layout_get_splitview, 1131
layout_get_tableview, 1131
layout_get_textview, 1130
layout_get_updown, 1128
layout_get_view, 1130
layout_halign, 1138
layout_hexpand, 1135
layout_hexpand2, 1135
layout_hexpand3, 1136
layout_hmargin, 1134
layout_hsize, 1134
layout_imageview, 1125
layout_label, 1121
layout_layout, 1126
layout_listbox, 1123
layout_margin, 1139
layout_margin2, 1139
layout_margin4, 1140
layout_next_tabstop, 1133
layout_panel, 1126
layout_popup, 1121
layout_previous_tabstop, 1133

layout_progress, 1124
layout_show_col, 1138
layout_show_row, 1139
layout_skcolor, 1140
layout_slider, 1123
layout_splitview, 1125
layout_tableview, 1125
layout_taborder, 1132
layout_tabstop, 1133
layout_textview, 1124
layout_update, 1140
layout_updown, 1123
layout_valign, 1138
layout_vexpand, 1136
layout_vexpand2, 1137
layout_vexpand3, 1137
layout_view, 1124
layout_vmargin, 1135
layout_vsize, 1134
linecap_t, 989
linejoin_t, 990
ListBox, 1051
listbox_add_elem, 1088
listbox_check, 1089
listbox_checkbox, 1087
listbox_checked, 1091
listbox_clear, 1088
listbox_color, 1089
listbox_count, 1090
listbox_create, 1086
listbox_multisel, 1088
listbox_OnSelect, 1087
listbox_select, 1089
listbox_selected, 1090
listbox_set_elem, 1088
listbox_size, 1087
listbox_text, 1090
listen, 892
Listener, 768
listener, 891
listener_destroy, 892
listener_event, 893

1202 Index

listener_pass_event, 893
listener_update, 892
log_file, 758
log_get_file, 758
log_output, 757
log_printf, 757

Menu, 1052
menu_create, 1159
menu_destroy, 1159
menu_get_item, 1160
menu_hide, 1160
menu_item, 1160
menu_launch, 1159
menu_off_items, 1160
menu_size, 1161
MenuItem, 1053
menuitem_create, 1161
menuitem_enabled, 1162
menuitem_image, 1162
menuitem_key, 1163
menuitem_OnClick, 1161
menuitem_separator, 1161
menuitem_state, 1163
menuitem_submenu, 1163
menuitem_text, 1162
menuitem_visible, 1162
mkey_t, 764
month_t, 722
Mutex, 727

NULL, 665

OBB2D, 919
OBB2D::angle, 959
OBB2D::area, 959
OBB2D::box, 959
OBB2D::center, 957
OBB2D::copy, 955
OBB2D::corners, 957
OBB2D::create, 953
OBB2D::destroy, 955
OBB2D::from_line, 953

OBB2D::from_points, 954
OBB2D::height, 958
OBB2D::move, 956
OBB2D::transform, 956
OBB2D::update, 955
OBB2D::width, 958
obb2d_angled, 959
obb2d_anglef, 959
obb2d_aread, 959
obb2d_areaf, 959
obb2d_boxd, 959
obb2d_boxf, 959
obb2d_centerd, 957
obb2d_centerf, 957
obb2d_copyd, 955
obb2d_copyf, 955
obb2d_cornersd, 957
obb2d_cornersf, 957
obb2d_created, 953
obb2d_createf, 953
obb2d_destroyd, 955
obb2d_destroyf, 955
obb2d_from_lined, 953
obb2d_from_linef, 953
obb2d_from_pointsd, 954
obb2d_from_pointsf, 954
obb2d_heightd, 958
obb2d_heightf, 958
obb2d_moved, 956
obb2d_movef, 956
obb2d_transformd, 956
obb2d_transformf, 956
obb2d_updated, 955
obb2d_updatef, 955
obb2d_widthd, 958
obb2d_widthf, 958
osapp_finish, 1169
osapp_menubar, 1170
osapp_open_url, 1170
osapp_task, 1169
osbs_endian, 729
osbs_finish, 728

Index 1203

osbs_platform, 728
osbs_start, 728
osbs_windows, 728
osmain, 1168
osmain_sync, 1169

Palette, 992
palette_binary, 1021
palette_cga2, 1018
palette_colors, 1021
palette_colors_const, 1022
palette_create, 1018
palette_destroy, 1021
palette_ega4, 1019
palette_gray1, 1019
palette_gray2, 1020
palette_gray4, 1020
palette_gray8, 1020
palette_rgb8, 1019
palette_size, 1021
Panel, 1052
panel_create, 1148
panel_data, 1149
panel_get_data, 1149
panel_get_layout, 1150
panel_layout, 1150
panel_scroll, 1149
panel_scroll_height, 1152
panel_scroll_width, 1151
panel_size, 1150
panel_update, 1151
panel_visible_layout, 1151
perror_t, 725
Pixbuf, 992
pixbuf_cdata, 1025
pixbuf_convert, 1023
pixbuf_copy, 1022
pixbuf_create, 1022
pixbuf_data, 1026
pixbuf_destroy, 1024
pixbuf_dsize, 1025
pixbuf_format, 1024

pixbuf_format_bpp, 1026
pixbuf_get, 1027
pixbuf_height, 1025
pixbuf_set, 1027
pixbuf_size, 1025
pixbuf_trim, 1023
pixbuf_width, 1024
pixformat_t, 988
platform_t, 721
Pol2D, 920
Pol2D::area, 966
Pol2D::box, 966
Pol2D::ccw, 967
Pol2D::centroid, 967
Pol2D::convex, 967
Pol2D::convex_hull, 963
Pol2D::convex_partition, 969
Pol2D::copy, 964
Pol2D::create, 963
Pol2D::destroy, 964
Pol2D::n, 965
Pol2D::points, 965
Pol2D::transform, 964
Pol2D::triangles, 968
Pol2D::visual_center, 968
pol2d_aread, 966
pol2d_areaf, 966
pol2d_boxd, 966
pol2d_boxf, 966
pol2d_ccwd, 967
pol2d_ccwf, 967
pol2d_centroidd, 967
pol2d_centroidf, 967
pol2d_convex_hulld, 963
pol2d_convex_hullf, 963
pol2d_convex_partitiond, 969
pol2d_convex_partitionf, 969
pol2d_convexd, 967
pol2d_convexf, 967
pol2d_copyd, 964
pol2d_copyf, 964
pol2d_created, 963

1204 Index

pol2d_createf, 963
pol2d_destroyd, 964
pol2d_destroyf, 964
pol2d_nd, 965
pol2d_nf, 965
pol2d_pointsd, 965
pol2d_pointsf, 965
pol2d_transformd, 964
pol2d_transformf, 964
pol2d_trianglesd, 968
pol2d_trianglesf, 968
pol2d_visual_centerd, 968
pol2d_visual_centerf, 968
PopUp, 1050
popup_add_elem, 1073
popup_clear, 1074
popup_count, 1074
popup_create, 1072
popup_get_selected, 1075
popup_list_height, 1074
popup_OnSelect, 1072
popup_selected, 1075
popup_set_elem, 1073
popup_tooltip, 1073
Proc, 727
Progress, 1051
progress_create, 1094
progress_undefined, 1094
progress_value, 1094
ptr_assign, 674
ptr_copyopt, 675
ptr_destopt, 675
ptr_dget, 674
ptr_dget_no_null, 674
ptr_get, 673

R2D, 915, 932
R2D::center, 932
R2D::clip, 934
R2D::collide, 933
R2D::contains, 933
R2D::join, 934

r2d_centerd, 932
r2d_centerf, 932
r2d_clipd, 934
r2d_clipf, 934
r2d_collided, 933
r2d_collidef, 933
r2d_containsd, 933
r2d_containsf, 933
r2d_joind, 934
r2d_joinf, 934
r2dd, 932
r2df, 932
real, 664
real32_t, 664
real64_t, 664
RegEx, 768
regex_create, 885
regex_destroy, 886
regex_match, 886
REnv, 668
ResId, 769
resid_image, 993
ResPack, 769
respack_destroy, 906
respack_file, 906
respack_text, 906

S2D, 915, 931
s2dd, 931
s2df, 931
Seg2D, 917, 941
Seg2D::close_param, 943
Seg2D::eval, 943
Seg2D::length, 942
Seg2D::point_sqdist, 944
Seg2D::sqdist, 944
Seg2D::sqlength, 942
Seg2D::v, 941
seg2d_close_paramd, 943
seg2d_close_paramf, 943
seg2d_evald, 943
seg2d_evalf, 943

Index 1205

seg2d_lengthd, 942
seg2d_lengthf, 942
seg2d_point_sqdistd, 944
seg2d_point_sqdistf, 944
seg2d_sqdistd, 944
seg2d_sqdistf, 944
seg2d_sqlengthd, 942
seg2d_sqlengthf, 942
seg2d_vd, 941
seg2d_vf, 941
seg2dd, 941
seg2df, 941
serror_t, 725
SetPt, 767
setpt_create, 876
setpt_delete, 879
setpt_destroy, 877
setpt_first, 880
setpt_first_const, 880
setpt_forback, 884
setpt_forback_const, 885
setpt_foreach, 883
setpt_foreach_const, 883
setpt_fornext, 884
setpt_fornext_const, 884
setpt_forprev, 885
setpt_forprev_const, 885
setpt_get, 878
setpt_get_const, 878
setpt_insert, 879
setpt_last, 881
setpt_last_const, 881
setpt_next, 881
setpt_next_const, 882
setpt_prev, 882
setpt_prev_const, 883
setpt_size, 877
SetSt, 767
setst_create, 867
setst_delete, 870
setst_destroy, 868
setst_first, 871

setst_first_const, 871
setst_forback, 875
setst_forback_const, 876
setst_foreach, 874
setst_foreach_const, 874
setst_fornext, 875
setst_fornext_const, 875
setst_forprev, 876
setst_forprev_const, 876
setst_get, 869
setst_get_const, 869
setst_insert, 870
setst_last, 872
setst_last_const, 872
setst_next, 872
setst_next_const, 873
setst_prev, 873
setst_prev_const, 874
setst_size, 868
Slider, 1051
slider_create, 1092
slider_get_value, 1093
slider_OnMoved, 1092
slider_steps, 1093
slider_tooltip, 1093
slider_value, 1093
slider_vertical, 1092
Socket, 727
SplitView, 1052
splitview_horizontal, 1117
splitview_panel, 1119
splitview_pos, 1120
splitview_size, 1118
splitview_split, 1119
splitview_text, 1119
splitview_vertical, 1118
splitview_view, 1118
sstate_t, 760
stm_append_file, 809
stm_buffer, 818
stm_buffer_size, 818
stm_bytes_readed, 813

1206 Index

stm_bytes_written, 812
stm_close, 809
stm_col, 813
stm_corrupt, 817
stm_file_err, 816
stm_flush, 836
stm_from_block, 807
stm_from_file, 808
stm_get_read_endian, 810
stm_get_read_utf, 811
stm_get_write_endian, 810
stm_get_write_utf, 811
stm_is_memory, 812
stm_lines, 837
stm_memory, 807
stm_next, 837
stm_pipe, 836
stm_printf, 819
stm_read, 824
stm_read_bool, 830
stm_read_char, 825
stm_read_chars, 825
stm_read_enum, 834
stm_read_i16, 831
stm_read_i16_tok, 827
stm_read_i32, 831
stm_read_i32_tok, 827
stm_read_i64, 832
stm_read_i64_tok, 828
stm_read_i8, 831
stm_read_i8_tok, 827
stm_read_line, 825
stm_read_r32, 834
stm_read_r32_tok, 830
stm_read_r64, 834
stm_read_r64_tok, 830
stm_read_token, 826
stm_read_trim, 826
stm_read_u16, 832
stm_read_u16_tok, 829
stm_read_u32, 833
stm_read_u32_tok, 829

stm_read_u64, 833
stm_read_u64_tok, 829
stm_read_u8, 832
stm_read_u8_tok, 828
stm_row, 813
stm_set_read_endian, 811
stm_set_read_utf, 812
stm_set_write_endian, 810
stm_set_write_utf, 812
stm_skip, 835
stm_skip_bom, 835
stm_skip_token, 835
stm_sock_err, 817
stm_socket, 809
stm_state, 816
stm_str, 817
stm_to_file, 808
stm_token_col, 814
stm_token_comments, 816
stm_token_escapes, 815
stm_token_lexeme, 815
stm_token_row, 814
stm_token_spaces, 815
stm_write, 818
stm_write_bool, 820
stm_write_char, 819
stm_write_enum, 824
stm_write_i16, 821
stm_write_i32, 821
stm_write_i64, 821
stm_write_i8, 820
stm_write_r32, 823
stm_write_r64, 823
stm_write_u16, 822
stm_write_u32, 822
stm_write_u64, 823
stm_write_u8, 822
stm_writef, 820
str_c, 782
str_cat, 789
str_cat_c, 789
str_cmp, 793

Index 1207

str_cmp_c, 793
str_cmp_cn, 794
str_cn, 782
str_copy, 783
str_copy_c, 788
str_copy_cn, 788
str_cpath, 785
str_crelpath, 785
str_destopt, 790
str_destroy, 790
str_empty, 794
str_empty_c, 794
str_equ, 795
str_equ_c, 795
str_equ_cn, 795
str_equ_end, 796
str_equ_nocase, 796
str_filename, 801
str_filext, 802
str_fill, 787
str_find, 802
str_is_prefix, 792
str_is_sufix, 792
str_len, 790
str_len_c, 791
str_lower, 797
str_lower_c, 797
str_nchars, 791
str_path, 784
str_prefix, 792
str_printf, 784
str_read, 787
str_relpath, 785
str_repl, 786
str_repl_c, 798
str_reserve, 786
str_scmp, 793
str_split, 799
str_split_pathext, 801
str_split_pathname, 801
str_split_trim, 800
str_splits, 800

str_str, 799
str_subs, 798
str_to_i16, 803
str_to_i32, 803
str_to_i64, 804
str_to_i8, 803
str_to_r32, 806
str_to_r64, 807
str_to_u16, 805
str_to_u32, 805
str_to_u64, 806
str_to_u8, 804
str_trim, 783
str_trim_n, 783
str_upd, 790
str_upper, 796
str_upper_c, 797
str_write, 787
str_writef, 788
Stream, 767
String, 767

T2D, 916
T2D::decompose, 940
T2D::inverse, 938
T2D::invfast, 937
T2D::move, 935
T2D::mult, 938
T2D::rotate, 936
T2D::scale, 937
T2D::vmult, 939
T2D::vmultn, 939
t2d_decomposed, 940
t2d_decomposef, 940
t2d_inversed, 938
t2d_inversef, 938
t2d_invfastd, 937
t2d_invfastf, 937
t2d_moved, 935
t2d_movef, 935
t2d_multd, 938
t2d_multf, 938

1208 Index

t2d_rotated, 936
t2d_rotatef, 936
t2d_scaled, 937
t2d_scalef, 937
t2d_tod, 935
t2d_tof, 935
t2d_vmultd, 939
t2d_vmultf, 939
t2d_vmultnd, 939
t2d_vmultnf, 939
TableView, 1052
tableview_column_freeze, 1113
tableview_column_limits, 1112
tableview_column_resizable, 1113
tableview_column_width, 1112
tableview_create, 1110
tableview_deselect, 1116
tableview_deselect_all, 1117
tableview_font, 1111
tableview_grid, 1115
tableview_header_align, 1114
tableview_header_clickable, 1114
tableview_header_resizable, 1115
tableview_header_title, 1113
tableview_header_visible, 1114
tableview_multisel, 1115
tableview_new_column_text, 1111
tableview_OnData, 1110
tableview_OnHeaderClick, 1110
tableview_OnSelect, 1110
tableview_select, 1116
tableview_selected, 1117
tableview_size, 1111
tableview_update, 1116
tc, 781
tcc, 782
TextView, 1051
textview_afspace, 1107
textview_bfspace, 1107
textview_bgcolor, 1106
textview_clear, 1103
textview_color, 1106

textview_create, 1103
textview_editable, 1108
textview_family, 1105
textview_fsize, 1105
textview_fstyle, 1106
textview_halign, 1107
textview_lspacing, 1107
textview_pgcolor, 1106
textview_printf, 1104
textview_rtf, 1104
textview_scroll_down, 1108
textview_size, 1103
textview_units, 1104
textview_writef, 1104
Thread, 727
token_t, 765
Tri2D, 919, 960
Tri2D::area, 962
Tri2D::ccw, 962
Tri2D::centroid, 962
Tri2D::transform, 961
Tri2D::v, 961
tri2d_aread, 962
tri2d_areaf, 962
tri2d_ccwd, 962
tri2d_ccwf, 962
tri2d_centroidd, 962
tri2d_centroidf, 962
tri2d_transformd, 961
tri2d_transformf, 961
tri2d_vd, 961
tri2d_vf, 961
tri2dd, 960
tri2df, 960
TRUE, 664

UINT16_MAX, 666
uint16_t, 663
UINT32_MAX, 666
uint32_t, 663
UINT64_MAX, 666
uint64_t, 664

Index 1209

UINT8_MAX, 666
uint8_t, 663
unicode_back, 681
unicode_convers, 676
unicode_convers_n, 676
unicode_convers_nbytes, 677
unicode_isalnum, 682
unicode_isalpha, 682
unicode_isascii, 682
unicode_iscntrl, 683
unicode_isdigit, 683
unicode_isgraph, 683
unicode_islower, 685
unicode_isprint, 684
unicode_ispunct, 684
unicode_isspace, 684
unicode_isupper, 685
unicode_isxdigit, 685
unicode_nbytes, 677
unicode_nchars, 678
unicode_next, 680
unicode_t, 668
unicode_to_char, 679
unicode_to_u32, 678
unicode_to_u32b, 678
unicode_tolower, 686
unicode_toupper, 686
unicode_valid, 680
unicode_valid_str, 679
unicode_valid_str_n, 680
unref, 670
UpDown, 1051
updown_create, 1091
updown_OnClick, 1091
updown_tooltip, 1091
Url, 1171
url_destroy, 1180
url_fragment, 1182
url_host, 1181
url_params, 1181
url_parse, 1179
url_pass, 1180

url_path, 1181
url_port, 1182
url_query, 1181
url_resource, 1182
url_scheme, 1180
url_user, 1180

V2D, 914, 920
V2D::add, 922
V2D::angle, 930
V2D::dist, 929
V2D::dot, 929
V2D::from, 924
V2D::from_angle, 927
V2D::length, 928
V2D::mid, 924
V2D::mul, 923
V2D::norm, 927
V2D::perp_neg, 926
V2D::perp_pos, 926
V2D::rotate, 931
V2D::sqdist, 930
V2D::sqlength, 928
V2D::sub, 923
V2D::unit, 925
V2D::unit_xy, 925
v2d_addd, 922
v2d_addf, 922
v2d_angled, 930
v2d_anglef, 930
v2d_distd, 929
v2d_distf, 929
v2d_dotd, 929
v2d_dotf, 929
v2d_from_angled, 927
v2d_from_anglef, 927
v2d_fromd, 924
v2d_fromf, 924
v2d_lengthd, 928
v2d_lengthf, 928
v2d_midd, 924
v2d_midf, 924

1210 Index

v2d_muld, 923
v2d_mulf, 923
v2d_normd, 927
v2d_normf, 927
v2d_perp_negd, 926
v2d_perp_negf, 926
v2d_perp_posd, 926
v2d_perp_posf, 926
v2d_rotated, 931
v2d_rotatef, 931
v2d_sqdistd, 930
v2d_sqdistf, 930
v2d_sqlengthd, 928
v2d_sqlengthf, 928
v2d_subd, 923
v2d_subf, 923
v2d_tod, 921
v2d_todn, 922
v2d_tof, 921
v2d_tofn, 922
v2d_unit_xyd, 925
v2d_unit_xyf, 925
v2d_unitd, 925
v2d_unitf, 925
v2dd, 920
v2df, 920
View, 1051
view_content_size, 1101
view_create, 1094
view_data, 1095
view_get_data, 1095
view_get_size, 1101
view_keybuf, 1100
view_OnClick, 1098
view_OnDown, 1098
view_OnDrag, 1099
view_OnDraw, 1096
view_OnEnter, 1096
view_OnExit, 1097
view_OnFocus, 1100
view_OnKeyDown, 1099
view_OnKeyUp, 1100

view_OnMove, 1097
view_OnSize, 1096
view_OnUp, 1098
view_OnWheel, 1099
view_point_scale, 1102
view_scroll, 1095
view_scroll_x, 1101
view_scroll_y, 1102
view_size, 1095
view_update, 1103
view_viewport, 1102
vkey_t, 760

week_day_t, 722
win_t, 721
Window, 1052
window_create, 1152
window_cursor, 1158
window_cycle_tabstop, 1156
window_defbutton, 1158
window_destroy, 1152
window_flag_t, 1048
window_get_client_size, 1158
window_get_origin, 1157
window_get_size, 1158
window_hide, 1154
window_hotkey, 1155
window_modal, 1155
window_next_tabstop, 1156
window_OnClose, 1153
window_OnMoved, 1153
window_OnResize, 1154
window_origin, 1157
window_panel, 1153
window_previous_tabstop, 1156
window_show, 1154
window_size, 1157
window_stop_modal, 1155
window_title, 1154
window_update, 1156

Index 1211

	1 Users guide
	Quick start
	Quick start in Windows
	Quick start on macOS
	Quick start on Linux
	MIT License
	Previous knowledge
	And now what?

	Welcome to NAppGUI
	Original APIs
	C-based
	No visual editors
	Dependencies
	Low and high level

	Hello World!
	The complete program
	The skeleton
	The constructor
	The main panel
	The destructor
	Launch the window
	Layout format
	Exiting the program
	Button Events

	Use of C
	Basic types
	Structures and unions
	Control
	Functions
	Scopes
	Pointers
	Preprocessor
	Comments
	Input/Output
	Mathematical algorithms

	Use of C++
	Encapsulation
	Class callbacks
	Combine C and C++ modules
	Using C from C++
	Using C++ from C

	new and delete overload
	Hello C++ complete
	Math templates

	Error management
	Exhaustive tests
	Static analysis
	Standards
	Compiler warnings

	Dynamic analysis
	Disabling Asserts
	Debugging the program
	Error log
	Memory auditor

	Generate NAppGUI binaries
	Generate static libraries
	Generate dynamic libraries
	More about CMakeLists.txt
	Why nine independent libraries?

	Compilers and IDEs
	Windows compilers
	Platform toolset
	Visual C++ Redistributable
	WindowsXP support
	SSE support

	macOS compilers
	Base SDK and Deployment Target
	xcode-select
	macOS ARM
	macOS 32bits

	Linux compilers
	GTK+3
	Multiple versions of GCC
	Linux 32bits
	Linux ARM
	Eclipse CDT
	Visual Studio Code

	Configurations

	Create new application
	Desktop applications
	Adding files
	Command line applications
	C/C++ Standard

	Create new library
	Static libraries
	Dynamic libraries
	Advantages of DLLs
	Disadvantages of DLLs
	Check links with DLLs
	Loading DLLs at runtime
	Location of DLLs

	Symbols and visibility
	Export in DLLs
	Checking in DLLs

	Resources
	Types of resources
	Create resources
	Internationalization (i18n)
	Runtime translation
	Edit resources
	Manual management
	Resource processing
	Resource distribution
	nrc warnings
	Application icon

	2 Introduction to the API
	NAppGUI SDK
	NAppGUI API
	Online resources
	A little history

	Sewer library
	Sewer
	The C standard library

	Asserts
	Pointers
	Unicode
	UTF encodings
	UTF-32
	UTF-16
	UTF-8
	Using UTF-8

	Maths
	Random numbers

	Standard functions
	Standard I/O
	Memory
	Stack Segment
	Heap Segment

	Osbs library
	Osbs
	Processes
	Launching processes
	Multi-processing examples

	Threads
	Throwing threads
	Shared variables
	Multi-thread example

	Mutual exclusion
	Locks

	Loading libraries
	Library search paths
	Search order in Windows
	Search order on Linux/macOS

	Files and directories
	File System
	Files and data streams
	Filename and pathname
	Home and AppData

	Sockets
	Client/Server example

	Time
	Log

	Core library
	Core
	Heap - Memory manager
	Multi-thread memory
	How Heap Works

	Buffers
	Strings
	Streams
	Stream Types
	File stream
	Socket stream
	Block stream
	Memory stream
	Standard stream
	Null stream
	Binary stream
	Text stream
	Tokens
	Identifiers
	Strings
	Numbers
	Symbols
	Comentarios
	Stream advantages
	Unify serialization
	More elegance
	Higher productivity
	Higher performance
	Byte order
	Stream state

	Arrays
	Registers or pointers
	Type check
	Constructors
	Array loops
	Copy objects
	Serialization
	Destructors
	Sort and search
	Arrays of basic types

	Arrays (pointers)
	Binary search trees
	Iterators
	Arrays vs Sets comparative

	Binary search trees (pointers)
	Regular expressions
	Define patterns
	Regular languages and automata

	Data binding
	Synchronization with graphical interfaces
	Read and write JSON
	Serialization with DBind
	Default constructor
	Numerical ranges

	Events
	Keyboard buffer
	File operations
	Resource packs
	Dates
	Clocks

	Geom2D library
	Geom2D
	2D Vectors
	CW and CCW angles
	Vector projection

	2D Size
	2D Rectangles
	2D Transformations
	Elementary transformations
	Composition of transformations
	Decomposition and inverse

	2D Segments
	2D Circles
	2D Boxes
	2D Oriented Boxes
	2D Triangles
	2D Polygons
	Polygon center
	Polygon decomposition

	2D Collisions

	Draw2D library
	Draw2D
	2D Contexts
	Reference systems
	Cartesian systems
	Antialiasing
	Retina displays

	Drawing primitives
	Line drawing
	Figures and borders
	Gradients
	Gradient transformation
	Gradients in lines
	Gradient Limits
	Drawing text
	Drawing images
	Default parameters

	Geom2D Entities Drawing
	Colors
	HSV space

	Palettes
	Predefined palette

	Pixel Buffer
	Pixel formats
	Procedural images
	Copy and conversion

	Images
	Load and view images
	Generate images
	Pixel access
	Save images: Codecs

	Typography fonts
	Create fonts
	System font
	Font characteristics
	Size in points
	Bitmap and Outline fonts
	Unicode and glyphs

	Gui library
	Gui
	Declarative composition
	Anatomy of a window.
	GUI Events

	Label
	Button
	RadioGroup

	PopUp
	Edit
	Filter texts

	Combo
	ListBox
	UpDown
	Slider
	Progress
	View
	Draw in views.
	Scrolling views
	Using the mouse
	Using the keyboard

	TextView
	Character format
	Paragraph format
	Document format

	ImageView
	TableView
	Data connection
	Data cache
	Multiple selection
	Configure columns
	Grid drawing

	SplitView
	Add controls
	Split modes

	Layout
	Natural sizing
	Margins and format
	Alignment
	Sub-layouts
	Cell expansion
	Tabstops

	Cell
	Panel
	Understanding panel sizing

	Window
	Window size
	Closing the window
	Modal windows
	Hotkeys

	GUI Data binding
	Basic type binding
	Limits and ranges
	Nested structures
	Notifications and calculated fields

	Menu
	MenuItem
	Common dialogs

	OSApp library
	OSApp
	main() and osmain()
	Synchronous applications
	Multi-threaded tasks

	INet library
	INet
	HTTP
	JSON
	JSON parsing and conversion to data in C
	Mapping between Json and C
	Convert from C to JSON

	URL
	Base64

	3 Sample Applications
	Die
	Use of sublayouts
	Use of Custom Views
	Parametric drawing
	Resizing
	Use of resources
	Die and Dice
	The complete Die program

	Bricks
	Fractals
	Bode
	Products
	Specifications
	Model-View-Controller
	Model
	JSON WebServices
	Write/Read on disk
	Add/Delete records

	View
	Multi-layout panel
	Hide columns
	Bar graphs
	Translations
	Dark Mode themes

	Controller
	Multi-threaded login
	Synchronize Model and View
	Change the image
	Memory management

	The complete program

	Hello GUI!
	Hello Label!
	Hello Button!
	Hello PopUp and Combo!
	Hello Edit and UpDown!
	Hello ListBox!
	Hello Slider and Progress!
	Hello TextView!
	Hello TableView!
	Hello SplitView!
	Hello Modal Window!
	Hello Gui Binding!
	Hello Struct Binding!
	Hello Sublayout!
	Hello Subpanel!
	Hello Multi-layout!
	Hello Scroll-Panel!
	Hello IP-Input!

	Hello Draw2d!
	Hello 2D Collisions!
	Drawing on an image
	Scroll drawings
	Images from URLs
	Color table
	Read/Write Json
	Alternative to STL

	4 Library reference
	Sewer library
	Types and Constants
	Functions

	Osbs library
	Types and Constants
	Functions

	Core library
	Types and Constants
	Functions

	Geom2D library
	Types and Constants
	Functions

	Draw2D library
	Types and Constants
	Functions

	Gui library
	Types and Constants
	Functions

	OSApp library
	Functions

	INet library
	Types and Constants
	Functions

